Natural Occurrence of Deoxynivalenol and Its Acetylated Derivatives in Chinese Maize and Wheat Collected in 2017
Abstract
:1. Introduction
2. Results
2.1. Optimization of the Clean-Up Procedure, Chromatographic Column, and Mass Spectrometry Conditions
2.2. Method Validation
2.3. Analysis of Samples
2.4. Distribution of DON and Its Derivatives in Wheat and Maize from China
3. Discussion
4. Materials and Methods
4.1. Chemicals, Reagent, Standards, and Instruments
4.2. Sample Collection
4.3. UHPLC–MS/MS Conditions
4.4. Sample Preparation and Clean-Up
4.5. Quantitation and Calculation
4.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ortiz-Monasterio, J.I.; Palacios-Rojas, N.; Meng, E.; Pixley, K.; Trethowan, R.; Pena, R. Enhancing the mineral and vitamin content of wheat and maize through plant breeding. J. Cereal Sci. 2007, 46, 293–307. [Google Scholar] [CrossRef]
- Ranum, P.; Peña-Rosas, J.P.; Garcia-Casal, M.N. Global maize production, utilization, and consumption. Ann. N. Y. Acad. Sci. 2014, 1312, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Masuda, K. Measuring eco-efficiency of wheat production in Japan: A combined application of life cycle assessment and data envelopment analysis. J. Clean. Prod. 2016, 126, 373–381. [Google Scholar] [CrossRef]
- Moretti, A.; Logrieco, A.F.; Susca, A. Mycotoxins: An underhand food problem. Methods Mol. Biol. 2017, 1542, 3–12. [Google Scholar] [PubMed]
- Van der Lee, T.; Zhang, H.; van Diepeningen, A.; Waalwijk, C. Biogeography of Fusarium graminearum species complex and chemotypes: A review. Food Addit. Contam. Part A 2015, 32, 453–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Starkey, D.E.; Ward, T.J.; Aoki, T.; Gale, L.R.; Kistler, H.C.; Geiser, D.M.; Suga, H.; Toth, B.; Varga, J.; O’Donnell, K. Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity. Fungal Genet. Biol. 2007, 44, 1191–1204. [Google Scholar] [CrossRef]
- Lee, J.; Kim, H.; Jeon, J.-J.; Kim, H.-S.; Zeller, K.A.; Carter, L.L.; Leslie, J.F.; Lee, Y.-W. Population structure of and mycotoxin production by Fusarium graminearum from maize in South Korea. J. Appl. Environ. Microbiol. 2012, 78, 2161–2167. [Google Scholar] [CrossRef] [Green Version]
- Santini, A.; Tenore, G.; Ritieni, A. Mycotoxins and Food: Fusaproliferin Occurrence and Risk. J. Nutr. Ecol. Food Res. 2013, 1, 226–232. [Google Scholar] [CrossRef] [Green Version]
- Tucker, J.R.; Badea, A.; Blagden, R.; Pleskach, K.; Tittlemier, S.A.; Fernando, W.G. Deoxynivalenol-3-glucoside content is highly associated with deoxynivalenol levels in two-row barley genotypes of importance to Canadian barley breeding programs. Toxins 2019, 11, 319. [Google Scholar] [CrossRef] [Green Version]
- Pitt, J.I.; Miller, J.D. A concise history of mycotoxin research. J. Agric. Food Chem. 2017, 65, 7021–7033. [Google Scholar] [CrossRef]
- Stanciu, O.; Juan, C.; Miere, D.; Loghin, F.; Mañes, J. Occurrence and co-occurrence of Fusarium mycotoxins in wheat grains and wheat flour from Romania. Food Control 2017, 73, 147–155. [Google Scholar] [CrossRef]
- Juan, C.; Ritieni, A.; Mañes, J. Occurrence of Fusarium mycotoxins in Italian cereal and cereal products from organic farming. Food Chem. 2013, 141, 1747–1755. [Google Scholar] [CrossRef] [PubMed]
- Tiemann, U.; Dänicke, S. In vivo and in vitro effects of the mycotoxins zearalenone and deoxynivalenol on different non-reproductive and reproductive organs in female pigs: A review. Food Addit. Contam. 2007, 24, 306–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, W.; Bates, M.A.; Bursian, S.J.; Link, J.E.; Flannery, B.M.; Sugita-Konishi, Y.; Watanabe, M.; Zhang, H.; Pestka, J.J. Comparison of emetic potencies of the 8-ketotrichothecenes deoxynivalenol, 15-acetyldeoxynivalenol, 3-acetyldeoxynivalenol, fusarenon X., and nivalenol. Toxicol. Sci. 2013, 131, 279–291. [Google Scholar] [CrossRef]
