Bacterial Factors Targeting the Nucleus: The Growing Family of Nucleomodulins
Abstract
:1. Introduction
2. Nuclear Processes
3. Nucleomodulins of Listeria monocytogenes
4. Ankyrin Repeat- and Tandem Repeat-Containing Nucleomodulins: The Anaplasma phagocytophilum and Ehrlichia chaffeensis Paradigms
5. Nucleomodulins Acting as Chromatin-Modification Enzymes
6. Nucleomodulins Triggering PTM on Nuclear Regulators
7. Nucleomodulins Acting as Proteases
8. Ever More Substrates and Functions: An Expanding Family
9. Regulation of Nucleomodulins by PTMs
10. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Green, E.R.; Mecsas, J. Bacterial Secretion Systems: An Overview. Microbiol. Spectr. 2016, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lasica, A.M.; Ksiazek, M.; Madej, M.; Potempa, J. The Type IX Secretion System (T9SS): Highlights and Recent Insights into Its Structure and Function. Front. Cell Infect. Microbiol. 2017, 7, 215. [Google Scholar] [CrossRef] [PubMed]
- Rapisarda, C.; Fronzes, R. Secretion Systems Used by Bacteria to Subvert Host Functions. Curr. Issues Mol. Biol. 2018, 25, 1–42. [Google Scholar] [CrossRef] [PubMed]
- Van Montagu, M.; Holsters, M.; Zambryski, P.; Hernalsteens, J.P.; Depicker, A.; De Beuckeleer, M.; Engler, G.; Lemmers, M.; Willmitzer, L.; Schell, J. The interaction of Agrobacterium Ti-plasmid DNA and plant cells. Proc. R. Soc. Lond. B Biol. Sci. 1980, 210, 351–365. [Google Scholar] [CrossRef] [PubMed]
- Kay, S.; Hahn, S.; Marois, E.; Hause, G.; Bonas, U. A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 2007, 318, 648–651. [Google Scholar] [CrossRef] [Green Version]
- Romer, P.; Hahn, S.; Jordan, T.; Strauss, T.; Bonas, U.; Lahaye, T. Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene. Science 2007, 318, 645–648. [Google Scholar] [CrossRef] [Green Version]
- Boch, J.; Bonas, U.; Lahaye, T. TAL effectors—Pathogen strategies and plant resistance engineering. New Phytol. 2014, 204, 823–832. [Google Scholar] [CrossRef]
- Lebreton, A.; Lakisic, G.; Job, V.; Fritsch, L.; Tham, T.N.; Camejo, A.; Mattei, P.-J.; Regnault, B.; Nahori, M.-A.; Cabanes, D.; et al. A Bacterial Protein Targets the BAHD1 Chromatin Complex to Stimulate Type III Interferon Response. Science 2011, 331, 1319–1321. [Google Scholar] [CrossRef]
- Bierne, H.; Cossart, P. When bacteria target the nucleus: The emerging family of nucleomodulins. Cell Microbiol. 2012, 14, 622–633. [Google Scholar] [CrossRef]
- Henderson, B.; Poole, S.; Wilson, M. Bacterial modulins: A novel class of virulence factors which cause host tissue pathology by inducing cytokine synthesis. Microbiol. Rev. 1996, 60, 316–341. [Google Scholar] [CrossRef] [Green Version]
- Escoll, P.; Mondino, S.; Rolando, M.; Buchrieser, C. Targeting of host organelles by pathogenic bacteria: A sophisticated subversion strategy. Nat. Rev. Microbiol. 2016, 14, 5–19. [Google Scholar] [CrossRef] [PubMed]
- Bierne, H. Cross Talk between Bacteria and the Host Epigenetic Machinery. In Epigenetics of Infectious Diseases; Doerfler, W., Casadesús, J., Eds.; Springer International Publishing: Basel, Switzerland, 2017. [Google Scholar] [CrossRef]
- Zheng, H.; Xie, W. The role of 3D genome organization in development and cell differentiation. Nat. Rev. Mol. Cell Biol. 2019, 20, 535–550. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.X.; Riggs, A.D. DNA methylation and demethylation in mammals. J. Biol. Chem. 2011, 286, 18347–18353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bannister, A.J.; Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 2011, 21, 381–395. [Google Scholar] [CrossRef] [PubMed]
- Sadakierska-Chudy, A.; Filip, M. A comprehensive view of the epigenetic landscape. Part II: Histone post-translational modification, nucleosome level, and chromatin regulation by ncRNAs. Neurotox. Res. 2015, 27, 172–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.; Rio, D.C. Mechanisms and Regulation of Alternative Pre-mRNA Splicing. Ann. Rev. Biochem. 2015, 84, 291–323. [Google Scholar] [CrossRef] [Green Version]
- Allerberger, F.; Wagner, M. Listeriosis: A resurgent foodborne infection. Clin. Microbiol. Infect. 2010, 16, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Camejo, A.; Carvalho, F.; Reis, O.; Leitao, E.; Sousa, S.; Cabanes, D. The arsenal of virulence factors deployed by Listeria monocytogenes to promote its cell infection cycle. Virulence 2011, 2, 379–394. [Google Scholar] [CrossRef] [Green Version]
- Radoshevich, L.; Cossart, P. Listeria monocytogenes: Towards a complete picture of its physiology and pathogenesis. Nat. Rev. Microbiol. 2018, 16, 32–46. [Google Scholar] [CrossRef]
