Predominant Mycotoxins, Pathogenesis, Control Measures, and Detection Methods in Fermented Pastes
Abstract
:1. Introduction
2. Mycotoxins in Fermented Pastes
2.1. Aflatoxins
2.2. Ochratoxins
2.3. Cereulide
3. Pathogenicity Mechanism of Mycotoxins
3.1. Cancer Diseases
3.2. Neurodegenerative Diseases
3.3. Gastrointestinal Diseases
3.4. Emetic Illness
4. Methods to Control and Manage Mycotoxins
4.1. Biocontrol Method
4.2. Physicochemical Control Methods
5. Detection Methods of Mycotoxins
5.1. Novel Magnetic Adsorbent Techniques
5.2. Aptamer Probes Techniques
5.3. On-Site Test
5.4. Molecular-Based Techniques
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Petra, S.; Peter, S. Characterization of the key aroma compounds in soy sauce using approaches of molecular sensory science. J. Agric. Food Chem. 2007, 55, 6262–6269. [Google Scholar]
- Durazzo, A.; Lucarini, M. Current shot and re-thinking of antioxidant research strategy. Braz. J. Anal. Chem. 2018, 5, 9–11. [Google Scholar] [CrossRef]
- Adebiyi, J.A.; Kayitesi, E.; Adebo, O.A.; Changwa, R.; Njobeh, P.B. Food fermentation and mycotoxin detoxification: An African perspective. Food Control 2019, 106, 8. [Google Scholar] [CrossRef]
- Priyanka, S.; Sajid, G.M.; Kanade, S.R. Aflatoxin B1 induced multiple epigenetic modulators in human epithelial cell lines. Toxicon 2018, 23, 243–254. [Google Scholar]
- Ahn, J.S.; Jang, H.S.; Song, Y.J.; Yang, T.H.; Jahng, K.Y. Occurrence and biotransformation of ochratoxin A during pepper sauce fermentation. J. Korean Soc. Appl. Biol. Chem. 2011, 54, 972–977. [Google Scholar] [CrossRef]
- Trucksess, M.W.; Scott, P.M. Mycotoxins in botanicals and dried fruits: A review. Food Addit. Contam. 2008, 25, 181–192. [Google Scholar] [CrossRef] [Green Version]
- Schatzmayr, G.; Zehner, F.; Taubel, M.; Schatzmayr, D.; Klimitsch, A.; Loibner, A.P.; Binder, E.M. Microbiologicals for deactivating mycotoxins. Mol. Nutr. Food Res. 2006, 50, 543–551. [Google Scholar] [CrossRef]
- Dai, Y.; Huang, K.; Zhang, B.; Zhu, L.; Xu, W. Aflatoxin B1-induced epigenetic alterations: An overview. Food Chem. Toxicol. 2017, 109, 586–591. [Google Scholar] [CrossRef]
- Guimarães, F.R.; Vieira, C.M.; Maria, D.S.F.K.; Monteiro, E.K.M.; Pereira, A.R.; Chagas, M.M. Epigenetic alterations caused by aflatoxin B1: A public health risk in the induction of hepatocellular carcinoma. Transl. Res. 2018, 22, 32–40. [Google Scholar]
- Daohong, Z.; Peiwu, L.; Qi, Z.; Wen, Z. Ultrasensitive nanogold probe-based immunochromatographic assay for simultaneous detection of total aflatoxins in peanuts. Biosens. Bioelectron. 2011, 26, 2877–2882. [Google Scholar]
- Roy, K.W.; Baird, R.E.; Abney, T.S. A review of soybean (Glycine max) seed, pod, and flower mycofloras in north America, with methods and a key for identification of selected fungi. Mycopathologia 2001, 150, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Chen, L.; Zhu, Y.; Huang, Y.; Hu, X.; Wu, Q.; Nüssler, A.K.; Liu, L.; Yang, W. Current major degradation methods for aflatoxins: A review. Trends Food Sci. Technol. 2018, 80, 155–166. [Google Scholar] [CrossRef]
- Gourama, H.; Bullerman, L.B. Aspergillus flavus and Aspergillus parasiticus: Aflatoxigenic fungi of concern in foods and feeds: A review. J. Food Prot. 1995, 58, 1395–1404. [Google Scholar] [CrossRef] [PubMed]
- Frisvad, J.C.; Hubka, V.; Ezekiel, C.N.; Hong, S.B.; Nováková, A.; Chen, A.J.; Arzanlou, M.; Larsen, T.O.; Sklenář, F.; Mahakarnchanakul, W. Taxonomy of Aspergillus section Flavi and their production of aflatoxins, ochratoxins and other mycotoxins. Stud. Mycol. 2019, 93, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Jiujiang, Y.; Perng-Kuang, C.; Ehrlich, K.C.; Cary, J.W.; Deepak, B.; Cleveland, T.E.; Payne, G.A.; Linz, J.E.; Woloshuk, C.P.; Bennett, J.W. Clustered pathway genes in aflatoxin biosynthesis. Appl. Environ. Microb. 2004, 70, 1253–1262. [Google Scholar]
