Novel Soil Bacterium Strain Desulfitobacterium sp. PGC-3-9 Detoxifies Trichothecene Mycotoxins in Wheat via De-Epoxidation under Aerobic and Anaerobic Conditions
Abstract
:1. Introduction
2. Results
2.1. De-Epoxidation of DON by PGC-3 in a Selected Medium under Aerobic and Anaerobic Conditions
2.2. Effects of Antibiotics on De-Epoxidation Activity of the Consortium PGC-3
2.3. Variation of Microbial Community in the Consortium PGC-3 in Response to Medium and Antibiotics under Aerobic and Anaerobic Conditions
2.4. Single Colony Isolation and Phylogenetic Analysis of the DON-degrading Strain Desulfitobacterium sp. PGC-3-9
2.5. De-epoxidation of Type A and B Trichothecene Mycotoxins by Desulfitobacterium sp. PGC-3-9
2.6. Effect of Temperature and pH on De-Epoxidation Activity of Strain PGC-3-9
2.7. De-Epoxidation of DON in Medium and in Wheat by PGC-3-9 under Aerobic and Anaerobic Conditions
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Trichothecenes, Antibiotics, and Culture Medium
5.2. De-Epoxidation of DON by the Consortium PGC-3 in Medium
5.3. Antibiotic-Based Selection
5.4. Microbial Community Analysis in the PGC-3 Consortium by 16S rRNA Sequencing
5.5. Isolation and Characterization of Single Colonies with DON De-degrading Activity from the PGC-3 Consortium
5.6. De-Epoxidation of Type A and B Trichothecenes by the Strain PGC-3-9
5.7. Effects of Temperature and pH on DON De-epoxidation Activity of Strain PGC-3-9
5.8. De-Epoxidation of DON by PGC-3-9 in Medium and Wheat Grains
5.9. Statistical Tests and Analysis
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- McCormick, S.P.; Stanley, A.M.; Stover, N.A.; Alexander, N.J. Trichothecenes: From simple to complex mycotoxins. Toxins 2011, 3, 802–814. [Google Scholar] [CrossRef]
- Proctor, R.H.; McCormick, S.P.; Kim, H.S.; Cardoza, R.E.; Stanley, A.M.; Lindo, L.; Kelly, A.; Brown, D.W.; Lee, T.; Vaughan, M.M.; et al. Evolution of structural diversity of trichothecenes, a family of toxins produced by plant pathogenic and entomopathogenic fungi. PLoS Pathog. 2018, 14, e1006946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foroud, N.A.; Baines, D.; Gagkaeva, T.Y.; Thakor, N.; Badea, A.; Steiner, B.; Burstmayr, M.; Burstmayr, H. Trichothecenes in cereal grains—An update. Toxins 2019, 11, 634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.J.; Ryu, D. Worldwide occurrence of mycotoxins in cereals and cereal-derived food products: Public health perspectives of their co-occurrence. J. Agric. Food Chem. 2017, 65, 7034–7051. [Google Scholar] [CrossRef] [PubMed]
- Ferrigo, D.; Raiola, A.; Causin, R. Fusarium toxins in cereals: Occurrence, legislation, factors promoting the appearance and their management. Molecules 2016, 21, 627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foroud, N.A.; François, E. Trichothecenes in cereal grains. Int. J. Mol. Sci. 2009, 10, 147. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.B.; Wang, J.H.; Gong, A.D.; Chen, F.F.; Song, B.; Li, X.; Li, H.P.; Peng, C.H.; Liao, Y.C. Natural occurrence of fusarium head blight, mycotoxins and mycotoxin-producing isolates of Fusarium in commercial fields of wheat in Hubei. Plant Pathol. 2013, 62, 92–102. [Google Scholar] [CrossRef]
- Hao, Y.; Rasheed, A.; Zhu, Z.; Wulff, B.B.H.; He, Z. Harnessing Wheat Fhb1 for Fusarium Resistance. Trends Plant Sci. 2020, 25, 1–3. [Google Scholar] [CrossRef]
