CRISPR-Mediated Knockout of the ABCC2 Gene in Ostrinia furnacalis Confers High-Level Resistance to the Bacillus thuringiensis Cry1Fa Toxin
Abstract
:1. Introduction
2. Results
2.1. CRISPR/Cas9-Mediated Mutagenesis of OfABCC2 in O. Furnacalis
2.2. Construction of a Homozygous Strain with OfABCC2 Knocked Out
2.3. Impact of OfABCC2 Disruption on the Susceptibility of O. Furnacalis to Bt Toxins and Chemical Insecticides
2.4. Dominance of Cry1Fa and Cry1Ac Resistance in the OfC2-KO Strain
2.5. Genetic Association between the 8-bp Deletion of OfABCC2 and Cry1Fa Resistance
3. Discussion
4. Materials and Methods
4.1. Insect Strains and Rearing
4.2. Diet Bioassay
4.3. Design and Preparation of sgRNA
4.4. Egg Collection and Microinjection
4.5. Generation of OfABCC2 Mutation Mediated by CRISPR/Cas9
4.6. Inheritance Model Determination and Genetic Association Analysis
Author Contributions
Funding
Conflicts of Interest
References
- ISAAA. Global Status of Commercialized Biotech/GM Crops in 2018, ISAAA Brief no. 54; ISAAA: Ithaca, NY, USA, 2018. [Google Scholar]
- NASEM. Genetically Engineered Crops: Experiences and Prospects. In National Academies of Sciences, Engineering, and Medicine; National Academies Press: Washington, DC, USA, 2016. [Google Scholar]
- Calles-Torrez, V.; Knodel, J.J.; Boetel, M.A.; French, B.W.; Fuller, B.W.; Ransom, J.K. Field-evolved resistance of northern and western corn rootworm (Coleoptera: Chrysomelidae) populations to corn hybrids expressing single and pyramided Cry3Bb1 and Cry34/35Ab1 Bt proteins in North Dakota. J. Econ. Entomol. 2019, 112, 1875–1886. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.L.; Farhan, Y.; Schaafsma, A.W. Practical resistance of Ostrinia nubilalis (Lepidoptera: Crambidae) to Cry1F Bacillus thuringiensis maize discovered in Nova Scotia, Canada. Sci. Rep. 2019, 9, 18247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabashnik, B.E.; Carrière, Y. Global patterns of resistance to Bt crops highlighting pink bollworm in the United States, China, and India. J. Econ. Entomol. 2019, 112, 2513–2523. [Google Scholar] [CrossRef] [PubMed]
- Mutuura, A.; Munroe, E. Taxonomy and distribution of the European corn borer and allied species: Genus ostrinia (lepidoptera: Pyralidae). Mem. Entomol. Soc. Can. 1970, 102, 1–112. [Google Scholar] [CrossRef]
- Frolov, A.; Bourguet, D.; Ponsard, S. Reconsidering the taxomony of several Ostrinia species in the light of reproductive isolation: a tale for Ernst Mayr. Biol. J. Lin. Soc. 2007, 91, 49–72. [Google Scholar] [CrossRef] [Green Version]
- Nafus, D.M.; Schreiner, I.H. Review of the biology and control of the Asian corn borer, Ostrinia furnacalis (Lep, Pyralidae). Trop. Pest Manag. 1991, 37, 41–56. [Google Scholar] [CrossRef]
- Hutchison, W.D.; Burkness, E.C.; Mitchell, P.D.; Moon, R.D.; Leslie, T.W.; Fleischer, S.J.; Abrahamson, M.; Hamilton, K.L.; Steffey, K.L.; Gray, M.E.; et al. Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers. Science 2010, 330, 222–225. [Google Scholar] [CrossRef] [Green Version]
- Dively, G.P.; Venugopal, P.D.; Bean, D.; Whalen, J.; Holmstrom, K.; Kuhar, T.P.; Doughty, H.B.; Patton, T.; Cissel, W.; Hutchison, W.D. Regional pest suppression associated with widespread Bt maize adoption benefits vegetable growers. Proc. Natl. Acad. Sci. USA 2018, 115, 3320–3325. [Google Scholar] [CrossRef] [Green Version]
- Siegfried, B.D.; Rangasamy, M.; Wang, H.; Spencer, T.; Haridas, C.V.; Tenhumberg, B.; Sumerford, D.V.; Storer, N.P. Estimating the frequency of Cry1F resistance in field populations of the European corn borer (Lepidoptera: Crambidae). Pest Manag. Sci. 2014, 70, 725–733. [Google Scholar] [CrossRef] [Green Version]
- CSY. China Statistical Yearbook; National Bureau of Statistics of China, China Statistics Press: Beijing, China, 2018. [Google Scholar]
- Zhou, D.R.; Wang, Y.S.; Li, W.D. Studies on the identification of the dominant corn borer species in China. Acta. Phytophy. Sin. 1988, 15, 145–152. [Google Scholar]
- MARA. Approved List of Agricultural GMO Safety Certificates; Ministry of Agriculture and Rural Affairs of the People’s Republic of China: Beijing, China, 2020.