- Lucioli, J.; Pinton, P.; Callu, P.; Laffitte, J.; Grosjean, F.; Kolf-Clauw, M.; Oswald, I.P.; Bracarense, A.P.F. The food contaminant deoxynivalenol activates the mitogen activated protein kinases in the intestine: Interest of ex vivo models as an alternative to in vivo experiments. Toxicon 2013, 66, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Ran, R.; Wang, C.H.; Han, Z.; Wu, A.B.; Zhang, D.B.; Shi, J.X. Determination of deoxynivalenol (DON) and its derivatives: Current status of analytical methods. Food Control 2013, 34, 138–148. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain; Knutsen, H.K.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Grasl-Kraupp, B.; et al. Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA. J. 2017, 15, e04718. [Google Scholar]
- Pinton, P.; Tsybulskyy, D.; Lucioli, J.; Laffitte, J.; Callu, P.; Lyazhri, F.; Grosjean, F.; Bracarense, A.P.; Kolf-Clauw, M.; Oswald, I.P. Toxicity of deoxynivalenol and its acetylated derivatives on the intestine: Differential effects on morphology, barrier function, tight junction proteins, and mitogen-activated protein kinases. Toxicol. Sci. 2012, 130, 180–190. [Google Scholar] [CrossRef]
- Alassane-Kpembi, I.; Puel, O.; Oswald, I.P. Toxicological interactions between the mycotoxins deoxynivalenol, nivalenol and their acetylated derivatives in intestinal epithelial cells. Arch. Toxicol. 2015, 89, 1337–1346. [Google Scholar] [CrossRef]
- Wang, W.; Ma, J.J.; Yu, C.C.; Lin, X.H.; Jiang, H.R.; Shao, B.; Li, F.Q. Simultaneous determination of masked deoxynivalenol and some important type B trichothecenes in Chinese corn kernels and corn-based products by ultra-performance liquid chromatography-tandem mass spectrometry. J. Agric. Food Chem. 2012, 60, 11638–11646. [Google Scholar]
- National Health and Family Planning Commission; China Food and Drug Administration. Maximum levels of mycotoxins in foods. In National Criterion of China; Beijing, China, 2017; GB/T 2761-2017. [Google Scholar]
- Sun, J.F.; Wu, Y.N. Evaluation of dietary exposure to deoxynivalenol (DON) and its derivatives from cereals in China. Food Control 2016, 69, 90–99. [Google Scholar] [CrossRef]
- Han, Z.; Nie, D.X.; Ediage, E.N.; Yang, X.; Wang, J.H.; Chen, B.; Li, S.G.; On, S.L.W.; De Saeger, S.; Wu, A.B. Cumulative health risk assessment of co-occurring mycotoxins of deoxynivalenol and its acetyl derivatives in wheat and maize: Case study, Shanghai, China. Food Chem. Toxicol. 2014, 74, 334–342. [Google Scholar] [CrossRef] [PubMed]
- National Health and Family Planning Commission; China Food and Drug Administration. Determination of deoxynivalenol and its acetylated derivatives in foods. In National Criterion of China; Beijing, China, 2016; GB 5009.111-2016. [Google Scholar]
- Cao, J.L.; Zhou, S.J.; Kong, W.J.; Yang, M.H.; Wan, L.; Yang, S.H. Molecularly imprinted polymer-based solid phase clean-up for analysis of ochratoxin A in ginger and LC-MS/MS confirmation. Food Control 2013, 33, 337–343. [Google Scholar] [CrossRef]
- Zuo, H.G.; Zhu, J.X.; Shi, L.; Zhan, C.R.; Guo, P.; Wang, Y.; Zhang, Y.M.; Liu, J.P. Development of a novel immunoaffinity column for the determination of deoxynivalenol and its acetylated derivatives in cereals. Food Anal. Methods 2018, 11, 2252–2260. [Google Scholar] [CrossRef]
- Xu, J.J.; Zhou, J.; Huang, B.F.; Cai, Z.X.; Xu, X.M.; Ren, Y.P. Simultaneous and rapid determination of deoxynivalenol and its acetylate derivatives in wheat flour and rice by ultra high performance liquid chromatography with photo diode array detection. J. Sep. Sci. 2016, 39, 2028–2035. [Google Scholar] [CrossRef] [PubMed]
- The Commission of the European Communities. Laying down the methods of sampling and analysis for the official control of the levels of mycotoxins in foodstuffs. Commission Regulation (EC). 2006. No 401/2006. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32006R0401 (accessed on 9 March 2006).