- Pildain, M.B.; Frisvad, J.C.; Vaamonde, G.; Cabral, D.; Varga, J.; Samson, R.A. Two novel aflatoxin-producing Aspergillus species from Argentinean peanuts. Int. J. Syst. Evol. Microbiol. 2008, 58, 725–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rank, C.; Klejnstrup, M.L.; Petersen, L.M.; Kildgaard, S.; Frisvad, J.C.; Held, G.C.; Ostenfeld, L.T. Comparative chemistry of Aspergillus oryzae (RIB40) and A. flavus (NRRL 3357). Metabolites 2012, 2, 39–56. [Google Scholar] [CrossRef]
- Soares, C.; Rodrigues, P.; Peterson, S.W.; Lima, N. Three new species of Aspergillus section Flavi isolated from almonds and maize in Portugal. Mycologia 2012, 104, 682–697. [Google Scholar] [CrossRef]
- Kurtzman, C.P.; Horn, B.W.; Hesseltine, C.W. Aspergillus nomius: A new aflatoxin-producing species related to Aspergillus flavus and Aspergillus tamarii. Antonie Van Leeuwenhoek 1987, 53, 147–158. [Google Scholar] [CrossRef]
- Gonçalves, J.S.; Ferracin, L.M.; Vieira, M.L.C.; Iamanaka, B.T.; Taniwaki, M.H.; Fungaro, M.H.P. Molecular analysis of Aspergillus section Flavi isolated from Brazil nuts. World J. Microb. Biot. 2012, 28, 1817–1825. [Google Scholar] [CrossRef]
- Basaran, P.; Demirbas, R.M. Spectroscopic detection of pharmaceutical compounds from an aflatoxigenic strain of Aspergillus parasiticus. Microbiol. Res. 2010, 165, 516–522. [Google Scholar] [CrossRef] [PubMed]
- Varga, J.; Frisvad, J.C.; Samson, R.A. Two new aflatoxin producing species, and an overview of Aspergillus section Flavi. Stud. Mycol. 2011, 69, 57–80. [Google Scholar] [CrossRef] [PubMed]
- Rank, C.; Nielsen, K.F.; Larsen, T.O.; Varga, J.; Samson, R.A.; Frisvad, J.C. Distribution of sterigmatocystin in filamentous fungi. Fungal Biol. 2011, 115, 406–420. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.; Park, H.K.; Lee, J.S.; Kim, J.K.; Kim, M. Reduction of biogenic amines and aflatoxins in Doenjang samples fermented with various Meju as starter cultures. Food Control 2014, 42, 181–187. [Google Scholar] [CrossRef]
- Taniwaki, M.H.; Pitt, J.I.; Magan, N. Aspergillus species and mycotoxins: Occurrence and importance in major food commodities. Curr. Opin. Food Sci. 2018, 54, 234–246. [Google Scholar] [CrossRef] [Green Version]
- Pitt, J.I.; Hocking, A.D. Aspergillus and related teleomorphs. Fungi Food Spoilage 1985, 36, 217–221. [Google Scholar]
- Katsurayama, A.M.; Martins, L.M.; Iamanaka, B.T.; Mhp, F.; Silva, J.J.; Frisvad, J.C.; Pitt, J.I.; Taniwaki, M.H. Occurrence of Aspergillus section Flavi and aflatoxins in Brazilian rice: From field to market. Int. J. Food Microbiol. 2018, 266, 213–221. [Google Scholar] [CrossRef] [Green Version]
- Mohale, S.; Medina, A.; Rodríguez, A.; Sulyok, M.; Magan, N. Mycotoxigenic fungi and mycotoxins associated with stored maize from different regions of Lesotho. Mycotoxin Res. 2013, 29, 209–219. [Google Scholar] [CrossRef]
- Viaro, H.P.; Silva, J.J.D.; Ferranti, L.D.S.; Bordini, J.G.; Massi, F.P.; Fungaro, M.H.P. The first report of A. novoparasiticus, A. arachidicola and A. pseudocaelatus in Brazilian corn kernels. Int. J. Food Microbiol. 2017, 243, 46–51. [Google Scholar] [CrossRef]
- Dong, M.K.; Chung, S.H.; Chun, H.S. Multiplex PCR assay for the detection of aflatoxigenic and non-aflatoxigenic fungi in a Korean fermented soybean food starter. Food Microbiol. 2011, 28, 1402–1408. [Google Scholar]
- Cabanes, F.J.; Bragulat, M.R.; Castella, G. Ochratoxin A producing species in the genus Penicillium. Toxins 2010, 2, 1111–1120. [Google Scholar] [CrossRef] [PubMed]
- Khoury, A.; Atoui, A. Ochratoxin A: General overview and actual molecular status. Toxins 2010, 2, 461–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, M.T.; Tozovanu, M.; Tran, T.L.; Pfohl-Leszkowicz, A. Occurrence of aflatoxin B1, citrinin and ochratoxin A in rice in five provinces of the central region of Vietnam. Food Chem. 2007, 105, 42–47. [Google Scholar] [CrossRef]