- Xu, L.; Wang, Z.; Zhang, J.; He, K.; Ferry, N.; Gatehouse, A.M.R. Cross-resistance of Cry1Ab-selected Asian corn borer to other Cry toxins. J. Appl. Entomol. 2010, 134, 429–438. [Google Scholar] [CrossRef]
- Zhang, T.; He, M.; Gatehouse, A.M.; Wang, Z.; Edwards, M.G.; Li, Q.; He, K. Inheritance patterns, dominance and cross-resistance of Cry1Ab- and Cry1Ac-selected Ostrinia furnacalis (Guenée). Toxins 2014, 6, 2694–2707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Wang, Y.; Wang, Z.; Bravo, A.; Soberón, M.; He, K. Genetic basis of Cry1F resistance in a laboratory selected Asian corn borer strain and its cross-resistance to other Bacillus thuringiensis toxins. PLoS ONE 2016, 11, e0161189. [Google Scholar] [CrossRef] [PubMed]
- Shabbir, M.Z.; Quan, Y.; Wang, Z.; Bravo, A.; Soberón, M.; He, K. Characterization of the Cry1Ah resistance in Asian corn borer and its cross-resistance to other Bacillus thuringiensis toxins. Sci. Rep. 2018, 8, 234. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Quan, Y.D.; Yang, J.; Shu, C.L.; Wang, Z.Y.; Zhang, J.; Gatehouse, A.M.R.; Tabashnik, B.E.; He, K.L. Evolution of Asian corn borer resistance to Bt toxins used singly or in pairs. Toxins 2019, 11, 461. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.D. Detection and mechanisms of resistance evolved in insects to Cry toxins from Bacillus thuringiensis. Adv. Insect Physiol. 2014, 47, 297–342. [Google Scholar]
- Pardo-López, L.; Soberón, M.; Bravo, A. Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. FEMS Microbiol. Rev. 2013, 37, 3–22. [Google Scholar] [CrossRef] [Green Version]
- Gahan, L.J.; Pauchet, Y.; Vogel, H.; Heckel, D.G. An ABC transporter mutation is correlated with insect resistance to Bacillus thuringiensis Cry1Ac toxin. PLoS Genet. 2010, 6, e1001248. [Google Scholar] [CrossRef] [Green Version]
- Baxter, S.W.; Badenes-Perez, F.R.; Morrison, A.; Vogel, H.; Crickmore, N.; Kain, W.; Wang, P.; Heckel, D.G.; Jiggins, C.D. Parallel evolution of Bacillus thuringiensis toxin resistance in lepidoptera. Genetics 2011, 189, 675–679. [Google Scholar] [CrossRef] [Green Version]
- Atsumi, S.; Miyamoto, K.; Yamamoto, K.; Narukawa, J.; Kawai, S.; Sezutsu, H.; Kobayashi, I.; Uchino, K.; Tamura, T.; Mita, K.; et al. Single amino acid mutation in an ATP-binding cassette transporter gene causes resistance to Bt toxin Cry1Ab in the silkworm, Bombyx mori. Proc. Natl. Acad. Sci. USA 2012, 109, 1591–1598. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Zhang, T.; Liu, C.; Heckel, D.G.; Li, X.; Tabashnik, B.E.; Wu, K. Mis-splicing of the ABCC2 gene linked with Bt toxin resistance in Helicoverpa armigera. Sci. Rep. 2014, 4, 6184. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Gonzalez-Martinez, R.M.; Navarro-Cerrillo, G.; Chakroun, M.; Kim, Y.; Ziarsolo, P.; Blanca, J.; Canizares, J.; Ferre, J.; Herrero, S. ABCC transporters mediate insect resistance to multiple Bt toxins revealed by bulk segregant analysis. BMC Biol. 2014, 12, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerjee, R.; Hasler, J.; Meagher, R.; Nagoshi, R.; Hietala, L.; Huang, F.; Narva, K.; Jurat-Fuentes, J.L. Mechanism and DNA-based detection of field-evolved resistance to transgenic Bt corn in fall armyworm (Spodoptera frugiperda). Sci. Rep. 2017, 7, 10877. [Google Scholar] [CrossRef] [Green Version]