- Audenaert, K.; Callewaert, E.; Hofte, M.; De Saeger, S.; Haesaert, G. Hydrogen peroxide induced by the fungicide prothioconazole triggers deoxynivalenol (DON) production by Fusarium graminearum. BMC Microbiol. 2010, 10, 112. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Wang, J.; Luo, Q.; Yuan, S.; Zhou, M. Characterization and fitness of carbendazim-resistant strains of Fusarium graminearum (wheat scab). Pest Manag. Sci. Former. Pestic. Sci. 2007, 63, 1201–1207. [Google Scholar] [CrossRef]
- Fuchs, E.; Binder, E.M.; Heidler, D.; Krska, R. Structural characterization of metabolites after the microbial degradation of type A trichothecenes by the bacterial strain BBSH 797. Food Addit. Contam. 2002, 19, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Hassan, Y.I.; Lepp, D.; Shao, S.; Zhou, T. Strategies and methodologies for developing microbial detoxification systems to mitigate mycotoxins. Toxins 2017, 9, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pestka, J.J. Deoxynivalenol: Mechanisms of action, human exposure, and toxicological relevance. Arch. Toxicol. 2010, 84, 663–679. [Google Scholar] [CrossRef] [PubMed]
- Rocha, O.; Ansari, K.; Doohan, F.M. Effects of trichothecene mycotoxins on eukaryotic cells: A review. Food Addit. Contam. 2005, 22, 369–378. [Google Scholar] [CrossRef]
- Pronyk, C.; Cenkowski, S.; Abramson, D. Superheated steam reduction of deoxynivalenol in naturally contaminated wheat kernels. Food Control 2006, 17, 789–796. [Google Scholar] [CrossRef]
- Bullerman, L.B.; Bianchini, A. Stability of mycotoxins during food processing. Int. J. Food Microbiol. 2007, 119, 140–146. [Google Scholar] [CrossRef]
- Eriksen, G.S.; Pettersson, H.; Lindberg, J.E. Comparative cytotoxicity of deoxynivalenol, nivalenol, their acetylated derivatives and de-epoxy metabolites. Food Chem. Toxicol. 2004, 42, 619–624. [Google Scholar] [CrossRef]
- Swanson, S.P.; Rood, H.D.; Behrens, J.C.; Sanders, P.E. Preparation and characterization of the deepoxy trichothecenes: Deepoxy HT-2, deepoxy T-2 triol, deepoxy T-2 tetraol, deepoxy 15-monoacetoxyscirpenol, and deepoxy scirpentriol. Appl. Environ. Microbiol. 1987, 53, 2821–2826. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Mu, P.; Wen, J.; Sun, Y.; Chen, Q.; Deng, Y. Detoxification of trichothecene mycotoxins by a novel bacterium, Eggerthella sp. DII-9. Food Chem. Toxicol. 2018, 112, 310–319. [Google Scholar] [CrossRef]
- Gao, X.; Mu, P.; Zhu, X.; Chen, X.; Tang, S.; Wu, Y.; Miao, X.; Wang, X.; Wen, J.; Deng, Y. Dual function of a novel bacterium, Slackia sp. D-G6: Detoxifying deoxynivalenol and producing the natural estrogen analogue, equol. Toxins 2020, 12, 85. [Google Scholar] [CrossRef] [Green Version]
- Li, X.Z.; Zhu, C.; de Lange, C.F.M.; Zhou, T.; He, J.; Yu, H.; Gong, J.; Young, J.C. Efficacy of detoxification of deoxynivalenol-contaminated corn by Bacillus sp. LS100 in reducing the adverse effects of the mycotoxin on swine growth performance. Food Addit. Contam. 2011, 28, 894–901. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Wang, J.; Huang, L.; Chen, H.; Wang, C. Effects of adding Clostridium sp. WJ06 on intestinal morphology and microbial diversity of growing pigs fed with natural deoxynivalenol contaminated wheat. Toxins 2017, 9, 383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karlovsky, P. Biological detoxification of the mycotoxin deoxynivalenol and its use in genetically engineered crops and feed additives. Appl. Microbiol. Biotechnol. 2011, 91, 491–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, M.; Sato, I.; Koitabashi, M.; Yoshida, S.; Imai, M.; Tsushima, S. A novel actinomycete derived from wheat heads degrades deoxynivalenol in the grain of wheat and barley affected by Fusarium head blight. Appl. Microbiol. Biotechnol. 2012, 96, 1059–1070. [Google Scholar] [CrossRef] [PubMed]