- Bhatnagar, D.; Ehrlich, K.C.; Cleveland, T.E. Molecular genetic analysis and regulation of aflatoxin biosynthesis. Appl. Microbiol. Biotechnol. 2003, 61, 83–93. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.; Liu, F.; Wang, Q.; Selvaraj, J.N.; Xing, F.; Zhao, Y.; Liu, Y. Ochratoxin A producing fungi, biosynthetic pathway and regulatory mechanisms. Toxins 2016, 8, 83. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Li, S.; Bai, Y.; Prates, L.L.; Lei, Y.; Yu, P. Mycotoxin contamination of food and feed in China: Occurrence, detection techniques, toxicological effects and advances in mitigation technologies. Food Control 2018, 7, 43–51. [Google Scholar] [CrossRef]
- Lai, X.; Liu, R.; Ruan, C.; He, Z.; Liu, C. Occurrence of aflatoxins and ochratoxin A in rice samples from six provinces in China. Food Control 2015, 50, 401–404. [Google Scholar] [CrossRef]
- Varga, J.; Rigó, K.; Téren, J.; Mesterházy, Á. Recent advances in ochratoxin research I. production, detection and occurrence of ochratoxins. Cereal Res. Commun. 2001, 29, 85–92. [Google Scholar] [CrossRef]
- Atanda, S.A.; Pessu, P.O.; Agoda, S.; Isong, I.U.; Adekalu, O.A.; Echendu, M.A.; Falade, T.C. Fungi and mycotoxins in stored foods. Afr. J. Microbiol. Res. 2011, 5, 4373–4382. [Google Scholar] [CrossRef]
- Jafar, M.; Gisoo, M. Effects of processing on mycotoxin stability in cereals. J. Sci Food Agric. 2014, 94, 2372–2375. [Google Scholar]
- Kotiranta, A.; Lounatmaa, K.; Haapasalo, M. Epidemiology and pathogenesis of Bacillus cereus infections. Microbes Infect. 2000, 2, 189–198. [Google Scholar] [CrossRef]
- Tenovuo, J.; Makinen, K.K.; Sievers, G. Antibacterial effect of lactoperoxidase and myeloperoxidase against Bacillus cereus. Antimicrob. Agents Chemother. 1985, 27, 96–101. [Google Scholar] [CrossRef] [Green Version]
- Shin, H.; Bandara, N.; Shin, E.; Ryu, S.; Kim, K.P. Prevalence of Bacillus cereus bacteriophages in fermented foods and characterization of phage JBP901. Res. Microbiol. 2011, 162, 791–797. [Google Scholar] [CrossRef]
- Tewari, A.; Abdullah, S. Bacillus cereus food poisoning: International and Indian perspective. J. Food Sci. 2014, 52, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Bartoszewiez, M.; Hansen, B.M.; Swiecicka, I. The members of the Bacillus cereus group are commonly present contaminants of fresh and heat-treated milk. Food Microbiol. 2008, 25, 588–596. [Google Scholar] [CrossRef]
- King, N.J.; Whyte, R.; Hudson, J.A. Presence and significance of Bacillus cereus in dehydrated potato products. J. Food Prot. 2007, 70, 514–520. [Google Scholar] [CrossRef]
- Juil, K.; Seong-Hwan, P.; Hun, D.K.; Kim, D.; Moon, Y. Interference with mutagenic aflatoxin B1-induced checkpoints through antagonistic action of Ochratoxin A in intestinal cancer cells: A molecular explanation on potential risk of crosstalk between carcinogens. Oncotarget 2016, 7, 39627–39639. [Google Scholar]
- Ding, X.; Kaminsky, L.S. Human extrahepatic cytochromes P450: Function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts. Annu. Rev. Pharm. 2003, 43, 149–173. [Google Scholar] [CrossRef]
- Bedard, L.L.; Massey, T.E. Aflatoxin B1-induced DNA damage and its repair. Cancer Lett. 2006, 241, 174–183. [Google Scholar] [CrossRef]
- Pfohlleszkowicz, A. Ochratoxin A and aristolochic acid involvement in nephropathies and associated urothelial tract tumours. Arh Hig Rada Toksikol 2009, 60, 465–483. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Cederbaum, A.I. CYP2E1 potentiation of LPS and TNFα-induced hepatotoxicity by mechanisms involving enhanced oxidative and nitrosative stress, activation of MAP kinases, and mitochondrial dysfunction. Genes Nutr. 2010, 5, 149–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yim, J.H.; Kim, K.Y.; Chon, J.W.; Kim, D.H.; Kim, H.S.; Choi, D.S.; Choi, I.S.; Seo, K.H. Incidence, Antibiotic susceptibility, and toxin profiles of Bacillus cereus sensu lato isolated from Korean fermented soybean products. J. Food Sci. 2015, 80, 1266–1270. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Pyo, M.C.; Shin, H.S.; Ryu, D.; Lee, K.W. Renal toxicity through AhR, PXR, and Nrf2 signaling pathway activation of ochratoxin A-induced oxidative stress in kidney cells. Food Chem. Toxicol. 2018, 45, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Doi, K.; Uetsuka, K. Mechanisms of mycotoxin-induced neurotoxicity through oxidative stress-associated pathways. Int. J. Mo.l Sci. 2011, 12, 5213–5237. [Google Scholar] [CrossRef] [Green Version]