- Flagel, L.; Lee, Y.W.; Wanjugi, H.; Swarup, S.; Brown, A.; Wang, J.L.; Kraft, E.; Greenplate, J.; Simmons, J.; Adams, N.; et al. Mutational disruption of the ABCC2 gene in fall armyworm, Spodoptera frugiperda, confers resistance to the Cry1Fa and Cry1A.105 insecticidal proteins. Sci. Rep. 2018, 8, 7255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boaventura, D.; Ulrich, J.; Lueke, B.; Bolzan, A.; Okuma, D.; Gutbrod, O.; Geibel, S.; Zeng, Q.; Dourado, P.M.; Martinelli, S.; et al. Molecular characterization of Cry1F resistance in fall armyworm, Spodoptera frugiperda from Brazil. Insect Biochem. Mol. Biol. 2020, 116, 103280. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.J.; Sun, D.; Kang, S.; Zhou, J.L.; Gong, L.J.; Qin, J.Y.; Guo, L.; Zhu, L.H.; Bai, Y.; Luo, L.; et al. CRISPR/Cas9-mediated knockout of both the PxABCC2 and PxABCC3 genes confers high-level resistance to Bacillus thuringiensis Cry1Ac toxin in the diamondback moth, Plutella xylostella (L.). Insect Biochem. Mol. Biol. 2019, 107, 31–38. [Google Scholar] [CrossRef]
- Jin, M.; Tao, J.; Li, Q.; Cheng, Y.; Sun, X.; Wu, K.; Xiao, Y. Genome editing of the SfABCC2 gene confers resistance to Cry1F toxin from Bacillus thuringiensis in Spodoptera frugiperda. J. Integr. Agr. 2020. [Google Scholar] [CrossRef]
- Huang, J.L.; Xu, Y.J.; Zuo, Y.Y.; Yang, Y.H.; Tabashnik, B.E.; Wu, Y.D. Evaluation of five candidate Bt toxin receptors in the beet armyworm using CRISPR mediated gene knockouts. Insect Biochem. Mol. Biol. 2020, 121, 103361. [Google Scholar] [CrossRef]
- Wang, J.; Ma, H.H.; Zhao, S.; Huang, J.L.; Yang, Y.H.; Tabashnik, B.E.; Wu, Y.D. Functional redundancy of two transporter proteins in mediating toxicity of Bacillus thuringiensis to cotton bollworm. PLoS Pathog. 2020, 16, e1008427. [Google Scholar] [CrossRef]
- Coates, B.S.; Sumerford, D.V.; Lopez, M.D.; Wang, H.; Fraser, L.; Kroemer, M.J.A.; Spencer, T.; Kim, K.S.; Abel, C.A.; Hellmich, R.L.; et al. A single major QTL controls expression of larval Cry1F resistance trait in Ostrinia nubilalis (Lepidoptera: Crambidae) and is independent of midgut receptor genes. Genetica 2011, 139, 961. [Google Scholar] [CrossRef] [Green Version]
- Coates, B.S.; Siegfried, B.D. Linkage of an ABCC transporter to a single QTL that controls Ostrinia nubilalis larval resistance to the Bacillus thuringiensis Cry1Fa toxin. Insect Biochem. Mol. Biol. 2015, 63, 86–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, L.N.; Ferry, N.; Wang, Z.Y.; Zhang, J.; Edwards, M.G.; Gatehouse, A.M.R.; He, K.L. A proteomic approach to study the mechanism of tolerance to Bt toxins in Ostrinia furnacalis larvae selected for resistance to Cry1Ab. Transgenic. Res. 2013, 22, 1155–1166. [Google Scholar] [CrossRef] [PubMed]
