Occupational Exposure to Mycotoxins—Different Sampling Strategies Telling a Common Story Regarding Occupational Studies Performed in Portugal (2012–2020)
Abstract
:1. Exposure to Mycotoxins in Occupational Environments
2. Occupational Exposure Assessment—Approach to Follow
3. Overview of Studies Developed in Portugal (2012–2020)
4. Recommendations for Future Studies and Directions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Burg, W.A.; Shotwell, O.L.; Saltzman, B.E. Measurements of airborne aflatoxins during the handling of contaminated corn. Am. Ind. Hyg. Assoc. J. 1981, 42, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Fischer, G.; Müller, T.; Ostrowski, R.; Dott, W. Mycotoxins of Aspergilius fumigatus in pure culture and in native bioaerosols from compost facilities. Chemosphere 1999, 38, 1745–1755. [Google Scholar] [CrossRef]
- Skaug, M.A.; Eduard, W.; Stormer, F.C. Ochratoxin A in airborne dust and fungal conidia. Mycopathologica 2000, 151, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Nordby, K.C.; Halstensen, A.S.; Elen, O.; Clasen, P.-E.; Langseth, W.; Kristensen, P.; Eduard, W. Trichothecene mycotoxins and their determinants in settled dust related to grain production. Ann. Agric. Environm. Med. 2004, 11, 75–83. [Google Scholar]
- Wanga, Z.; Chai, T.; Lu, G.; Quan, C.; Duan, H.; Yao, M.; Zucker, B.-A.; Schlenker, G. Simultaneous detection of airborne Aflatoxin, Ochratoxin and Zearalenone in a poultry house by immunoaffinity clean-up and high-performance liquid chromatography. Environ. Res. 2008, 107, 139–144. [Google Scholar] [CrossRef]
- Lanier, C.; Richard, E.; Heutte, N.; Picquet, R.; Bouchart, V.; Garon, D. Airborne molds and mycotoxins associated with handling of corn silage and oilseed cakes in agricultural environment. Atmos. Environ. 2010, 44, 1980–1986. [Google Scholar] [CrossRef]
- Mastanjević, K.; Lukinac, J.; Jukić, M.; Šarkanj, B.; Krstanović, V.; Mastanjević, K. Multi-(myco)toxins in Malting and Brewing By-Products. Toxins 2019, 11, 30. [Google Scholar] [CrossRef] [Green Version]
- Mastanjević, K.; Šarkanj, B.; Krska, R.; Sulyok, M.; Warth, B.; Mastanjević, K.; Šantek, B.; Krstanović, V. From malt to wheat beer: A comprehensive multi-toxin screening, transfer assessment and its influence on basic fermentation parameters. Food Chem. 2018, 254, 115–121. [Google Scholar] [CrossRef]
- Viegas, S.; Veiga, L.; Malta-Vacas, J.; Sabino, R.; Figueiredo, P.; Almeida, A.; Viegas, C.; Carolino, E. Occupational exposure to aflatoxin (afb1) in poultry production. J. Toxicol. Environ. Health Part A 2012, 75, 1330–1340. [Google Scholar] [CrossRef] [Green Version]
- Viegas, S.; Veiga, L.; Figueiredo, P.; Almeida, A.; Carolino, E.; Sabino, R.; Veríssimo, C.; Viegas, C. Occupational exposure to aflatoxin B1 in swine production and possible contamination sources. J. Toxicol. Environ. Health Part A 2013, 76, 944–951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viegas, S.; Veiga, L.; Almeida, A.; dos Santos, M.; Carolino, E.; Viegas, C. Occupational Exposure to Aflatoxin B1 in a Portuguese Poultry Slaughterhouse. Ann. Occup. Hyg. 2015, 60, 176–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viegas, S.; Assunção, R.; Nunes, C.; Osteresch, B.; Twaruzek, M.; Kosicki, R.; Grajewski, J.; Martins, C.; Alvito, P.; Almeida, A.; et al. Exposure Assessment to Mycotoxins in a Portuguese