- Belmadani, A.; Betbeder, A.M.; Tramu, G.; Steyn, P.S.; Creppy, E.E. P1E124–Regional selectivity to ochratoxin A, distribution and cytotoxicity in rat brain. Arch. Toxicol. 1998, 72, 656–662. [Google Scholar] [CrossRef] [PubMed]
- Sava, V.; Reunova, O.; Velasquez, A.; Harbison, R.; Sanchez-Ramos, J. Acute neurotoxic effects of the fungal metabolite ochratoxin-A. Neurotoxicology 2006, 27, 82–92. [Google Scholar] [CrossRef]
- Zhang, X.; Boesch-Saadatmandi, C.; Lou, Y.; Wolffram, S.; Huebbe, P.; Rimbach, G. Ochratoxin A induces apoptosis in neuronal cells. Genes Nutr. 2009, 4, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Ceuppens, S.; Uyttendaele, M.; Drieskens, K.; Heyndrickx, M.; Rajkovic, A.; Boon, N.; Van de Wiele, T. Survival and germination of Bacillus cereus spores without outgrowth or enterotoxin production during in vitro simulation of gastrointestinal transit. Appl. Environ. Microb. 2012, 78, 76–98. [Google Scholar] [CrossRef] [Green Version]
- Haug, T.M.; Sand, S.L.; Sand, O.; Phung, D.; Granum, P.E.; Hardy, S.P. Formation of very large conductance channels by Bacillus cereus Nhe in vero and GH4 Cells identifies NheA. J. Membr. Biol. 2010, 237, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Arnesen, L.P.S.; Fagerlund, A.; Granum, P.E. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Rev. 2008, 32, 579–606. [Google Scholar] [CrossRef] [Green Version]
- Chang, H.C.; Wei, Y.F.; Dijkshoorn, L.; Vaneechoutte, M.; Tang, C.T.; Chang, T.C. Species-level identification of isolates of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex by sequence analysis of the 16S-23S rRNA gene spacer region. J. Clin. Microbiol. 2005, 43, 1632–1639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wijnands, L.M.; Dufrenne, J.B.; Rombouts, F.M.; In’t Veld, P.H.; van Leusden, F.M. Prevalence of potentially pathogenic Bacillus cereus in food commodities in The Netherlands. J. Food Prot. 2006, 69, 2587–2594. [Google Scholar] [CrossRef] [PubMed]
- Dommel, M.K.; Frenzel, E.; Strasser, B.; Blöchinger, C.; Scherer, S.; Ehling-Schulz, M. Identification of the main promoter directing cereulide biosynthesis in emetic Bacillus cereus and its application for real-time monitoring of ces gene expression in foods. Immunol. Lett. 2010, 56, 12–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dommel, M.K.; Genia, L.; Siegfried, S.; Monika, E.S. Transcriptional kinetic analyses of cereulide synthetase genes with respect to growth, sporulation and emetic toxin production in Bacillus cereus. Food Microbiol. 2011, 28, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Andersson, M.A.; Pasi, H.; Ulla, H.H.M.L.I.; Douwe, H.; Jean-Claude, L.; Jorma, M.K.P.; Martti, S.; Isabelle, S.; Anna-Laura, S.; Laura, T. Toxicological profile of cereulide, the Bacillus cereus emetic toxin, in functional assays with human, animal and bacterial cells. Toxicon 2007, 49, 351–367. [Google Scholar] [CrossRef] [PubMed]
- Decleer, M.; Jovanovic, J.; Vakula, A.; Udovicki, B.; Rek, A.; Madder, A.; De Saeger, S.; Rajkovic, A. Oxygen consumption rate analysis of mitochondrial dysfunction caused by Bacillus cereus cereulide in Caco-2 and HepG2 Cells. Toxins 2018, 10, 266. [Google Scholar] [CrossRef] [Green Version]
- Meftah, S.; Abid, S.; Dias, T.; Rodrigues, P. Effect of dry-sausage starter culture and endogenous yeasts on Aspergillus westerdijkiae and Penicillium nordicum growth and OTA production. Lwt-Food Sci. Technol. 2018, 87, 250–258. [Google Scholar] [CrossRef] [Green Version]