- Jin, T.; Chang, X.; Gatehouse, A.M.; Wang, Z.; Edwards, M.G.; He, K. Downregulation and mutation of a cadherin gene associated with Cry1Ac resistance in the Asian corn borer, Ostrinia furnacal is (Guenée). Toxins 2014, 6, 2676–2693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, L.N.; Ling, Y.H.; Wang, Y.Q.; Wang, Z.Y.; Hu, B.J.; Zhou, Z.Y.; Hu, F.; He, K.L. Identification of differentially expressed microRNAs between Bacillus thuringiensis Cry1Ab-resistant and -susceptible strains of Ostrinia furnacalis. Sci. Rep. 2015, 5, 15461. [Google Scholar] [CrossRef]
- Zhang, T.T.; Coates, B.S.; Wang, Y.Q.; Wang, Y.D.; Bai, S.X.; Wang, Z.Y.; He, K.L. Down-regulation of aminopeptidase N and ABC transporter subfamily G transcripts in Cry1Ab and Cry1Ac resistant Asian corn borer, Ostrinia furnacalis (Lepidoptera: Crambidae). Int. J. Biol. Sci. 2017, 13, 835–851. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhang, H.; Wang, H.D.; Zhao, S.; Zuo, Y.; Yang, Y.H.; Wu, Y.D. Functional validation of cadherin as a receptor of Bt toxin Cry1Ac in Helicoverpa armigera utilizing the CRISPR/Cas9 system. Insect Biochem. Mol. Biol. 2016, 76, 11–17. [Google Scholar] [CrossRef]
- Wang, X.L.; Ma, Y.M.; Wang, F.L.; Yang, Y.H.; Wu, S.W.; Wu, Y.D. Disruption of nicotinic acetylcholine receptor alpha 6 mediated by CRISPR/Cas9 confers resistance to spinosyns in Plutella xylostella. Pest Manag. Sci. 2020, 76, 1618–1625. [Google Scholar] [CrossRef]
- Zuo, Y.; Xue, Y.; Lu, W.; Ma, H.; Chen, M.; Wu, Y.; Yang, Y.; Hu, Z. Functional validation of nicotinic acetylcholine receptor (nAChR) alpha6 as a target of spinosyns in Spodoptera exigua utilizing the CRISPR/Cas9 system. Pest Manag. Sci. 2020. [Google Scholar] [CrossRef]
- Douris, V.; Papapostolou, K.M.; Ilias, A.; Roditakis, E.; Kounadi, S.; Riga, M.; Nauen, R.; Vontas, J. Investigation of the contribution of RyR target-site mutations in diamide resistance by CRISPR/Cas9 genome modification in Drosophila. Insect Biochem. Mol. Biol. 2017, 87, 127–135. [Google Scholar] [CrossRef]
- Itokawa, K.; Komagata, O.; Kasai, S.; Ogawa, K.; Tomita, T. Testing the causality between CYP9M10 and pyrethroid resistance using the TALEN and CRISPR/Cas9 technologies. Sci. Rep. 2016, 6, 24652. [Google Scholar] [CrossRef]
- LeOra Software. Polo Plus: A User’s Guide to Probit and Logit Analysis; LeOra Software: Berkeley, CA, USA, 2002. [Google Scholar]
- Bassett, A.R.; Tibbit, C.; Ponting, C.P.; Liu, J.L. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 System. Cell Rep. 2013, 4, 220–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.B.; Tabashnik, B.E. Inheritance of resistance to the Bacillus thuringiensis toxin Cry1C in the diamondback moth. Appl. Environ. Microb. 1997, 63, 2218–2223. [Google Scholar] [CrossRef] [Green Version]