Fresh Bread Dough Company by Using a Multi-Biomarker Approach. Toxins 2018, 10, 342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viegas, S.; Assunção, R.; Martins, C.; Nunes, C.; Osteresch, B.; Twarużek, M.; Kosicki, R.; Grajewski, J.; Ribeiro, E.; Viegas, C. Occupational exposure to mycotoxins in swine production: Environmental and biological monitoring approaches for exposure assessment. Toxins 2019, 11, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viegas, S.; Assunção, R.; Twaruźek, M.; Kosicki, R.; Grajewski, J.; Viegas, C. Mycotoxins feed contamination in a dairy farm—Potential implications for milk contamination and workers’ exposure in a One Health approach. J. Sci. Food Agric. 2019. [Google Scholar] [CrossRef] [PubMed]
- Selim, M.; Juchems, A.M.; Popendorf, W. Assessing Airborne Aflatoxin B1 during On-Farm Grain Handling Activities. Am. Ind. Hyg. Assoc. J. 1998, 59, 252–256. [Google Scholar] [CrossRef] [PubMed]
- Oluwafemi, E.; Odebiyi, T.; Kolapo, A. Occupational aflatoxin exposure among feed mill workers in Nigeria. World Mycotoxin J. 2012, 5, 385–389. [Google Scholar] [CrossRef]
- Mayer, S.; Vishwanath, V.; Sulyok, M. Airborne Workplace Exposure to Microbial Metabolites in Waste Sorting Plants; Johanning, E., Morrey, P.R., Auger, P., Eds.; Bioaerosols. Fungal Research Group Foundation Inc.: New York, NY, USA, 2012. [Google Scholar]
- Straumfors, A.; Uhlig, S.; Eriksen, G.S.; Heldal, K.K.; Eduard, W.; Krska, R.; Sulyok, M. Mycotoxins and other fungal metabolites in grain dust from Norwegian grain elevators and compound feed mills. World Mycotoxin J. 2014, 8, 361–373. [Google Scholar] [CrossRef]
- Malik, A.; Ali, S.; Shahid, M.; Bhargava, R. Occupational exposure to Aspergillus and aflatoxins among food-grain workers in India. Int. J. Occup. Environ. Health 2014, 20, 189–193. [Google Scholar] [CrossRef] [Green Version]
- Viegas, S.; Viegas, C.; Oppliger, O. Occupational Exposure to Mycotoxins: Current Knowledge and Prospects. Ann. Work Expo. Health 2018, 62, 923–941. [Google Scholar] [CrossRef]
- Assunção, R.; Silva, M.J.; Alvito, P. Challenges in risk assessment of multiple mycotoxins in food. World Mycotoxin J. 2016, 9, 791–811. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-C.; Chuang Kuen, C.-L.; Wu, Y.; Chan, C.-C. Sampling Strategies for Occupational Exposure Assessment under Generalized Linear Model. Ann. Occup. Hyg. 2009, 53, 509–521. [Google Scholar] [PubMed] [Green Version]
- Ramachandran, G. Toward Better Exposure Assessment Strategies—The New NIOSH Initiative. Ann. Occup. Hyg. 2008, 52, 297–301. [Google Scholar] [PubMed] [Green Version]
- Viegas, S.; Almeida-Silva, M.; Faria, T.; Dos Santos, M.; Viegas, C. Occupational exposure assessment to particles with task-based approach. In Occupational Safety and Hygiene IV; Arezes, P.M., Perestrelo, G., Miguel, S., Melo, R.B., Eds.; Taylor & Francis: London, UK, 2016; pp. 1–6. [Google Scholar]
- Martins, C.; Vidal, A.; De Boevre, M.; De Saeger, S.; Nunes, C.; Torres, D.; Goios, A.; Lopes, C.; Assuncao, R.; Alvito, P. Exposure assessment of Portuguese population to multiple mycotoxins: The human biomonitoring approach. Int. J. Hyg. Environ. Health 2019, 222, 913–925. [Google Scholar] [CrossRef] [PubMed]