- Chanchalchaovivat, A.; Ruenwongsa, P.; Panijpan, B. Screening and identification of yeast strains from fruits and vegetables: Potential for biological control of postharvest chilli anthracnose (Colletotrichum capsici). Biol. Control 2007, 42, 326–335. [Google Scholar] [CrossRef]
- Nunes, C.A. Biological control of postharvest diseases of fruit. Eur. J. Plant Pathol. 2012, 133, 181–196. [Google Scholar] [CrossRef]
- Ahlberg, S.; Joutsjoki, V.; Laurikkala, S.; Varmanen, P.; Korhonen, H. Aspergillus flavus growth inhibition by Lactobacillus strains isolated from traditional fermented Kenyan milk and maize products. Arch. Microbiol. 2017, 75, 89–95. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Liang, N.Y.; Curtis, J.M.; Gänzle, M.G. Characterization of linoleate 10-Hydratase of Lactobacillus plantarum and novel antifungal metabolites. Front. Microbiol. 2016, 7, 243–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sellamani, M.; Kalagatur, N.K.; Siddaiah, C.; Mudili, V.; Krishna, K.; Natarajan, G.; Putcha, V.L.R. Antifungal and zearalenone inhibitory activity of Pediococcus pentosaceus isolated from dairy products on Fusarium graminearum. Front. Microbiol. 2016, 7, 12–25. [Google Scholar] [CrossRef] [PubMed]
- Mosbah, A.; Delavenne, E.; Souissi, Y.; Mahjoubi, M.; Jehan, P.; Le Yondre, N.; Cherif, A.; Bondon, A.; Mounier, J.; Baudy-Floc’h, M.; et al. Novel antifungal compounds, spermine-like and short cyclic polylactates, produced by Lactobacillus harbinensis K.V9.3.1Np in yogurt. Front. Microbiol. 2018, 9, 10–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adedokun, E.O.; Rather, I.A.; Bajpai, V.K.; Park, Y.H. Biocontrol efficacy of Lactobacillus fermentum YML014 against food spoilage moulds using the tomato puree model. Front. Life Sci. 2016, 9, 64–68. [Google Scholar] [CrossRef]
- Sadiq, F.A.; Yan, B.W.; Tian, F.W.; Zhao, J.X.; Zhang, H.; Chen, W. Lactic acid bacteria as antifungal and anti-mycotoxigenic agents: A comprehensive review. Compr. Rev. Food. Sci. Food Saf. 2019, 10, 1541–4337. [Google Scholar] [CrossRef] [Green Version]
- Guimarães, A.; Santiago, A.; Teixeira, J.A.; Venâncio, A.; Abrunhosa, L. Anti-aflatoxigenic effect of organic acids produced by Lactobacillus plantarum. Int. J. Food Microbiol. 2017, 264, 31–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furukawa, T.; Sakuda, S. Inhibition of aflatoxin production by paraquat and external superoxide dismutase in Aspergillus flavus. Toxins 2019, 11, 107. [Google Scholar] [CrossRef] [Green Version]
- Khattab, A.A.; Ibrahim, M.I.M.; El-Kady, A.A. Ochratoxin A biosorption onto genetically improved of Lactobacillus delbrueckii mutants. Int. Food Res. J. 2018, 25, 515–522. [Google Scholar]
- Liew, W.P.; Mohdredzwan, S. Mycotoxin: Its impact on gut health and microbiota. Front. Cell Infect. Microbiol. 2018, 8, 60–71. [Google Scholar] [CrossRef] [Green Version]
- Dan, X.; Wang, H.; Zhang, Y.; Yang, Z.; Sun, X. Inhibition of non-toxigenic Aspergillus niger FS10 isolated from Chinese fermented soybean on growth and aflatoxin B1 production by Aspergillus flavus. Food Control 2013, 32, 359–365. [Google Scholar]
- Hong, K.Q.; Fu, X.M.; Dong, S.S.; Xiao, D.G.; Dong, J. Modulating acetate ester and higher alcohol production in Saccharomyces cerevisiae through the cofactor engineering. J. Ind. Microbiol. Biol. 2019, 5, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Kareem, M.M.; Rasmey, A.M.; Zohri, A.A. The action mechanism and biocontrol potentiality of novel isolates of Saccharomyces cerevisiae against the aflatoxigenic Aspergillus flavus. Lett. Appl. Microbiol. 2019, 68, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Krulj, J.; Markov, S.; Bocarov-Stancic, A.; Pezo, L.; Kojic, J.; Curcic, N.; Janic-Hajnal, E.; Bodroza-Solarov, M. The effect of storage temperature and water activity on aflatoxin B-1 accumulation in hull-less and hulled spelt grains. J. Sci. Food Agric. 2019, 99, 3703–3710. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, M.K.; Medina, A.; Mack, B.M.; Lebar, M.D.; Rodrã Guez, A.; Bhatnagar, D.; Magan, N.; Obrian, G.; Payne, G. Carbon dioxide mediates the response to temperature and water activity levels in Aspergillus flavus during infection of maize kernels. Toxins 2018, 10, 5. [Google Scholar] [CrossRef] [Green Version]