- Ahad, R.; Zhou, T.; Lepp, D.; Pauls, K.P. Microbial detoxification of eleven food and feed contaminating trichothecene mycotoxins. BMC Biotechnol. 2017, 17, 30. [Google Scholar] [CrossRef] [Green Version]
- He, W.J.; Yuan, Q.S.; Zhang, Y.B.; Guo, M.W.; Gong, A.D.; Zhang, J.B.; Wu, A.B.; Huang, T.; Qu, B.; Li, H.P.; et al. Aerobic de-epoxydation of trichothecene mycotoxins by a soil bacterial consortium isolated using in situ soil enrichment. Toxins 2016, 8, 277. [Google Scholar] [CrossRef] [Green Version]
- Islam, R.; Zhou, T.; Young, J.C.; Goodwin, P.H.; Pauls, K.P. Aerobic and anaerobic de-epoxydation of mycotoxin deoxynivalenol by bacteria originating from agricultural soil. World J. Microbiol. Biotechnol. 2012, 28, 7–13. [Google Scholar] [CrossRef]
- Futagami, T.; Furukawa, K. The genus Desulfitobacterium. In Organohalide-Respiring Bacteria; Adrian, L., Löffler, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 173–207. [Google Scholar]
- Kruse, T.; Goris, T.; Maillard, J.; Woyke, T.; Lechner, U.; de Vos, W.; Smidt, H. Comparative genomics of the genus Desulfitobacterium. FEMS Microbiol. Ecol. 2017, 93, fix135. [Google Scholar] [CrossRef]
- Villemur, R.; Lanthier, M.; Beaudet, R.; Lepine, F. The Desulfitobacterium genus. FEMS Microbiol. Rev. 2006, 30, 706–733. [Google Scholar] [CrossRef] [Green Version]
- Ding, C.; Zhao, S.; He, J. A Desulfitobacterium sp. strain PR reductively dechlorinates both 1,1,1-trichloroethane and chloroform. Environ. Microbiol. 2014, 16, 3387–3397. [Google Scholar] [CrossRef]
- Zhao, S.; Ding, C.; He, J. Detoxification of 1,1,2-trichloroethane to ethene by Desulfitobacterium and identification of its functional reductase gene. PLoS ONE 2015, 10, e0119507. [Google Scholar] [CrossRef] [PubMed]
- Qu, B.; Li, H.P.; Zhang, J.B.; Xu, Y.B.; Huang, T.; Wu, A.B.; Zhao, C.S.; Carter, J.; Nicholson, P.; Liao, Y.C. Geographical distribution and genetic diversity of the Fusarium graminearum and F. asiaticum on wheat spikes throughout China. Plant Pathol. 2008, 57, 15–24. [Google Scholar]
- Suyama, A.; Iwakiri, R.; Kai, K.; Tokunaga, T.; Sera, N.; Furukawa, K. Isolation and characterization of Desulfitobacterium sp. strain Y51 capable of efficient dehalogenation of tetrachloroethene and polychloroethanes. Biosci. Biotechnol. Biochem. 2001, 65, 1474–1481. [Google Scholar] [CrossRef] [PubMed]
- Wetterhorn, K.M.; Gabardi, K.; Michlmayr, H.; Malachova, A.; Busman, M.; McCormick, S.P.; Berthiller, F.; Adam, G.; Rayment, I. Determinants and expansion of specificity in a trichothecene UDP-glucosyltransferase from Oryza sativa. Biochemistry 2017, 56, 6585–6596. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Logan, B.E. Effect of O2 exposure on perchlorate reduction by Dechlorosoma sp. KJ. Water Res. 2004, 38, 1626–1632. [Google Scholar] [CrossRef] [PubMed]
- He, W.J.; Shi, M.M.; Yang, P.; Huang, T.; Zhao, Y.; Wu, A.B.; Dong, W.B.; Li, H.P.; Zhang, J.B.; Liao, Y.C. A quinone-dependent dehydrogenase and two NADPH-dependent aldo/keto reductases detoxify deoxynivalenol in wheat via epimerization in a Devosia strain. Food Chem. 2020, 321, 126703. [Google Scholar] [CrossRef]