- Bierne, H.; Hamon, M. Targeting host epigenetic machiney: The Listeria paradigm. Cell Microbiol. 2020, 22, 13169. [Google Scholar] [CrossRef] [Green Version]
- Lebreton, A.; Job, V.; Ragon, M.; Le Monnier, A.; Dessen, A.; Cossart, P.; Bierne, H. Structural basis for the inhibition of the chromatin repressor BAHD1 by the bacterial nucleomodulin LntA. MBio 2014, 5, e00775-13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, N.; Xu, R.M. Structure and function of the BAH domain in chromatin biology. Crit. Rev. Biochem. Mol. Biol. 2013, 48, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Bierne, H.; Tham, T.N.; Batsche, E.; Dumay, A.; Leguillou, M.; Kerneis-Golsteyn, S.; Regnault, B.; Seeler, J.S.; Muchardt, C.; Feunteun, J.; et al. Human BAHD1 promotes heterochromatic gene silencing. Proc. Natl. Acad. Sci. USA 2009, 106, 13826–13831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakisic, G.; Lebreton, A.; Pourpre, R.; Wendling, O.; Libertini, E.; Radford, E.J.; Le Guillou, M.; Champy, M.F.; Wattenhofer-Donze, M.; Soubigou, G.; et al. Role of the BAHD1 Chromatin-Repressive Complex in Placental Development and Regulation of Steroid Metabolism. PLoS Genet. 2016, 12, e1005898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lebreton, A.; Cossart, P.; Bierne, H. Bacteria tune interferon responses by playing with chromatin. Virulence 2012, 3, 87–91. [Google Scholar] [CrossRef] [Green Version]
- Prokop, A.; Gouin, E.; Villiers, V.; Nahori, M.A.; Vincentelli, R.; Duval, M.; Cossart, P.; Dussurget, O. OrfX, a Nucleomodulin Required for Listeria monocytogenes Virulence. mBio 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Zhan, S.; Wang, T.; Ge, W.; Li, J. Multiple roles of Ring 1 and YY1 binding protein in physiology and disease. J. Cell Mol. Med. 2018, 22, 2046–2054. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, J.; Li, M.; Rayburn, E.R.; Wang, H.; Zhang, R. RYBP stabilizes p53 by modulating MDM2. EMBO Rep. 2009, 10, 166–172. [Google Scholar] [CrossRef] [Green Version]
- Mosavi, L.K.; Cammett, T.J.; Desrosiers, D.C.; Peng, Z.Y. The ankyrin repeat as molecular architecture for protein recognition. Protein Sci. 2004, 13, 1435–1448. [Google Scholar] [CrossRef]
- Bakken, J.S.; Dumler, J.S. Human granulocytic anaplasmosis. Infect. Dis. Clin. N. Am. 2015, 29, 341–355. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Kim, K.J.; Choi, K.-S.; Grab, D.J.; Dumler, J.S. Anaplasma phagocytophilum AnkA binds to granulocyte DNA and nuclear proteins. Cell Microbiol. 2004, 6, 743–751. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Garcia, J.C.; Rennoll-Bankert, K.E.; Pelly, S.; Milstone, A.M.; Dumler, J.S. Silencing of host cell CYBB gene expression by the nuclear effector AnkA of the intracellular pathogen Anaplasma phagocytophilum. Infect. Immun. 2009, 77, 2385–2391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rennoll-Bankert, K.E.; Dumler, J.S. Lessons from Anaplasma phagocytophilum: Chromatin remodeling by bacterial effectors. Infect. Disord. Drug Targets 2012, 12, 380–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rennoll-Bankert, K.E.; Garcia-Garcia, J.C.; Sinclair, S.H.; Dumler, J.S. Chromatin-bound bacterial effector ankyrin A recruits histone deacetylase 1 and modifies host gene expression. Cell Microbiol. 2015, 17, 1640–1652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.Y.; Han, Z.M.; Chai, Y.R.; Zhang, J.H. A mini review of MAR-binding proteins. Mol. Biol. Rep. 2010, 37, 3553–3560. [Google Scholar] [CrossRef]
- Dumler, J.S.; Sinclair, S.H.; Pappas-Brown, V.; Shetty, A.C. Genome-Wide Anaplasma phagocytophilum AnkA-DNA Interactions Are Enriched in Intergenic Regions and Gene Promoters and Correlate with Infection-Induced Differential Gene Expression. Front. Cell Infect. Microbiol. 2016, 6, 97. [Google Scholar] [CrossRef] [Green Version]
- Kohwi-Shigematsu, T.; Kohwi, Y.; Takahashi, K.; Richards, H.W.; Ayers, S.D.; Han, H.J.; Cai, S. SATB1-mediated functional packaging of chromatin into loops. Methods 2012, 58, 243–254. [Google Scholar] [CrossRef] [Green Version]
- Mojica, S.A.; Hovis, K.M.; Frieman, M.B.; Tran, B.; Hsia, R.C.; Ravel, J.; Jenkins-Houk, C.; Wilson, K.L.; Bavoil, P.M. SINC, a type III secreted protein of Chlamydia psittaci, targets the inner nuclear membrane of infected cells and uninfected neighbors. Mol. Biol. Cell 2015, 26, 1918–1934. [Google Scholar] [CrossRef]
- Lina, T.T.; Farris, T.; Luo, T.; Mitra, S.; Zhu, B.; McBride, J.W. Hacker within! Ehrlichia chaffeensis Effector Driven Phagocyte Reprogramming Strategy. Front. Cell Infect. Microbiol. 2016, 6, 58. [Google Scholar] [CrossRef]