- Casquete, R.; Benito, M.J.; Córdoba, M.D.G.; Ruiz-Moyano, S.; Martín, A. The growth and aflatoxin production of Aspergillus flavus strains on a cheese model system are influenced by physicochemical factors. J Dairy Sci. 2017, 100, 217–221. [Google Scholar] [CrossRef]
- Mousa, W.; Ghazali, F.M.; Jinap, S.; Ghazali, H.M.; Radu, S. Modelling the effect of water activity and temperature on growth rate and aflatoxin production by two isolates of Aspergillus flavus on paddy. J. Applmicrobiol. 2011, 111, 1262–1274. [Google Scholar] [CrossRef]
- Lee, J.; Her, J.Y.; Lee, K.G. Reduction of aflatoxins (B 1, B 2, G 1, and G 2 ) in soybean-based model systems. Food Chem. 2015, 189, 45–51. [Google Scholar] [CrossRef]
- Méndez-Albores, A.; Arambula-Villa, G.; Loarca-Piña, M.G.F.; Castano-Tostado, E.; Moreno-Martínez, E. Safety and efficacy evaluation of aqueous citric acid to degrade B-aflatoxins in maize. Food Chem. Toxicol. 2005, 43, 233–238. [Google Scholar] [CrossRef]
- Cao, J.; Zhou, S.; Kong, W.; Ma, X.; Yang, M.; Li, W.; Yang, S. Simultaneous determination of aflatoxins B1, B2, G1, G2 in Fructus Bruceae by high-performance liquid chromatography with online post-column photochemical derivatization. J. Sep. Sci. 2015, 37, 2771–2778. [Google Scholar] [CrossRef]
- Fan, S.; Li, Q.; Zhang, X.; Cui, X.; Zhang, D.; Zhang, Y. Simultaneous determination of aflatoxin B1, B2, G1, and G2 in corn powder, edible oil, peanut butter, and soy sauce by liquid chromatography with tandem mass spectrometry utilizing turbulent flow chromatography. J. Sep. Sci. 2015, 38, 1310–1317. [Google Scholar] [CrossRef]
- Zarrin, E.H.; Hamed Reza, B.; Javad, F. Extraction of aflatoxins from food samples using graphene-based magnetic nanosorbents followed by high-performance liquid chromatography: A simple solution to overcome the problems of immunoaffinity columns. J. Sep. Sci. 2015, 37, 2566–2573. [Google Scholar]
- Alcaide-Molina, M.; Ruiz-Jiménez, J.; Mata-Granados, J.M.; Castro, L.D. High through-put aflatoxin determination in plant material by automated solid-phase extraction on-line coupled to laser-induced fluorescence screening and determination by liquid chromatography–triple quadrupole mass spectrometry. J Chromatogr. A 2009, 1216, 1115–1125. [Google Scholar] [CrossRef] [PubMed]
- Neda, S.F.; Jalal, H.; Yousefi, S.R. Determination of aflatoxin B1 in cereals by homogeneous liquid-liquid extraction coupled to high performance liquid chromatography-fluorescence detection. J. Sep. Sci. 2015, 34, 1333–1337. [Google Scholar]
- Duan, N.; Wu, S.; Dai, S.; Gu, H.; Hao, L.; Ye, H.; Wang, Z. Advances in aptasensors for the detection of food contaminants. Analyst 2016, 141, 3942–3961. [Google Scholar] [CrossRef] [PubMed]
- ŠafaříKová, M.; ŠafaříK, I. Magnetic solid-phase extraction. J. Magn. Magn. Mater. 1999, 194, 108–112. [Google Scholar] [CrossRef]
- Wang, M.; Duan, X.; Xu, Y.; Duan, X. Functional Three-Dimensional Graphene/Polymer Composites. ACS Nano 2016, 10, 7231–7242. [Google Scholar] [CrossRef]
- Nouri, N.; Sereshti, H.; Farahani, A. Graphene-coated magnetic-sheet solid-phase extraction followed by high-performance liquid chromatography with fluorescence detection for the determination of aflatoxins B-1, B-2, G(1), and G(2) in soy-based samples. J. Sep. Sci. 2018, 41, 10–21. [Google Scholar] [CrossRef]
- Cassandra, M.C.; Paul, T.; Li-Sheng, D.; Xun, L.; Yi-Ming, L. Extraction of aflatoxins from liquid foodstuff samples with polydopamine-coated superparamagnetic nanoparticles for HPLC-MS/MS analysis. J. Agrfood Chem. 2014, 62, 4261–4267. [Google Scholar]