- Kim, D.-H.; Hong, S.-Y.; Jeon, M.-H.; An, J.-M.; Kim, S.-Y.; Kim, H.-Y.; Yoon, B.R.; Chung, S.H. Simultaneous determination of the levels of deoxynivalenol, 3-acetyldeoxynivalenol, and nivalenol in grain and feed samples from South Korea using a high-performance liquid chromatography–photodiode array detector. Appl. Biol. Chem. 2016, 59, 881–887. [Google Scholar] [CrossRef]
- Liu, Y.P.; Lu, Y.; Wang, L.Y.; Chang, F.Q.; Yang, L.X. Survey of 11 mycotoxins in wheat flour in Hebei province, China. Food Addit. Contam. Part B Surveill. 2015, 8, 250–254. [Google Scholar] [CrossRef]
- Li, F.Q.; Yu, C.C.; Shao, B.; Wang, W.; Yu, H.X. Natural occurrence of masked deoxynivalenol and multi-mycotoxins in cereals from China harvested in 2007 and 2008. Zhonghua Yu Fang Yi Xue Za Zhi [Chin. J. Prev. MED.] 2011, 45, 57–63. [Google Scholar]
- Luo, Y.; Yoshizawa, T.; Katayama, T. Comparative study on the natural occurrence of Fusarium mycotoxins (trichothecenes and zearalenone) in corn and wheat from high-and low-risk areas for human esophageal cancer in China. Appl. Environ. Microbiol. 1990, 56, 3723–3726. [Google Scholar] [CrossRef] [Green Version]
- Janaviciene, S.; Mankeviciene, A.; Suproniene, S.; Kochiieru, Y.; Keriene, I. The prevalence of deoxynivalenol and its derivatives in the spring wheat grain from different agricultural production systems in Lithuania. Food Addit. Contam. Part A 2018, 35, 1179–1188. [Google Scholar] [CrossRef]
- Juan-García, A.; Juan, C.; König, S.; Ruiz, M.-J. Cytotoxic effects and degradation products of three mycotoxins: Alternariol, 3-acetyl-deoxynivalenol and 15-acetyl-deoxynivalenol in liver hepatocellular carcinoma cells. Toxicol. Lett. 2015, 235, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Jiaojie, M.; Bing, S.; Xiaohui, L.; Hongxia, Y.; Fengqin, L. Study on the natural occurrence of multi-mycotoxin in cereal and cereal-based product samples collected from parts of China in 2010. Chin. J. Food Hyg. 2011, 23, 481–488. [Google Scholar]
- Liu, Y.P.; Lu, Y.; Wang, L.Y.; Chang, F.Q.; Yang, L.X. Occurrence of deoxynivalenol in wheat, Hebei Province, China. Food Chem. 2016, 197, 1271–1274. [Google Scholar] [CrossRef] [PubMed]
- Schollenberger, M.; Müller, H.-M.; Rüfle, M.; Suchy, S.; Plank, S.; Drochner, W. Natural occurrence of 16 Fusarium toxins in grains and feedstuffs of plant origin from Germany. Mycopathologia 2006, 161, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.B.; Wang, J.H.; Gong, A.D.; Chen, F.F.; Song, B.; Li, X.; Li, H.P.; Peng, C.H.; Liao, Y.C. Natural occurrence of fusarium head blight, mycotoxins and mycotoxin-producing isolates of Fusarium in commercial fields of wheat in Hubei. Plant Pathol. 2013, 62, 92–102. [Google Scholar] [CrossRef]