- Aylward, L.L.; Sean, M.H.; Smolders, R.; Koch, H.M.; Cocker, J.; Jones, K.; Warren, N.; Levy, L.; Bevan, R. Sources of Variability in Biomarker Concentrations. J. Toxicol. Environ. Health Part B 2014, 17, 45–61. [Google Scholar] [CrossRef] [PubMed]
- Calafat, A.M. Contemporary Issues in Exposure Assessment Using Biomonitoring. Curr. Epidemiol. Rep. 2016, 3, 145–153. [Google Scholar] [CrossRef] [Green Version]
- Mengelers, M.; Zeilmaker, M.; Vidal, A.; De Boevre, M.; De Saeger, S.; Hoogenveen, R. Biomonitoring of Deoxynivalenol and Deoxynivalenol-3-glucoside in Human Volunteers: Renal Excretion Profiles. Toxins 2019, 11, 466. [Google Scholar] [CrossRef] [Green Version]
- Viegas, C.; Pacífico, C.; Faria, T.; Cebola de Oliveira, A.; Aranha Caetano, L.; Carolino, E.; Quintal Gomes, A.; Viegas, S. Fungal contamination in green coffee beans. J. Toxicol. Environ. Health A 2017, 26, 1–10. [Google Scholar]
- Viegas, C.; Carolino, E.; Sabino, R.; Viegas, S.; Veríssimo, C. Fungal Contamination in Swine: A Potential Occupational Health Threat. J. Toxicol. Environ. Health Part A. 2013, 76, 272–280. [Google Scholar] [CrossRef]
- Varga, J.; Baranyi, N.; Chandrasekaran, M.; Vágvölgyi, C.; Kocsubé, S. Mycotoxin producers in the Aspergillus genus: An update. Acta Biol. Szeged. 2015, 59, 151–167. [Google Scholar]
- Viegas, C.; Faria, T.; dos Santos, M.; Carolino, E.; Quintal Gomes, A.; Sabino, R.; Viegas, S. Fungal burden in waste industry: An occupational risk to be solved. Environ. Monit. Assess 2015, 187, 199. [Google Scholar] [CrossRef]
- Viegas, S.; Veiga, L.; Figueiredo, P.; Almeida, A.; Carolino, E.; Viegas, C. Assessment of Workers’ Exposure to Aflatoxin B1 in a Portuguese Waste Industry. Ann. Occup. Hyg. 2014, 59, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Viegas, C.; Faria, T.; Cebola de Oliveira, A.; Aranha Caetano, L.; Carolino, E.; Quintal-Gomes, A.; Twarużek, M.; Kosicki, R.; Soszczyńska, E.; Viegas, S. A new approach to assess fungal contamination and mycotoxins occupational exposure in forklifts drivers from waste sorting. Mycotoxin Res. 2017, 33, 285–295. [Google Scholar] [CrossRef] [PubMed]
- Viegas, C.; Caetano, L.A.; Cox, J.; Korkalainen, M.; Haines, S.R.; Dannemiller, K.C.; Viegas, S.; Reponen, T. The effects of waste sorting in environmental microbiome, THP-1 cell viability and inflammatory responses. Environ. Res. 2020, 185, 109450. [Google Scholar] [CrossRef] [PubMed]
- Viegas, C.; Monteiro, A.; dos Santos, M.; Faria, T.; Aranha Caetano, L.; Carolino, E.; Quintal-Gomes, A.; Marchand, G.; Lacombe, N.; Viegas, S. Filters from taxis air conditioning system: A tool to characterize driver’s occupational exposure to bioburden? Environ. Res. 2018, 164, 522–529. [Google Scholar] [CrossRef]
- Capacci, E.; Rondelli, V. Tractor cab to protect the operator from hazardous sub-stances in spray application. In Proceedings of the International Conference of Agricultural Engineering, Zurich, Switzerland, 6–10 July 2014. [Google Scholar]
- Johanning, E.; Gareis, M.; Nielsen, K.; Dietrich, R.; Märtlbauer, E. Airborne mycotoxin sampling and screening analysis. In Proceedings of the Indoor Air 2002, the 9th International Conference on Indoor Air Quality and Climate, Santa Cruz, CA, USA, 30 June–5 July 2002. [Google Scholar]
- Kildesø, J.; Wurtz, H.; Nielsen, K.F.; Wilkins, C.K.; Gravesen, S.; Nielsen, P.A.; Thranev, U.; Schneider, T. The release of fungal spores from water damaged building materials. In Proceedings of the Healthy Buildings 2000, Espoo, Finland, 6–10 August 2000; Seppanen, O., Sateri, J., Eds.; SYI Indoor Air Information Oy: Helsinki, Finland, 2000; pp. 313–318. [Google Scholar]