- Wakeel, A.; den Dulk-Ras, A.; Hooykaas, P.J.; McBride, J.W. Ehrlichia chaffeensis tandem repeat proteins and Ank200 are type 1 secretion system substrates related to the repeats-in-toxin exoprotein family. Front. Cell Infect. Microbiol. 2011, 1, 22. [Google Scholar] [CrossRef] [Green Version]
- Zhu, B.; Nethery, K.A.; Kuriakose, J.A.; Wakeel, A.; Zhang, X.; McBride, J.W. Nuclear Translocated Ehrlichia chaffeensis Ankyrin Protein Interacts with a Specific Adenine-Rich Motif of Host Promoter and Intronic Alu Elements. Infect. Immun. 2009, 77, 4243–4255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wakeel, A.; Zhu, B.; Yu, X.J.; McBride, J.W. New insights into molecular Ehrlichia chaffeensis-host interactions. Microbes Infect. 2010, 12, 337–345. [Google Scholar] [CrossRef] [Green Version]
- Zhu, B.; Kuriakose, J.A.; Luo, T.; Ballesteros, E.; Gupta, S.; Fofanov, Y.; McBride, J.W. Ehrlichia chaffeensis TRP120 binds a G+C-rich motif in host cell DNA and exhibits eukaryotic transcriptional activator function. Infect. Immun. 2011, 79, 4370–4381. [Google Scholar] [CrossRef] [Green Version]
- Luo, T.; Kuriakose, J.A.; Zhu, B.; Wakeel, A.; McBride, J.W. Ehrlichia chaffeensis TRP120 interacts with a diverse array of eukaryotic proteins involved in transcription, signaling, and cytoskeleton organization. Infect. Immun. 2011, 79, 4382–4391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, T.; McBride, J.W. Ehrlichia chaffeensis TRP32 interacts with host cell targets that influence intracellular survival. Infect. Immun. 2012, 80, 2297–2306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farris, T.R.; Dunphy, P.S.; Zhu, B.; Kibler, C.E.; McBride, J.W. Ehrlichia chaffeensis TRP32 is a Nucleomodulin that Directly Regulates Expression of Host Genes Governing Differentiation and Proliferation. Infect. Immun. 2016, 84, 3182–3194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kibler, C.E.; Milligan, S.L.; Farris, T.R.; Zhu, B.; Mitra, S.; McBride, J.W. Ehrlichia chaffeensis TRP47 enters the nucleus via a MYND-binding domain-dependent mechanism and predominantly binds enhancers of host genes associated with signal transduction, cytoskeletal organization, and immune response. PLoS ONE 2018, 13, e0205983. [Google Scholar] [CrossRef] [PubMed]
- Spellmon, N.; Holcomb, J.; Trescott, L.; Sirinupong, N.; Yang, Z. Structure and function of SET and MYND domain-containing proteins. Int. J. Mol. Sci. 2015, 16, 1406–1428. [Google Scholar] [CrossRef] [Green Version]
- Klema, V.J.; Sepuru, K.M.; Fullbrunn, N.; Farris, T.R.; Dunphy, P.S.; McBride, J.W.; Rajarathnam, K.; Choi, K.H. Ehrlichia chaffeensis TRP120 nucleomodulin binds DNA with disordered tandem repeat domain. PLoS ONE 2018, 13, e0194891. [Google Scholar] [CrossRef] [Green Version]
- Dunphy, P.S.; Luo, T.; McBride, J.W. Ehrlichia chaffeensis exploits host SUMOylation pathways to mediate effector-host interactions and promote intracellular survival. Infect. Immun. 2014, 82, 4154–4168. [Google Scholar] [CrossRef] [Green Version]
- Zhu, B.; Das, S.; Mitra, S.; Farris, T.R.; McBride, J.W. Ehrlichia chaffeensis TRP120 Moonlights as a HECT E3 Ligase Involved in Self- and Host Ubiquitination To Influence Protein Interactions and Stability for Intracellular Survival. Infect. Immun. 2017, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitra, S.; Dunphy, P.S.; Das, S.; Zhu, B.; Luo, T.; McBride, J.W. Ehrlichia chaffeensis TRP120 Effector Targets and Recruits Host Polycomb Group Proteins for Degradation To Promote Intracellular Infection. Infect. Immun. 2018, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribet, D.; Cossart, P. Ubiquitin, SUMO, and NEDD8: Key Targets of Bacterial Pathogens. Trends Cell Biol. 2018, 28, 926–940. [Google Scholar] [CrossRef] [PubMed]
- Dillon, S.C.; Zhang, X.; Trievel, R.C.; Cheng, X. The SET-domain protein superfamily: Protein lysine methyltransferases. Genome Biol. 2005, 6, 227. [Google Scholar] [CrossRef] [Green Version]
- Murata, M.; Azuma, Y.; Miura, K.; Rahman, M.A.; Matsutani, M.; Aoyama, M.; Suzuki, H.; Sugi, K.; Shirai, M. Chlamydial SET domain protein functions as a histone methyltransferase. Microbiology 2007, 153, 585–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pennini, M.S.P.; Dautry-Varsat, A.; Subtil, A. Histone methylation by NUE, a novel nuclear effector of the intracellular pathogen Chlamydia trachomatis. PLoS Pathog. 2010, 6, e1000995. [Google Scholar] [CrossRef] [PubMed]
- Rolando, M.; Sanulli, S.; Rusniok, C.; Gomez-Valero, L.; Bertholet, C.; Sahr, T.; Margueron, R.; Buchrieser, C. Legionella pneumophila effector RomA uniquely modifies host chromatin to repress gene expression and promote intracellular bacterial replication. Cell Host Microbe 2013, 13, 395–405. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Lu, Q.; Wang, G.; Xu, H.; Huang, H.; Cai, T.; Kan, B.; Ge, J.; Shao, F. SET-domain bacterial effectors target heterochromatin protein 1 to activate host rDNA transcription. EMBO Rep. 2013, 14, 733–740. [Google Scholar] [CrossRef] [Green Version]