- Liu, H.; Lu, A.; Fu, H.; Li, B.; Yang, M.; Wang, J.; Luan, Y. Affinity capture of aflatoxin B1 and B2 by aptamer-functionalized magnetic agarose microspheres prior to their determination by HPLC. Microchim. Acta 2018, 185, 326–337. [Google Scholar] [CrossRef]
- Wang, J.; Yu, J.; Yang, Q.; Mcdermott, J.; Scott, A.; Vukovich, M.; Lagrois, R.; Gong, Q.; Greenleaf, W.; Eisenstein, M. Multiparameter particle display (MPPD): A quantitative screening method for the discovery of highly specific aptamers. AngewChem 2017, 56, 744–753. [Google Scholar]
- Dunn, M.R.; Jimenez, R.M.; Chaput, J.C. Analysis of aptamer discovery and technology. Nat. Rev. Chem. 2017, 1, 76–84. [Google Scholar] [CrossRef]
- Wu, S.; Liu, L.; Duan, N.; Li, Q.; Zhou, Y.; Wang, Z. An aptamer-based lateral flow test strip for rapid detection of zearalenone in corn samples. J. Agric. Food Chem. 2018, 66, 1949–1954. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.J.; Zhang, H.; Shi, Z.; Duan, N.; Fang, C.C.; Dai, S.L.; Wang, Z.P. Aptamer-based fluorescence biosensor for chloramphenicol determination using upconversion nanoparticles. Food Control 2015, 50, 597–604. [Google Scholar] [CrossRef]
- Evtugyn, G.; Porfireva, A.; Stepanova, V.; Sitdikov, R.; Hianik, T. Electrochemical aptasensor based on polycarboxylic macrocycle modified with neutral red for aflatoxin B1 detection. Electroanalysis 2015, 26, 2100–2109. [Google Scholar] [CrossRef]
- Guo, X.; Wen, F.; Zheng, N.; Luo, Q.; Wang, H.; Wang, H.; Li, S.; Wang, J. Development of an ultrasensitive aptasensor for the detection of aflatoxin B1. BiosensBioelectron 2014, 56, 340–344. [Google Scholar] [CrossRef]
- Xia, X.H.; Wang, Y.X.; Yang, H.; Dong, Y.; Zhang, K.X.; Lu, Y.H.; Deng, R.J.; He, Q. Enzyme-free amplified and ultrafast detection of aflatoxin B-1 using dual-terminal proximity aptamer probes. Food Chem. 2019, 283, 32–38. [Google Scholar] [CrossRef]
- Cruz-Aguado, J.A.; Penner, G. Determination of Ochratoxin A with a DNA aptamer. J. Agric. Food Chem. 2008, 56, 10456–10461. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Liu, R.J.; Sun, W.Y.; Lv, L.; Guo, Z.J. Ochratoxin A detection platform based on signal amplification by Exonuclease III and fluorescence quenching by gold nanoparticles. Sens. Actuator B-Chem. 2018, 255, 1640–1645. [Google Scholar] [CrossRef]
- Sun, A.L.; Zhang, Y.F.; Sun, G.P.; Wang, X.N.; Tang, D.P. Homogeneous electrochemical detection of ochratoxin A in foodstuff using aptamer-graphene oxide nanosheets and DNase I-based target recycling reaction. BiosensBioelectron 2017, 89, 659–665. [Google Scholar] [CrossRef]
- Cai, J.R.; Hao, C.L.; Sun, M.Z.; Ma, W.; Xu, C.L.; Kuang, H. Chiral shell core-satellite nanostructures for ultrasensitive detection of mycotoxin. Small 2018, 14, 8–16. [Google Scholar] [CrossRef]
- Wei, M.; Wang, C.L.; Xu, E.S.; Chen, J.; Xu, X.L.; Wei, W.; Liu, S.Q. A simple and sensitive electrochemiluminescence aptasensor for determination of ochratoxin A based on a nicking endonuclease-powered DNA walking machine. Food Chem. 2019, 282, 141–146. [Google Scholar] [CrossRef]
- Xie, F.; Lai, W.H.; Saini, J.; Shan, S.; Cui, X.; Liu, D.F. Rapid pretreatment and detection of trace aflatoxin B 1 in traditional soybean sauce. Food Chem. 2014, 150, 99–105. [Google Scholar] [CrossRef]
- Santos, V.O.; Pelegrini, P.B.; Mulinari, F.; Lacerda, A.F.; Moura, R.S.; Cardoso, L.P.V.; Buhrer-Sekula, S.; Miller, R.N.G.; Grossi-de-Sa, M.F. Development and validation of a novel lateral flow immunoassay device for detection of aflatoxins in soy-based foods. Anal. Methods 2017, 9, 2715–2722. [Google Scholar] [CrossRef]
- Law, J.W.; Ab Mutalib, N.S.; Chan, K.G.; Lee, L.H. Rapid methods for the detection of foodborne bacterial pathogens: Principles, applications, advantages and limitations. Front. Microbiol. 2015, 5, 770–782. [Google Scholar] [CrossRef] [Green Version]