- Pasanen, A.L.; Nikulin, M.; Tuomainen, M.; Parikka, P.; Hintikka, E.L. Laboratory experiments on membrane filter sampling of airborne mycotoxins produced by Stachybotrys atra Corda. Atmos. Environ. 1993, 27, 9–13. [Google Scholar] [CrossRef]
- Viegas, C.; Dias, M.; Almeida, B.; Aranha Caetano, L.; Carolino, E.; Quintal Gomes, A.; Twaruzek, M.; Kosicki, R.; Grajewski, J.; Marchand, G.; et al. Are workers from waste sorting industry really protected by wearing Filtering Respiratory Protective Devices? The gap between the myth and reality. Waste Manag. 2020, 102, 856–867. [Google Scholar] [CrossRef]
- Viegas, C.; Twarużek, M.; Dias, M.; Almeida, B.; Carolino, E.; Kosicki, R.; Soszczyńska, E.; Grajewski, J.; Aranha Caetano, L.; Viegas, S. Assessment of the microbial contamination of mechanical protection gloves used on waste sorting industry: A contribution for the risk characterization. Environ. Res. 2020, 189, 109881. [Google Scholar] [CrossRef]
- Viegas, C.; Almeida, B.; Monteiro, A.; Aranha Caetano, L.; Carolino, E.; Quintal-Gomes, A.; Twarużek, M.; Kosicki, R.; Marchand, G.; Viegas, S. Bioburden in healthcare centers: Is the compliance with Portuguese legislation enough to prevent and control infection? Build. Environ. 2019, 160, 106226. [Google Scholar] [CrossRef]
- Heutte, N.; Andre, V.; Dubos Arvis, C.; Bouchart, V.; Lemarie, F.; Legendre, P.; Votier, E.; Louis, M.-Y.; Madelaine, S.; Séguin, V.; et al. Assessment of multi-contaminant exposure in a cancer treatment center: A 2-year monitoring of molds, mycotoxins, endotoxins, and glucans in bioaerosols. Environ. Monit. Assess 2017, 189, 31. [Google Scholar] [CrossRef]
- Viegas, C.; Almeida, B.; Monteiro, A.; Paciência, I.; Cavaleiro, J.R.; Carolino, E.; Quintal-Gomes, A.; Twarużek, M.; Kosicki, R.; Marchand, G.; et al. Settled dust assessment in clinical environment: Useful for the evaluation of a wider bioburden spectrum. Int. J. Environ. Health Res. 2019, 26, 1–19. [Google Scholar] [CrossRef]
- Bergamini, E.; Catellani, D.; Dall’asta, C.; Galaverna, G.; Dossena, A.; Marchelli, R.; Suman, M. Fate of fusarium mycotoxins in the cereal product supply chain: The deoxynivalenol (DON) case within industrial bread-making technology. Food Addit. Contam. Part A 2010, 27, 677–687. [Google Scholar] [CrossRef] [PubMed]
- Belluco, B.; de Camargo, A.C.; da Gloria, E.M.; dos Santos Dias, C.T.; Button, D.C.; Calori-Domingues, M.A. Deoxynivalenol in wheat milling fractions: A critical evaluation regarding ongoing and new legislation limits. J. Cereal Sci. 2017, 77, 284–290. [Google Scholar] [CrossRef]
- Schaarschmidt, S.; Fauhl-Hassek, C. The Fate of Mycotoxins during the Processing of Wheat for Human Consumption. Compr. Rev. Food Sci. Food Saf. 2018, 17, 556–593. [Google Scholar] [CrossRef] [Green Version]