- Rolando, M.; Buchrieser, C. Legionella pneumophila type IV effectors hijack the transcription and translation machinery of the host cell. Trends Cell Biol. 2014, 24, 771–778. [Google Scholar] [CrossRef]
- Yaseen, I.; Kaur, P.; Nandicoori, V.K.; Khosla, S. Mycobacteria modulate host epigenetic machinery by Rv1988 methylation of a non-tail arginine of histone H3. Nat. Commun. 2015, 6, 8922. [Google Scholar] [CrossRef] [Green Version]
- Jose, L.; Ramachandran, R.; Bhagavat, R.; Gomez, R.L.; Chandran, A.; Raghunandanan, S.; Omkumar, R.V.; Chandra, N.; Mundayoor, S.; Kumar, R.A. Hypothetical protein Rv3423.1 of Mycobacterium tuberculosis is a histone acetyltransferase. FEBS J. 2016, 283, 265–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, G.; Upadhyay, S.; Srilalitha, M.; Nandicoori, V.K.; Khosla, S. The interaction of mycobacterial protein Rv2966c with host chromatin is mediated through non-CpG methylation and histone H3/H4 binding. Nucleic Acids Res. 2015, 43, 3922–3937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chernov, A.V.; Reyes, L.; Xu, Z.; Gonzalez, B.; Golovko, G.; Peterson, S.; Perucho, M.; Fofanov, Y.; Strongin, A.Y. Mycoplasma CG- and GATC-specific DNA methyltransferases selectively and efficiently methylate the host genome and alter the epigenetic landscape in human cells. Epigenetics 2015, 10, 303–318. [Google Scholar] [CrossRef]
- Li, H.; Xu, H.; Zhou, Y.; Zhang, J.; Long, C.; Li, S.; Chen, S.; Zhou, J.-M.; Shao, F. The phosphothreonine lyase activity of a bacterial type III effector family. Science 2007, 315, 1000–1003. [Google Scholar] [CrossRef] [PubMed]
- Arbibe, L.; Kim, D.W.; Batsche, E.; Pedron, T.; Mateescu, B.; Muchardt, C.; Parsot, C.; Sansonetti, P.J. An injected bacterial effector targets chromatin access for transcription factor NF-kappaB to alter transcription of host genes involved in immune responses. Nat. Immunol. 2007, 8, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Harouz, H.; Rachez, C.; Meijer, B.M.; Marteyn, B.; Donnadieu, F.; Cammas, F.; Muchardt, C.; Sansonetti, P.; Arbibe, L. Shigella flexneri targets the HP1gamma subcode through the phosphothreonine lyase OspF. EMBO J. 2014, 33, 2606–2622. [Google Scholar] [CrossRef] [Green Version]
- Zurawski, D.V.; Mumy, K.L.; Faherty, C.S.; Mccormick, B.A.; Maurelli, A.T. Shigella flexneritype III secretion system effectors OspB and OspF target the nucleus to downregulate the host inflammatory response via interactions with retinoblastoma protein. Mol. Microbiol. 2009, 71, 350–368. [Google Scholar] [CrossRef] [Green Version]
- Singer, A.U.; Rohde, J.R.; Lam, R.; Skarina, T.; Kagan, O.; Dileo, R.; Chirgadze, N.Y.; Cuff, M.E.; Joachimiak, A.; Tyers, M.; et al. Structure of the Shigella T3SS effector IpaH defines a new class of E3 ubiquitin ligases. Nat. Struct. Mol. Biol. 2008, 15, 1293–1301. [Google Scholar] [CrossRef]
- Ashida, H.; Sasakawa, C. Shigella IpaH Family Effectors as a Versatile Model for Studying Pathogenic Bacteria. Front. Cell Infect. Microbiol. 2015, 5, 100. [Google Scholar] [CrossRef] [Green Version]
- Rohde, J.R.; Breitkreutz, A.; Chenal, A.; Sansonetti, P.J.; Parsot, C. Type III secretion effectors of the IpaH family are E3 ubiquitin ligases. Cell Host Microbe 2007, 1, 77–83. [Google Scholar] [CrossRef]
- Toyotome, T. Shigella Protein IpaH9.8 Is Secreted from Bacteria within Mammalian Cells and Transported to the Nucleus. J. Biol. Chem. 2001, 276, 32071–32079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okuda, J.; Toyotome, T.; Kataoka, N.; Ohno, M.; Abe, H.; Shimura, Y.; Seyedarabi, A.; Pickersgill, R.; Sasakawa, C. Shigella effector IpaH9.8 binds to a splicing factor U2AF35 to modulate host immune responses. Biochem. Biophys. Res. Commun. 2005, 333, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Seyedarabi, A.; Sullivan, J.A.; Sasakawa, C.; Pickersgill, R.W. A disulfide driven domain swap switches off the activity of Shigella IpaH9.8 E3 ligase. FEBS Lett. 2011, 584, 4163–4168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norkowski, S.; Schmidt, M.A.; Ruter, C. The species-spanning family of LPX-motif harbouring effector proteins. Cell Microbiol. 2018, 20, e12945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hicks, S.W.; Galan, J.E. Hijacking the host ubiquitin pathway: Structural strategies of bacterial E3 ubiquitin ligases. Curr. Opin. Microbiol. 2010, 13, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.H.; Machner, M.P. Exploitation of the host cell ubiquitin machinery by microbial effector proteins. J. Cell Sci. 2017, 130, 1985–1996. [Google Scholar] [CrossRef] [Green Version]