- Waalwijk, C.; de Vries, I.M.; Köhl, J.; Xu, X.D.; van der Lee, T.A.; Kema, G.H. Development of quantitative detection methods for Fusarium in cereals and their application. Mycotoxins: Detection methods, management, public health and agricultural trade. CAB Int. 2008, 195–205. [Google Scholar]
- Abdallah, M.F.; Girgin, G.; Baydar, T.; Krska, R.; Sulyok, M. Occurrence of multiple mycotoxins and other fungal metabolites in animal feed and maize samples from Egypt using LC-MS/MS. J. Sci. Food Agric. 2017, 97, 4419–4428. [Google Scholar] [CrossRef]
- Monbaliu, S.; Van Poucke, C.; Detavernier, C.l.; Dumoulin, F.; Van De Velde, M.; Schoeters, E.; Van Dyck, S.; Averkieva, O.; Van Peteghem, C.; De Saeger, S. Occurrence of mycotoxins in feed as analyzed by a multi-mycotoxin LC-MS/MS method. J. Agric. Food Chem. 2010, 58, 66–71. [Google Scholar] [CrossRef]
- Speijers, G.J.A.; Speijers, M.H.M. Combined toxic effects of mycotoxins. Toxicol. Lett. 2004, 153, 91–98. [Google Scholar] [CrossRef]
- Zhang, J.-B.; Li, H.-P.; Dang, F.-J.; Qu, B.; Xu, Y.-B.; Zhao, C.-S.; Liao, Y.-C. Determination of the trichothecene mycotoxin chemotypes and associated geographical distribution and phylogenetic species of the Fusarium graminearum clade from China. Mycol. Res. 2007, 111, 967–975. [Google Scholar] [CrossRef]
- Liu, X.X.; Wang, Y.; Qiu, J.F.; Meng, F.L.; Wei, C.Y. Analysis of toxin contamination in spring wheat, species and mycotoxin chemotypes of Fusarium spp. in northern China. Jiangsu Agric. Sci. 2018, 46, 199–202. [Google Scholar]
- Qu, B.; Li, H.P.; Zhang, J.B.; Xu, Y.B.; Huang, T.; Wu, A.B.; Zhao, C.S.; Carter, J.; Nicholson, P.; Liao, Y.C. Geographic distribution and genetic diversity of Fusarium graminearum and F. asiaticum on wheat spikes throughout China. Plant Pathol. 2008, 57, 15–24. [Google Scholar] [CrossRef]
- Hornung, R.W.; Reed, L.D. Estimation of average concentration in the presence of nondetectable values. Appl. Occup. Environ. Hyg. 1990, 5, 46–51. [Google Scholar] [CrossRef]
Type | Compound | Natural Contamination | Spike Level | Accuracy Recovery | Precision (RSD) | |
---|---|---|---|---|---|---|
(n = 6, µg/kg) | (µg/kg) | (%) | Interday (n = 6, %) | Intraday (n = 3, %) | ||
DON | 14.13 | 50.00 | 100.96 | 10.37 | 9.23 | |
100.00 | 81.08 | 5.73 | 4.92 | |||
200.00 | 82.34 | 6.61 | 10.44 | |||
wheat | 3-ADON | ND1 | 50.00 | 104.44 | 3.76 | 3.98 |
100.00 | 101.31 | 6.25 | 7.81 | |||
200.00 | 82.50 | 2.95 | 7.97 | |||
15-ADON | ND | 50.00 | 103.15 | 4.10 | 10.47 | |
100.00 | 83.83 | 12.27 | 10.01 | |||
200.00 | 71.72 | 5.36 | 6.07 | |||
DON | 16.45 | 50.00 | 93.50 | 10.52 | 7.94 | |
100.00 | 90.76 | 5.53 | 7.68 | |||
200.00 | 92.25 | 5.71 | 7.89 | |||
maize | 3-ADON | ND | 50.00 | 103.93 | 7.80 | 6.87 |
100.00 | 101.65 | 13.98 | 10.3 | |||
200.00 | 91.72 | 2.83 | 4.12 | |||