- Viegas, C.; Faria, T.; Aranha Caetano, L.; Carolino, E.; Quintal-Gomes, A.; Twaruzek, M.; Kosicki, R.; Viegas, S. Characterization of Occupational Exposure To Fungal Burden in Portuguese Bakeries. Microorganisms 2019, 7, 234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mo, X.; Lai, H.; Yang, Y.; Xiao, J.; He, K.; Liu, C.; Chen, J.; Lin, Y. How does airway exposure of aflatoxin B1 affect serum albumin adduct concentrations? Evidence based on epidemiological study and animal experimentation. J. Toxicol. Sci. 2014, 39, 645–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, H.; Mo, X.; Yang, Y.; He, K.; Xiao, J.; Liu, C.; Chen, J.; Lin, Y. Association between aflatoxin B1 occupational airway exposure and risk of hepatocellular carcinoma: A case-control study. Tumor Biol. 2014, 35, 9577–9584. [Google Scholar] [CrossRef] [Green Version]
- Viegas, C.; Faria, T.; Monteiro, A.; Aranha Caetano, L.; Carolino, E.; Quintal Gomes, A.; Viegas, S. A Novel Multi-Approach Protocol for the Characterization of Occupational Exposure to Organic Dust—Swine Production Case Study. Toxics 2018, 6, 5. [Google Scholar] [CrossRef] [Green Version]
- Leppänen, H.K.; Täubel, M.; Jayaprakash, B.; Vepsäläinen, A.; Pasanen, P.; Hyvärinen, A. Quantitative assessment of microbes from samples of indoor air and dust. J. Expo. Sci. Environ. Epidemiol. 2018, 28, 231–241. [Google Scholar] [CrossRef]
- Park, J.-H.; Sulyok, M.; Lemons, A.R.; Green, B.J.; Cox-Ganser, J.M. Characterization of fungi in office dust: Comparing results of microbial secondary metabolites, fungal internal transcribed spacer region sequencing, viable culture and other microbial indices. Indoor Air 2018, 28, 708–720. [Google Scholar] [CrossRef]
- Halstensen, A.S.; Nordby, K.-C.; Eduard, W.; Klemsdal, S.S. Real-time PCR detection of toxigenic Fusarium in airborne and settled grain dust and associations with trichothecene mycotoxins. J. Environ. Monit. 2006, 8, 1235. [Google Scholar] [CrossRef]
- Tangni, E.K.; Pussemier, L. Ergosterol and mycotoxins in grain dusts from fourteen Belgian cereal storages: A preliminary screening survey. J. Sci. Food Agric. 2007, 87, 1263–1270. [Google Scholar] [CrossRef]
- Heyndrickx, E.; Sioen, I.; Huybrechts, B.; Callebaut, A.; De Henauw, S.; De Saeger, S. Human biomonitoring of multiple mycotoxins in the Belgian population: Results of the BIOMYCO study. Environ. Int. 2015, 84, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Sarkanj, B.; Ezekiel, C.N.; Turner, P.C.; Abia, W.A.; Rychlik, M.; Krska, R.; Sulyuk, M.; Warth, B. Ultra-sensitive, stable isotope assisted quantification of multiple urinary mycotoxin exposure biomarkers. Anal. Chim. Acta 2018, 1019, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhou, S.; Gong, Y.Y.; Zhao, Y.; Wu, Y. Human dietary and internal exposure to zearalenone based on a 24-hour duplicate diet and following morning urine study. Environ. Int. 2020, 142, 105852. [Google Scholar] [CrossRef]
- Föllmann, W.; Ali, N.; Blaszkewicz, M.; Degen, G.H. Biomonitoring of Mycotoxins in Urine: Pilot Study in Mill Workers. J. Toxicol. Environ. Health Part A 2016, 79, 1015–1025. [Google Scholar] [CrossRef]
- Viegas, S.; Martins, C. The Usefulness of Human Biomonitoring in the Case of Mycotoxins Exposure Assessment; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Debegnach, F.; Brera, C.; Mazzilli, G.; Sonego, E.; Buiarelli, F.; Ferri, F.; Rossi, P.G.; Collini, G.; De Santis, B. Optimization and validation of a LC-HRMS method for aflatoxins determination in urine samples. Mycotoxin Res. 2020, 36, 257–266. [Google Scholar] [CrossRef]
- Degen, G.H. The challenge to assess workplace related risks from mycotoxin exposure. Mycotoxin Res. 2008, 24, i–ii. [Google Scholar] [CrossRef]