- Haraga, A.; Miller, S.I. A Salmonella type III secretion effector interacts with the mammalian serine/threonine protein kinase PKN1. Cell Microbiol. 2006, 8, 837–846. [Google Scholar] [CrossRef]
- Keszei, A.F.; Tang, X.; McCormick, C.; Zeqiraj, E.; Rohde, J.R.; Tyers, M.; Sicheri, F. Structure of an SspH1-PKN1 complex reveals the basis for host substrate recognition and mechanism of activation for a bacterial E3 ubiquitin ligase. Mol. Cell Biol. 2014, 34, 362–373. [Google Scholar] [CrossRef] [Green Version]
- Skrzypek, E.; Cowan, C.; Straley, S.C. Targeting of the Yersinia pestis YopM protein into HeLa cells and intracellular trafficking to the nucleus. Mol. Microbiol. 1998, 30, 1051–1065. [Google Scholar] [CrossRef]
- Benabdillah, R.; Mota, L.J.; Lutzelschwab, S.; Demoinet, E.; Cornelis, G.R. Identification of a nuclear targeting signal in YopM from Yersinia spp. Microb. Pathog. 2004, 36, 247–261. [Google Scholar] [CrossRef]
- Wei, C.; Wang, Y.; Du, Z.; Guan, K.; Cao, Y.; Yang, H.; Zhou, P.; Wu, F.; Chen, J.; Wang, P.; et al. The Yersinia Type III secretion effector YopM Is an E3 ubiquitin ligase that induced necrotic cell death by targeting NLRP3. Cell Death Dis. 2016, 7, e2519. [Google Scholar] [CrossRef]
- McDonald, C.; Vacratsis, P.O.; Bliska, J.B.; Dixon, J.E. The yersinia virulence factor YopM forms a novel protein complex with two cellular kinases. J. Biol. Chem. 2003, 278, 18514–18523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCoy, M.W.; Marre, M.L.; Lesser, C.F.; Mecsas, J. The C-terminal tail of Yersinia pseudotuberculosis YopM is critical for interacting with RSK1 and for virulence. Infect. Immun. 2010, 78, 2584–2598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McPhee, J.B.; Mena, P.; Bliska, J.B. Delineation of regions of the Yersinia YopM protein required for interaction with the RSK1 and PRK2 host kinases and their requirement for interleukin-10 production and virulence. Infect. Immun. 2010, 78, 3529–3539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berneking, L.; Schnapp, M.; Rumm, A.; Trasak, C.; Ruckdeschel, K.; Alawi, M.; Grundhoff, A.; Kikhney, A.G.; Koch-Nolte, F.; Buck, F.; et al. Immunosuppressive Yersinia Effector YopM Binds DEAD Box Helicase DDX3 to Control Ribosomal S6 Kinase in the Nucleus of Host Cells. PLoS Pathog. 2016, 12, e1005660. [Google Scholar] [CrossRef] [PubMed]
- Valleau, D.; Little, D.J.; Borek, D.; Skarina, T.; Quaile, A.T.; Di Leo, R.; Houliston, S.; Lemak, A.; Arrowsmith, C.H.; Coombes, B.K.; et al. Functional diversification of the NleG effector family in enterohemorrhagic Escherichia coli. Proc. Natl. Acad. Sci. USA 2018, 115, 10004–10009. [Google Scholar] [CrossRef] [Green Version]
- Werden, S.J.; Lanchbury, J.; Shattuck, D.; Neff, C.; Dufford, M.; McFadden, G. The myxoma virus m-t5 ankyrin repeat host range protein is a novel adaptor that coordinately links the cellular signaling pathways mediated by Akt and Skp1 in virus-infected cells. J. Virol. 2009, 83, 12068–12083. [Google Scholar] [CrossRef] [Green Version]
- Min, C.K.; Kwon, Y.J.; Ha, N.Y.; Cho, B.A.; Kim, J.M.; Kwon, E.K.; Kim, Y.S.; Choi, M.S.; Kim, I.S.; Cho, N.H. Multiple Orientia tsutsugamushi ankyrin repeat proteins interact with SCF1 ubiquitin ligase complex and eukaryotic elongation factor 1 alpha. PLoS ONE 2014, 9, e105652. [Google Scholar] [CrossRef] [Green Version]
- El-Aouar Filho, R.A.; Nicolas, A.; De Paula Castro, T.L.; Deplanche, M.; De Carvalho Azevedo, V.A.; Goossens, P.L.; Taieb, F.; Lina, G.; Le Loir, Y.; Berkova, N. Heterogeneous Family of Cyclomodulins: Smart Weapons That Allow Bacteria to Hijack the Eukaryotic Cell Cycle and Promote Infections. Front. Cell Infect. Microbiol. 2017, 7, 208. [Google Scholar] [CrossRef] [Green Version]
- Samba-Louaka, A.; Nougayrede, J.P.; Watrin, C.; Jubelin, G.; Oswald, E.; Taieb, F. Bacterial cyclomodulin Cif blocks the host cell cycle by stabilizing the cyclin-dependent kinase inhibitors p21 and p27. Cell Microbiol. 2008, 10, 2496–2508. [Google Scholar] [CrossRef]