- Ding, T.; Suo, Y.; Zhang, Z.; Liu, D.; Ye, X.; Chen, S.; Zhao, Y. A multiplex RT-PCR assay for S. aureus, L. monocytogenes, and Salmonella spp. detection in raw milk with pre-enrichment. Front. Microbiol. 2017, 8, 989–993. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Lin, C.W.; Wang, J.; Oh, D.H. Advances in rapid detection methods for foodborne pathogens. J. Microbbiot. 2014, 24, 297–303. [Google Scholar] [CrossRef] [Green Version]
- Wei, S.; Daliri, E.B.M.; Chelliah, R.; Park, B.J.; Lim, J.S.; Baek, M.A.; Nam, Y.S.; Seo, K.H.; Jin, Y.G.; Oh, D.H. Development of a multiplex real-time PCR for simultaneous detection of Bacillus cereus, Listeria monocytogenes, and Staphylococcus aureus in food samples. J. Food Saf. 2019, 39, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Knut, R.; Birgitte, M.; Signe Marie, D.M.; Holck, A.L. Use of ethidium monoazide and PCR in combination for quantification of viable and dead cells in complex samples. Appl Environ. Microbiol. 2005, 71, 1018–1024. [Google Scholar]
- Cattani, V.C., Jr.; Nasário, J.S.R.; Ferreira, C.A.S.; Oliveira, S.D. Detection and quantification of viable Bacillus cereus group species in milk by propidium monoazide quantitative real-time PCR. J. Dairy Sci. 2016, 99, 2617–2624. [Google Scholar] [CrossRef]
- Forghani, F.; Singh, P.; Seo, K.H.; Oh, D.H. A novel pentaplex real time (RT)- PCR high resolution melt curve assay for simultaneous detection of emetic and enterotoxin producing Bacillus cereus in food. Food Control 2016, 60, 560–568. [Google Scholar] [CrossRef]
- Nguyen, A.T.; Tallent, S.M. Screening food for Bacillus cereus toxins using whole genome sequencing. Food Microbiol. 2019, 78, 164–170. [Google Scholar] [CrossRef] [PubMed]
Species | Aflatoxins | Reference |
---|---|---|
Aspergillus aflatoxiformans | B1, B2, G1, G2 | [14] |
Aspergillus arachidicola | B1, B2, G1, G2 | [16] |
Aspergillus austwickii | B1, B2, G1, G2 | [14] |
Aspergillus cerealis | B1, B2, G1, G2 | [14] |
A. flavus | B1, B2 | [17] |
Aspergillus luteovirescens | B1, B2, G1, G2 | [16] |
Aspergillus minisclerotigenes | B1, B2, G1, G2 | [16] |
Aspergillus mottae | B1, B2, G1, G2 | [18] |
A. nomius | B1, B2, G1, G2 | [19] |
Aspergillus novoparasiticus | B1, B2, G1, G2 | [20] |
A. parasiticus | B1, B2, G1, G2 | [21] |
Aspergillus pipericola | B1, B2, G1, G2 | [14] |
Aspergillus pseudocaelatus | B1, B2, G1, G2 | [22] |
Aspergillus pseudonomius | B1 | [22] |
Aspergillus pseudotamarii | B1, B2 | [22] |
Aspergillus sergii | B1, B2, G1, G2 | [18] |
Aspergillus togoensis | B1 | [23] |
Aspergillus transmontanensis | B1, B2, G1, G2 | [18] |
Mycotoxins | Diseases | Aim Organ | Related Enzymes |
---|---|---|---|
AFB1 | Human hepatocellular carcinoma | Human liver | CYP1A2, CYP3A4 |
Ochratoxin A | Balkan Endemic Nephropathy, Tunisian Nephropathy | HK-2 cells | CYP1A1, CYP1A2, CYP3A4 |
Ochratoxin A | Parkinsonism, Alzheimer’s disease | Human brain | OGG1 |
Cereulide | Gastrointestinal diseases | Intestinal epithelial cells | CytK, Hbl, Nhe, EntFM |
Cereulide | Emetic illness | Mitochondria | Cereulide synthetase |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, G.; Wang, Y.-F.; Chen, J.; Yao, Y. Predominant Mycotoxins, Pathogenesis, Control Measures, and Detection Methods in Fermented Pastes. Toxins 2020, 12, 78. https://doi.org/10.3390/toxins12020078
Zhao G, Wang Y-F, Chen J, Yao Y. Predominant Mycotoxins, Pathogenesis, Control Measures, and Detection Methods in Fermented Pastes. Toxins. 2020; 12(2):78. https://doi.org/10.3390/toxins12020078
Chicago/Turabian StyleZhao, Guozhong, Yi-Fei Wang, Junling Chen, and Yunping Yao. 2020. "Predominant Mycotoxins, Pathogenesis, Control Measures, and Detection Methods in Fermented Pastes" Toxins 12, no. 2: 78. https://doi.org/10.3390/toxins12020078
APA StyleZhao, G., Wang, Y. -F., Chen, J., & Yao, Y. (2020). Predominant Mycotoxins, Pathogenesis, Control Measures, and Detection Methods in Fermented Pastes. Toxins, 12(2), 78. https://doi.org/10.3390/toxins12020078