No | Antibiotics | Growth/Medium | De-epoxidation Activity (%) Aerobic/Anaerobic | |
---|---|---|---|---|
Name | Concentration (μg/mL) | |||
1 | No antibiotics | 0 | +/MSB | 100/nd |
2 | No antibiotics | 0 | +/ MMYPF | 100/100 |
3 | Sulfadiazine | 50 100 | +/MMYPF +/MMYPF | 100/100 100/100 |
4 | Trimethoprim | 50 100 | +/MMYPF +/MMYPF | 100/100 100/100 |
5 | Sulfadiazine Trimethoprim | 100 100 | +/MMYPF | 100/100 |
6 | Cyclohexamide | 50 100 | +/MMYPF +/MMYPF | 100/100 100/100 |
7 | Bacitracin | 50 | +/MMYPF | 1.3/1.8 |
8 | Erythromycin | 50 | +/MMYPF | 1.1/1.5 |
9 | Gentamicin | 50 | +/MMYPF | 3.1/3.9 |
10 | Kanamycin | 50 | +/MMYPF | 3.5/4.7 |
11 | Streptomycin | 50 | +/MMYPF | 6.4/7.6 |
12 | Vancomycin | 50 | +/MMYPF | 2.2/2.6 |
13 | Ampicillin | 50 | +/MMYPF | 0/0 |
14 | Chloramphenicol | 25 | +/MMYPF | 0/0 |
15 | Gatifloxacin | 50 | +/MMYPF | 0/0 |
16 | Lincomycin | 30 | +/MMYPF | 0/0 |
17 | Metronidazole | 50 | +/MMYPF | 0/0 |
18 | Oxytetracycline | 50 | +/MMYPF | 0/0 |
19 | Polymyxin B sulfate | 50 | +/MMYPF | 0/0 |
20 | Rifampicin | 50 | +/MMYPF | 0/0 |
21 | Spectinomycin | 50 | +/MMYPF | 0/0 |
22 | Tobramycin sulfate | 50 | +/MMYPF | 0/0 |
23 | Tylosin | 50 | +/MMYPF | 0/0 |
Type | Mycotoxin | MM a | Functional Groups | De-Epoxidation (Conversion Rate %) | MMn b | ||||
---|---|---|---|---|---|---|---|---|---|
R3 | R4 | R7 | R8 | R15 | |||||
A | HT2 | 568.3 | OH | OH | H | iV | OAc | dE-HT2 (100) | 552.4 |
T2 | 436.2 | OH | OAc | H | iV | OAc | 0 | — | |
NEO | 466.3 | OH | OAc | H | OH | OAc | 0 | — | |
B | DON | 512.3 | OH | H | OH | =O | OH | dE-DON (100) | 496.3 |
NIV | 600.4 | OH | OH | OH | =O | OH | dE-NIV (100) | 584.4 | |
15ADON | 482.3 | OH | H | OH | =O | OAc | dE-15ADON (100) | 466.3 | |
3ADON | 482.3 | OAc | H | OH | =O | OH | 0 | — | |
FUS | 570.3 | OH | OAC | OH | =O | OH | 0 | — |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, W.-J.; Shi, M.-M.; Yang, P.; Huang, T.; Yuan, Q.-S.; Yi, S.-Y.; Wu, A.-B.; Li, H.-P.; Gao, C.-B.; Zhang, J.-B.; et al. Novel Soil Bacterium Strain Desulfitobacterium sp. PGC-3-9 Detoxifies Trichothecene Mycotoxins in Wheat via De-Epoxidation under Aerobic and Anaerobic Conditions. Toxins 2020, 12, 363. https://doi.org/10.3390/toxins12060363
He W-J, Shi M-M, Yang P, Huang T, Yuan Q-S, Yi S-Y, Wu A-B, Li H-P, Gao C-B, Zhang J-B, et al. Novel Soil Bacterium Strain Desulfitobacterium sp. PGC-3-9 Detoxifies Trichothecene Mycotoxins in Wheat via De-Epoxidation under Aerobic and Anaerobic Conditions. Toxins. 2020; 12(6):363. https://doi.org/10.3390/toxins12060363
Chicago/Turabian StyleHe, Wei-Jie, Meng-Meng Shi, Peng Yang, Tao Huang, Qing-Song Yuan, Shu-Yuan Yi, Ai-Bo Wu, He-Ping Li, Chun-Bao Gao, Jing-Bo Zhang, and et al. 2020. "Novel Soil Bacterium Strain Desulfitobacterium sp. PGC-3-9 Detoxifies Trichothecene Mycotoxins in Wheat via De-Epoxidation under Aerobic and Anaerobic Conditions" Toxins 12, no. 6: 363. https://doi.org/10.3390/toxins12060363
APA StyleHe, W. -J., Shi, M. -M., Yang, P., Huang, T., Yuan, Q. -S., Yi, S. -Y., Wu, A. -B., Li, H. -P., Gao, C. -B., Zhang, J. -B., & Liao, Y. -C. (2020). Novel Soil Bacterium Strain Desulfitobacterium sp. PGC-3-9 Detoxifies Trichothecene Mycotoxins in Wheat via De-Epoxidation under Aerobic and Anaerobic Conditions. Toxins, 12(6), 363. https://doi.org/10.3390/toxins12060363