- Morikawa, H.; Kim, M.; Mimuro, H.; Punginelli, C.; Koyama, T.; Nagai, S.; Miyawaki, A.; Iwai, K.; Sasakawa, C. The bacterial effector Cif interferes with SCF ubiquitin ligase function by inhibiting deneddylation of Cullin1. Biochem. Biophys. Res. Commun. 2010, 401, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Yao, Q.; Li, S.; Ding, X.; Lu, Q.; Mao, H.; Liu, L.; Zheng, N.; Chen, S.; Shao, F. Glutamine deamidation and dysfunction of ubiquitin/NEDD8 induced by a bacterial effector family. Science 2010, 329, 1215–1218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taieb, F.; Nougayrede, J.P.; Oswald, E. Cycle inhibiting factors (cifs): Cyclomodulins that usurp the ubiquitin-dependent degradation pathway of host cells. Toxins 2011, 3, 356–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jubelin, G.; Chavez, C.V.; Taieb, F.; Banfield, M.J.; Samba-Louaka, A.; Nobe, R.; Nougayrede, J.P.; Zumbihl, R.; Givaudan, A.; Escoubas, J.M.; et al. Cycle inhibiting factors (CIFs) are a growing family of functional cyclomodulins present in invertebrate and mammal bacterial pathogens. PLoS ONE 2009, 4, e4855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwai, H.; Kim, M.; Yoshikawa, Y.; Ashida, H.; Ogawa, M.; Fujita, Y.; Muller, D.; Kirikae, T.; Jackson, P.K.; Kotani, S.; et al. A bacterial effector targets Mad2L2, an APC inhibitor, to modulate host cell cycling. Cell 2007, 130, 611–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shames, S.R.; Bhavsar, A.P.; Croxen, M.A.; Law, R.J.; Mak, S.H.; Deng, W.; Li, Y.; Bidshari, R.; de Hoog, C.L.; Foster, L.J.; et al. The pathogenic Escherichia coli type III secreted protease NleC degrades the host acetyltransferase p300. Cell Microbiol. 2011, 13, 1542–1557. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Kamanova, J.; Lara-Tejero, M.; Galan, J.E. A Family of Salmonella Type III Secretion Effector Proteins Selectively Targets the NF-kappaB Signaling Pathway to Preserve Host Homeostasis. PLoS Pathog. 2016, 12, e1005484. [Google Scholar] [CrossRef]
- Jennings, E.; Esposito, D.; Rittinger, K.; Thurston, T.L.M. Structure-function analyses of the bacterial zinc metalloprotease effector protein GtgA uncover key residues required for deactivating NF-kappaB. J. Biol. Chem. 2018, 293, 15316–15329. [Google Scholar] [CrossRef] [Green Version]
- Khairalla, A.S.; Omer, S.A.; Mahdavi, J.; Aslam, A.; Dufailu, O.A.; Self, T.; Jonsson, A.B.; Georg, M.; Sjolinder, H.; Royer, P.J.; et al. Nuclear trafficking, histone cleavage and induction of apoptosis by the meningococcal App and MspA autotransporters. Cell Microbiol. 2015, 17, 1008–1020. [Google Scholar] [CrossRef] [Green Version]
- Evans, S.M.; Rodino, K.G.; Adcox, H.E.; Carlyon, J.A. Orientia tsutsugamushi uses two Ank effectors to modulate NF-kappaB p65 nuclear transport and inhibit NF-kappaB transcriptional activation. PLoS Pathog. 2018, 14, e1007023. [Google Scholar] [CrossRef] [Green Version]
- Von Dwingelo, J.; Chung, I.Y.W.; Price, C.T.; Li, L.; Jones, S.; Cygler, M.; Abu Kwaik, Y. Interaction of the Ankyrin H Core Effector of Legionella with the Host LARP7 Component of the 7SK snRNP Complex. mBio 2019, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuelein, R.; Spencer, H.; Dagley, L.F.; Li, P.F.; Luo, L.; Stow, J.L.; Abraham, G.; Naderer, T.; Gomez-Valero, L.; Buchrieser, C.; et al. Targeting of RNA Polymerase II by a nuclear Legionella pneumophila Dot/Icm effector SnpL. Cell Microbiol. 2018, 20, e12852. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Noll, R.R.; Romero Duenas, B.P.; Allgood, S.C.; Barker, K.; Caplan, J.L.; Machner, M.P.; LaBaer, J.; Qiu, J.; Neunuebel, M.R. Legionella effector AnkX interacts with host nuclear protein PLEKHN1. BMC Microbiol. 2018, 18, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eckart, R.A.; Bisle, S.; Schulze-Luehrmann, J.; Wittmann, I.; Jantsch, J.; Schmid, B.; Berens, C.; Luhrmann, A. Antiapoptotic activity of Coxiella burnetii effector protein AnkG is controlled by p32-dependent trafficking. Infect. Immun. 2014, 82, 2763–2771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schafer, W.; Eckart, R.A.; Schmid, B.; Cagkoylu, H.; Hof, K.; Muller, Y.A.; Amin, B.; Luhrmann, A. Nuclear trafficking of the anti-apoptotic Coxiella burnetii effector protein AnkG requires binding to p32 and Importin-alpha1. Cell Microbiol. 2017, 19. [Google Scholar] [CrossRef]
- Agarwal, S.; Agarwal, S.; Jin, H.; Pancholi, P.; Pancholi, V. Serine/threonine phosphatase (SP-STP), secreted from Streptococcus pyogenes, is a pro-apoptotic protein. J. Biol. Chem. 2012, 287, 9147–9167. [Google Scholar] [CrossRef] [Green Version]
- Bierne, H. Nuclear microbiology--bacterial assault on the nucleolus. EMBO Rep. 2013, 14, 663–664. [Google Scholar] [CrossRef]
- Dean, P.; Scott, J.A.; Knox, A.A.; Quitard, S.; Watkins, N.J.; Kenny, B. The enteropathogenic E. coli effector EspF targets and disrupts the nucleolus by a process regulated by mitochondrial dysfunction. PLoS Pathog. 2010, 6, e1000961. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.; den Dulk-Ras, A.; Hooykaas, P.J.; Rikihisa, Y. Anaplasma phagocytophilum AnkA secreted by type IV secretion system is tyrosine phosphorylated by Abl-1 to facilitate infection. Cell Microbiol. 2007, 9, 2644–2657. [Google Scholar] [CrossRef]