15-ADON | ND | 50.00 | 112.81 | 2.26 | 8.62 | |
100.00 | 79.26 | 4.63 | 4.63 | |||
200.00 | 74.55 | 8.62 | 6.43 |
Crops | Compound | Concentration (µg/kg) | ≥1000 µg/kg/% | |||||
---|---|---|---|---|---|---|---|---|
n | Range | Mean | P25–P75 | Median | Incidence/% | |||
Wheat | DON | 579 | 12.16–6436.11 | 165.87 | 20.68–72.83 | 32.37 | 100 | 3.63 |
3-ADON | 579 | ND1-149.49 | 1.22 | ND | ND | 4.15 | - | |
15-ADON | 579 | ND−24.46 | 0.20 | ND | ND | 0.52 | - | |
DONs | 579 | 12.16–6436.11 | 167.30 | 21.05–75.20 | 32.74 | 100 | 3.63 | |
Maize | DON | 606 | ND−4300.7 | 175.30 | 18.80–161.20 | 37.7 | 99.83 | 2.97 |
3-ADON | 606 | ND−385.33 | 4.97 | ND | ND | 13.53 | - | |
15-ADON | 606 | ND−4811.06 | 115.06 | 15.80–152.20 | 58.30 | 76.40 | 0.50 | |
DONs | 606 | ND−5036.87 | 295.33 | 50.45–323.24 | 131.74 | 99.83 | 6.44 |
Region | Compound | Concentration (µg/kg) | ≥1000 µg/kg/% | |||||
---|---|---|---|---|---|---|---|---|
n | Range | Mean | P25–P75 | Median | Incidence/% | |||
Hebei | DON | 114 | 12.16–230.02 | 45.80 | 20.42–49.31 | 28.6 | 100 | 0 |
3-ADON | ND1 −11.23 | 0.28 | ND | ND | 1.75 | 0 | ||
15-ADON | ND | 0.10 | ND | ND | 0 | 0 | ||
DONs | 12.16–230.02 | 46.18 | 20.42–49.31 | 28.60 | 100 | 0 | ||
Xinjiang | DON | 59 | 14.54–6436.11 | 455.44 | 26.91–388.99 | 87.38 | 100 | 11.86 |
3-ADON | ND | 0.10 | ND | ND | 0 | 0 | ||
15-ADON | ND | 0.10 | ND | ND | 0 | 0 | ||
DONs | 14.54–6436.11 | 455.64 | 26.91–388.99 | 87.38 | 100 | 11.86 | ||
Henan | DON | 328 | 12.37–1342.51 | 60.33 | 19.71–50.13 | 27.07 | 100 | 0.61 |
3-ADON | ND −149.50 | 1.41 | ND | ND | 4.88 | 0 | ||
15-ADON | ND | 0.1 | ND | ND | 0 | 0 | ||
DONs | 12.37–1342.51 | 61.84 | 19.86–52.20 | 29.00 | 100 | 0.61 | ||
Hubei | DON | 11 | 413.15–5521.20 | 2670.58 | 674.72–4637.08 | 2848.90 | 100 | 72.73 |
3-ADON | ND−98.12 | 9.01 | ND | ND | 9.09 | 0 | ||
15-ADON | ND−24.46 | 5.29 | ND−13.77 | ND | 27.27 | 0 | ||
DONs | 413.15–5638.45 | 2684.87 | 674.72–4637.08 | 2848.90 | 100 | 72.73 | ||
Anhui | DON | 29 | 15.36–2503.08 | 149.73 | 21.95–77.51 | 37.26 | 100 | 3.45 |
3-ADON | ND−12.28 | 0.52 | ND | ND | 3.45 | 0 | ||
15-ADON | ND | 0.10 | ND | ND | 0 | 0 | ||
DONs | 15.36–2503.08 | 150.34 | 21.95–80.64 | 37.26 | 100 | 3.45 | ||
Jiangsu | DON | 38 | 17.53–1817.96 | 270.79 | 42.96–287.17 | 99.41 | 100 | 7.89 |
3-ADON | ND−42.83 | 2.41 | ND | ND | 2.63 | 0 | ||
15-ADON | ND | 0.10 | ND | ND | 0 | 0 | ||
DONs | 17.53–1817.96 | 273.30 | 42.96–287.17 | 102.21 | 100 | 7.89 |
Region | Compound | Concentration (µg/kg) | ≥1000 µg/kg/% | |||||
---|---|---|---|---|---|---|---|---|
n | Range | Mean | P25–P75 | Median | Incidence/% | |||
Jilin | DON | 180 | 13.78–4300.69 | 224.17 | 27.00–232.56 | 75.28 | 100 | 2.78 |
3-ADON | ND1−385.33 | 5.15 | ND | ND | 8.89 | 0 | ||