- Täubel, M.; Rintala, H.; Pitkäranta, M.; Paulin, L.; Laitinen, S.; Pekkanen, J.; Hyvärinen, A.; Nevalainen, A. The occupant as a source of house dust bacteria. J. Allergy Clin. Immunol. 2009, 124, 834–840. [Google Scholar] [CrossRef]
- Lax, S.; Smith, D.P.; Hampton-Marcell, J.; Owens, S.M.; Handley, K.M.; Scott, N.M.; Gibbons, S.M.; Larsen, P.; Shogan, B.D.; Weiss, S.; et al. Longitudinal analysis of microbial interaction between humans and the indoor environment. Science 2014, 345, 1048–1052. [Google Scholar] [CrossRef] [Green Version]
- Meadow, J.F.; Altrichter, A.E.; Kembel, S.W.; Kline, J.; Mhuireach, G.; Moriyama, M.; Northcutt, D.; O’Connor, T.K.; Womack, A.M.; Brown, G.Z.; et al. Indoor airborne bacterial communities are influenced by ventilation, occupancy, and outdoor air source. Indoor Air 2014, 24, 41–48. [Google Scholar] [CrossRef]
- Emerson, J.B.; Keady, P.B.; Brewer, T.E.; Clements, N.; Morgan, E.E.; Awerbuch, J.; Miller, S.L.; Fierer, N. Impacts of flood damage on airborne bacteria and fungi in homes after the 2013 Colorado front range flood. Environ. Sci. Technol. 2015, 49, 2675–2684. [Google Scholar] [CrossRef] [PubMed]
- Barberán, A.; Dunn, R.R.; Reich, B.J.; Pacifici, K.; Laber, E.B.; Menninger, H.L.; Morton, J.M.; Henley, J.B.; Leff, J.W.; Miller, S.L.; et al. The ecology of microscopic life in household dust. Proc. R. Soc. B Biol. Sci. 2015. [Google Scholar] [CrossRef] [PubMed]
- Assunção, R.; Martins, C.; Viegas, S.; Viegas, C.; Jakobsen, L.S.; Pires, S.; Alvito, P. Climate change and the health impact of aflatoxins exposure in Portugal–an overview. Food Addit. Contam. Part A 2018, 35, 1610–1621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Assunção, R.; Vettorazzi, A.; González-Peñas, E.; Martins, C. Climate Change and Aflatoxins Contamination in the Iberian Peninsula. In Reference Module in Life Sciences; Elsevier: Aalborg, Denmark, 2020. [Google Scholar]
- Medina, A.; Akbar, A.; Baazeem, A.; Rodriguez, A.; Magan, N. Climate change, food security and mycotoxins: Do we know enough? Fungal Biol. Rev. 2017, 31, 143–154. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Circular Economy Package: Q&A; European Commission: Brussels, Belgium, 2015. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viegas, S.; Viegas, C.; Martins, C.; Assunção, R. Occupational Exposure to Mycotoxins—Different Sampling Strategies Telling a Common Story Regarding Occupational Studies Performed in Portugal (2012–2020). Toxins 2020, 12, 513. https://doi.org/10.3390/toxins12080513
Viegas S, Viegas C, Martins C, Assunção R. Occupational Exposure to Mycotoxins—Different Sampling Strategies Telling a Common Story Regarding Occupational Studies Performed in Portugal (2012–2020). Toxins. 2020; 12(8):513. https://doi.org/10.3390/toxins12080513
Chicago/Turabian StyleViegas, Susana, Carla Viegas, Carla Martins, and Ricardo Assunção. 2020. "Occupational Exposure to Mycotoxins—Different Sampling Strategies Telling a Common Story Regarding Occupational Studies Performed in Portugal (2012–2020)" Toxins 12, no. 8: 513. https://doi.org/10.3390/toxins12080513
APA StyleViegas, S., Viegas, C., Martins, C., & Assunção, R. (2020). Occupational Exposure to Mycotoxins—Different Sampling Strategies Telling a Common Story Regarding Occupational Studies Performed in Portugal (2012–2020). Toxins, 12(8), 513. https://doi.org/10.3390/toxins12080513