- Farris, T.R.; Zhu, B.; Wang, J.Y.; McBride, J.W. Ehrlichia chaffeensis TRP32 Nucleomodulin Function and Localization Is Regulated by NEDD4L-Mediated Ubiquitination. Front. Cell Infect. Microbiol. 2017, 7, 534. [Google Scholar] [CrossRef] [Green Version]
- Jo, K.; Kim, E.J.; Yu, H.J.; Yun, C.H.; Kim, D.W. Host Cell Nuclear Localization of Shigella flexneri Effector OspF Is Facilitated by SUMOylation. J. Microbiol. Biotechnol. 2017, 27, 610–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinclair, S.H.; Garcia-Garcia, J.C.; Dumler, J.S. Bioinformatic and mass spectrometry identification of Anaplasma phagocytophilum proteins translocated into host cell nuclei. Front. Microbiol. 2015, 6, 55. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Valero, L.; Rusniok, C.; Carson, D.; Mondino, S.; Perez-Cobas, A.E.; Rolando, M.; Pasricha, S.; Reuter, S.; Demirtas, J.; Crumbach, J.; et al. More than 18,000 effectors in the Legionella genus genome provide multiple, independent combinations for replication in human cells. Proc. Natl. Acad. Sci. USA 2019, 116, 2265–2273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarez-Venegas, R. Bacterial SET domain proteins and their role in eukaryotic chromatin modification. Front. Genet. 2014, 5, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rolando, M.; Gomez-Valero, L.; Buchrieser, C. Bacterial remodelling of the host epigenome: Functional role and evolution of effectors methylating host histones. Cell Microbiol. 2015, 17, 1098–1107. [Google Scholar] [CrossRef] [PubMed]
- Schuhmacher, M.K.; Rolando, M.; Brohm, A.; Weirich, S.; Kudithipudi, S.; Buchrieser, C.; Jeltsch, A. The Legionella pneumophila Methyltransferase RomA Methylates Also Non-histone Proteins during Infection. J. Mol. Biol. 2018, 430, 1912–1925. [Google Scholar] [CrossRef] [PubMed]
- Olias, P.; Etheridge, R.D.; Zhang, Y.; Holtzman, M.J.; Sibley, L.D. Toxoplasma Effector Recruits the Mi-2/NuRD Complex to Repress STAT1 Transcription and Block IFN-gamma-Dependent Gene Expression. Cell Host Microbe 2016, 20, 72–82. [Google Scholar] [CrossRef] [Green Version]
- Ludwicki, M.B.; Li, J.; Stephens, E.A.; Roberts, R.W.; Koide, S.; Hammond, P.T.; DeLisa, M.P. Broad-Spectrum Proteome Editing with an Engineered Bacterial Ubiquitin Ligase Mimic. ACS Cent. Sci. 2019, 5, 852–866. [Google Scholar] [CrossRef] [Green Version]
- Netea, M.G.; Joosten, L.A.; Latz, E.; Mills, K.H.; Natoli, G.; Stunnenberg, H.G.; O’Neill, L.A.; Xavier, R.J. Trained immunity: A program of innate immune memory in health and disease. Science 2016, 352, aaf1098. [Google Scholar] [CrossRef] [Green Version]
Name | Full Name |
---|---|
APC/Ccdh1 | Anaphase-promoting complex/cyclosome adaptor protein CDH1 |
BAHD1 | Bromo adjacent homology domain-containing 1 |
CYBB | Cytochrome b beta |
DDX3 | DEAD-box helicase 3 X-linked |
EF1α | Transcription factor E1F alpha |
G9a | Euchromatic histone lysine methyltransferase 2 |
HDAC1 | Histone deacetylase 1 |
IL-8 | Interleukin 8 |
IL-10 | Interleukin 10 |
LARP7 | La-related protein 7 |
MAD2B | Mitotic spindle assembly checkpoint protein MAD2B |
MAN1 | Inner nuclear membrane protein Man1 |
MDM2 | MDM2 proto-oncogene |
MED15 | Mediator complex subunit 15 |
NEDD4L | Neural precursor cell expressed developmentally downregulated gene 4-like |
NEDD8 | Neural precursor cell expressed developmentally downregulated protein 8 |
NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
NOX | NAPDH oxidase |
p300 | E1A binding protein p300 |
p32/C1qBP | Complement C1q binding protein |
P53 | Tumor protein 53 |
PCGF5 | Polycomb group RING finger 5 |
PKN1 and PKN2 | Protein kinase N1 and Protein kinase N2 |
PLEKHN1 | Pleckstrin homology domain containing N1 |
RSK1 | Ribosomal protein S6 kinase, 90 kD, polypeptide 1 |
RYBP | Ring1 and YY1-binding protein |
SATB1 | Special AT-rich sequence binding protein 1 |
SKP1 | S-Phase kinase associated TF protein 1 |
STAT1 | Signal transducer and activator of transcription 1 |
SUPT5H | SPT5 homolog, DSIF elongation factor subunit |
TNFα | Tumor necrosis factor α |
U2AF35/U2AF1 | U2 small nuclear RNA auxiliary factor 1 (35 kDa subunit) |
Bacterial Species | Name | Effect | References |
---|---|---|---|
Anaplasma phagocytophilum | AnkA | Binds to chromatin at AT-rich DNA sequences and nuclear matrix attachment regions (MARs); recruits HDAC1 at the CYBB gene promoter and represses CYBB expression | [32,33,34,35] |
Bacillus thailandensis | BtSET | Histone lysine methyltransferase targeting rDNA genes | [59] |
Chlamydia psittaci | SinC | Interacts with nuclear inner membrane proteins | [39] |
Chlamydia trachomatis | NUE | Histone lysine methyltransferase targeting host histones | [56,57] |