Toxin/Insecticide | Strain | N 1 | Slope ± SE | LC50 (μg/g) | 95% Fiducial Limits | RR 2 |
---|---|---|---|---|---|---|
Cry1Aa | NJ-S | 312 | 3.714 ± 0.519 | 0.391 | 0.320-0.455 | 1 1.4 |
OfC2-KO | 384 | 2.583 ± 0.386 | 0.527 | 0.359-0.737 | ||
Cry1Ab | NJ-S | 360 | 2.978 ± 0.362 | 0.116 | 0.074-0.177 | 1 3.6 |
OfC2-KO | 384 | 2.339 ± 0.286 | 0.414 | 0.259-0.585 | ||
Cry1Ac | NJ-S | 720 | 3.248 ± 0.427 | 0.100 | 0.069-0.136 | 1 8.1 |
OfC2-KO | 384 | 3.531 ± 0.572 | 0.808 | 0.676-0.947 | ||
Cry1Fa 3 | NJ-S | 408 | 4.488 ± 0.505 | 0.411 | 0.349-0.466 | 1 >300 |
OfC2-KO | 48 | - | - | - | ||
Abamectin | NJ-S | 192 | 2.221 ± 0.227 | 0.118 | 0.090-0.153 | 1 1.3 |
OfC2-KO | 432 | 1.937 ± 0.171 | 0.153 | 0.122-0.188 | ||
Chlorantraniliprole | NJ-S | 432 | 2.106 ± 0.217 | 0.031 | 0.025-0.037 | 1 0.6 |
OfC2-KO | 432 | 1.387 ± 0.137 | 0.018 | 0.013-0.023 |
Strain/cross | Treatment | N 1 | Survival Number | h2 |
---|---|---|---|---|
NJ-S | Cry1Fa | 72 | 0 | |
Cry1Ac | 48 | 0 | ||
OfC2-KO | Cry1Fa | 72 | 67 | |
Cry1Ac | 96 | 37 | ||
F1a (OfC2-KO♀×NJ-S♂) | Cry1Fa | 120 | 0 | 0 |
Cry1Ac | 120 | 0 | 0 | |
F1b (OfC2-KO♂×NJ-S♀) | Cry1Fa | 120 | 2 | 0.02 |
Cry1Ac | 120 | 0 | 0 |
F2 Progeny 1 | Number of Individuals for Each Genotype 2 | ||
---|---|---|---|
ss | rs | rr | |
NJ-S | 25 | 0 | 0 |
OfC2-KO | 0 | 0 | 30 |
F2-untreated larvae (n = 29) | 7 | 13 | 9 |
F2-treated survivors (n = 21) | 0 | 0 | 21 |
Primer Name | Primer Sequences (5′ to 3′) |
---|---|
OfC2_sgF | GAAATTAATACGACTCACTATAGCACCTTTCGTTGGACTTTTGTTTTAGAGCTAGAAATAGC |
OfC2_sgR | AAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAAAC |
4Ex_F | TAAACCAAGTGTCCATAGGAGACG |
5Ex_R | TTCGTTTGTCTGTTCGTGTCGC |
4In_R | GCTGACTATGACATCCACAAAGACAA |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Xu, Y.; Huang, J.; Jin, W.; Yang, Y.; Wu, Y. CRISPR-Mediated Knockout of the ABCC2 Gene in Ostrinia furnacalis Confers High-Level Resistance to the Bacillus thuringiensis Cry1Fa Toxin. Toxins 2020, 12, 246. https://doi.org/10.3390/toxins12040246
Wang X, Xu Y, Huang J, Jin W, Yang Y, Wu Y. CRISPR-Mediated Knockout of the ABCC2 Gene in Ostrinia furnacalis Confers High-Level Resistance to the Bacillus thuringiensis Cry1Fa Toxin. Toxins. 2020; 12(4):246. https://doi.org/10.3390/toxins12040246
Chicago/Turabian StyleWang, Xingliang, Yanjun Xu, Jianlei Huang, Wenzhong Jin, Yihua Yang, and Yidong Wu. 2020. "CRISPR-Mediated Knockout of the ABCC2 Gene in Ostrinia furnacalis Confers High-Level Resistance to the Bacillus thuringiensis Cry1Fa Toxin" Toxins 12, no. 4: 246. https://doi.org/10.3390/toxins12040246
APA StyleWang, X., Xu, Y., Huang, J., Jin, W., Yang, Y., & Wu, Y. (2020). CRISPR-Mediated Knockout of the ABCC2 Gene in Ostrinia furnacalis Confers High-Level Resistance to the Bacillus thuringiensis Cry1Fa Toxin. Toxins, 12(4), 246. https://doi.org/10.3390/toxins12040246