15-ADON | ND−4811.06 | 182.20 | ND−234.01 | 109.77 | 72.22 | 1.11 | ||
DONs | 16.53–5036.87 | 411.53 | 106.50–474.66 | 210.47 | 100 | 10 | ||
Liaoning | DON | 94 | 14.47–4258.12 | 210.97 | 22.33–163.96 | 46.53 | 100 | 4.26 |
3-ADON | ND−41.59 | 2.99 | ND | ND | 12.77 | 0 | ||
15-ADON | ND−775.64 | 76.19 | ND−97.75 | 37.36 | 71.28 | 0 | ||
DONs | 17.67–4258.12 | 290.15 | 40.29–262.30 | 82.47 | 100 | 6.38 | ||
Heilongjiang | DON | 186 | ND−2460.31 | 197.14 | 18.98–191.80 | 43.10 | 99.46 | 4.84 |
3-ADON | ND−258.94 | 8.41 | ND | ND | 22.58 | 0 | ||
15-ADON | ND −1032.94 | 86.45 | 16.63–102.13 | 43.49 | 77.96 | 0.54 | ||
DONs | ND −3752.19 | 292.01 | 39.03–311.88 | 102.87 | 99.46 | 8.06 | ||
Inner Mongolia | DON | 127 | 14.53–747.23 | 61.43 | 16.73–34.52 | 18.61 | 100 | 0 |
3-ADON | ND−27.56 | 1.87 | ND | ND | 9.45 | 0 | ||
15-ADON | ND−596.76 | 99.73 | 24.39–176.59 | 46.63 | 80.31 | 0 | ||
DONs | 14.59–984.49 | 163.03 | 49.67–241.71 | 84.14 | 100 | 0 | ||
Shandong | DON | 19 | 16.30–659.38 | 83.22 | 21.61–77.05 | 77.05 | 100 | 0 |
3-ADON | ND | 0.10 | ND | ND | 0 | 0 | ||
15-ADON | 13.71–244.86 | 53.69 | 29.38–52.58 | 52.58 | 100 | 0 | ||
DONs | 30.01–904.23 | 137.01 | 59.35–138.59 | 138.59 | 100 | 0 |
Compound Name | Precursor Ion (m/z) | Product Ion (m/z) | Fragmentor eV | Collision Energy eV | Retention Time (min) | LOD (µg/kg) | LOQ (µg/kg) |
---|---|---|---|---|---|---|---|
DON | 295.1 | 265.11 | 86 | 8 | 3.5 | 0.65 | 2.18 |
138 | 86 | 16 | 3.5 | ||||
3-ADON | 337.1 | 3071 | 86 | 8 | 4.2 | 0.20 | 0.49 |
173 | 86 | 8 | 4.2 | ||||
15-ADON | 337 | 1501 | 81 | 21 | 4.2 | 0.20 | 0.67 |
219 | 81 | 9 | 4.2 | ||||
13C-DON | 310.2 | 279.11 | 91 | 8 | 3.5 | ||
13C-3-ADON | 354 | 323.11 | 86 | 8 | 4.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, P.; Liu, Z.; Liu, S.; Yao, L.; Liu, Y.; Wu, Y.; Gong, Z. Natural Occurrence of Deoxynivalenol and Its Acetylated Derivatives in Chinese Maize and Wheat Collected in 2017. Toxins 2020, 12, 200. https://doi.org/10.3390/toxins12030200
Yan P, Liu Z, Liu S, Yao L, Liu Y, Wu Y, Gong Z. Natural Occurrence of Deoxynivalenol and Its Acetylated Derivatives in Chinese Maize and Wheat Collected in 2017. Toxins. 2020; 12(3):200. https://doi.org/10.3390/toxins12030200
Chicago/Turabian StyleYan, Pianpian, Zhezhe Liu, Shiqiao Liu, Liyun Yao, Yan Liu, Yongning Wu, and Zhiyong Gong. 2020. "Natural Occurrence of Deoxynivalenol and Its Acetylated Derivatives in Chinese Maize and Wheat Collected in 2017" Toxins 12, no. 3: 200. https://doi.org/10.3390/toxins12030200
APA StyleYan, P., Liu, Z., Liu, S., Yao, L., Liu, Y., Wu, Y., & Gong, Z. (2020). Natural Occurrence of Deoxynivalenol and Its Acetylated Derivatives in Chinese Maize and Wheat Collected in 2017. Toxins, 12(3), 200. https://doi.org/10.3390/toxins12030200