Coxiella burnetii | AnkG | Binds to p32; inhibits apoptosis | [106] |
Ehrlichia chaffeensis | Ank200 | Binds to Alu-Sx DNA motifs; deregulates expression of several host genes | [42] |
TRP32 | Binds to G-rich DNA motifs and chromatin-associated proteins; deregulates expression of several host genes | [46,47,111] | |
TRP47 | Binds to G + C-rich DNA motifs and chromatin-associated proteins; deregulates expression of several host genes | [48] | |
TRP120 | Binds to G + C-rich DNA motifs and chromatin-associated proteins; ubiquitin ligase targeting PCGF5 for proteasome degradation; activates several host genes, such as HOX genes | [44,45,50,51,52,53] | |
Escherichia coli | Cif | Deamidase targeting the ubiquitin-like protein NEDD8; abolishes the activity of CLR ubiquitin ligases on cell cycle regulators; induces cell cycle arrest | [91,92,93,94] |
EspF | Disrupts a subset of nucleolar factors, such as nucleolin | [109] | |
NleC | Protease degrading histone acetyltransferase p300 | [97] | |
NleG5-1 | Ubiquitin ligase targeting MED15 for proteasome degradation | [87] | |
Legionella pneumophila | AnkH | Interferes with RNA Pol II-mediated transcriptional elongation by interacting with LARP7 | [102] |
AnkX | Interacts with PLEKHN1 | [104] | |
RomA/LegAS4 | Histone lysine methyltransferase targeting H3K14 and repressing several immune defense genes; in addition, LegAS4 was shown to target rDNA genes in the nucleolus | [58,59,60] | |
SnlP | Interferes with RNA Pol II-mediated transcriptional elongation by inhibiting SUPT5H | [103] | |
Listeria monocytogenes | LntA | Inhibits BAHD1 and recruitment of HDACs at interferon-stimulated genes (ISGs), thus activating interferon responses in epithelial cells | [8,22] |
OrfX | Interacts with and promotes RYBP degradation; dampens production of superoxide and nitric oxide in infected macrophages | [27] | |
Mycobacterium tuberculosis | Rv1988 | Histone methyltransferase targeting H3R42; represses genes involved in oxidative stress, such as NOX1, NOX4 | [61] |
Rv3423 | Histone acetyltransferase targeting H3K9 or H3K14 | [62] | |
Rv2966c | DNA methyltransferase targeting cytosines in a non-CpG context | [63] | |
Mycoplasma hyorhinis | Mhy1, Mhy2 | DNA methyltransferases targeting cytosines in a CG context | [64] |
Mhy3 | DNA methyltransferase targeting cytosines in a GATC context | [64] | |
Neisseria meningitidis | App, MspA | Serine endopeptidases cleaving histone H3; induce increase in dendritic cell death via caspase-dependent apoptosis | [100] |
Orientia tsutsugamushi | Ank proteins 1U5, 1A, 1B, 1E, 1F, 1U4, 1U9 | Contain an F-box domain that interacts with CULLIN-1 and SKP1 of a multiprotein E3 ubiquitin ligase complex; Ank1U5 promotes EF1α ubiquitination and degradation | [89] |
Ank1, Ank6 | Promote nuclear export of p65 and inhibits transcription of NF-κB-dependent genes | [101] | |
Salmonellaenterica serovar Typhimurium | GtgA, GogA, PipA | Proteases degrading subunits of NF-kB (p65, RelB et cRel); dampen the inflammatory response | [98,99] |
SspH1 | Ubiquitin ligase targeting PKN1 kinase | [71,78,79] | |
Shigella flexneri | IpaB | Pleiotropic functions; delays mitotic progression through APC/Ccdh1 activation and degradation of APC/Ccdh1 substrates | [96] |
IpaH9.8 | Ubiquitin ligase targeting splicing factor U2AF35 for proteasome degradation | [71,72,73,74] | |
OspB | Binds to Rb transcription factor | [68] | |
OspF | Phosphothreonine lyase targeting mitogen-activated protein kinase (MAPK) and inhibiting MAPK-dependent phosphorylation of H3S10; downregulates innate immune response genes; binds to Rb | [65,66,67] | |
Streptococcus pyogenes | SP-STP | Phosphatase; proposed to alter transcription of apoptotic genes | [107] |
Yersinia pestis | YopM | Targets serine/threonine kinases RSK1 and PKN2; increases transcription of immunosuppressive cytokine genes, such as IL-10 | [80,81,82,83,84,85,86] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bierne, H.; Pourpre, R. Bacterial Factors Targeting the Nucleus: The Growing Family of Nucleomodulins. Toxins 2020, 12, 220. https://doi.org/10.3390/toxins12040220
Bierne H, Pourpre R. Bacterial Factors Targeting the Nucleus: The Growing Family of Nucleomodulins. Toxins. 2020; 12(4):220. https://doi.org/10.3390/toxins12040220
Chicago/Turabian StyleBierne, Hélène, and Renaud Pourpre. 2020. "Bacterial Factors Targeting the Nucleus: The Growing Family of Nucleomodulins" Toxins 12, no. 4: 220. https://doi.org/10.3390/toxins12040220
APA StyleBierne, H., & Pourpre, R. (2020). Bacterial Factors Targeting the Nucleus: The Growing Family of Nucleomodulins. Toxins, 12(4), 220. https://doi.org/10.3390/toxins12040220