Determination of Cytisine and N-Methylcytisine from Selected Plant Extracts by High-Performance Liquid Chromatography and Comparison of Their Cytotoxic Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of Chromatographic System
2.2. Determination of Cytisine and N-methylcytisine in Plant Extracts
2.3. Cytotoxic Activity
3. Conclusions
4. Materials and Methods
4.1. Chemicals and Plant Material
4.2. Extraction Procedures
4.2.1. Procedure I
4.2.2. Procedure II
4.3. HPLC-DAD
4.4. LC-MS/MS
4.5. Investigation of Cytotoxic Activity
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tutka, P.; Vinnikov, D.; Courtney, R.; Benowitz, N. Cytisine for nicotine addiction treatment: A review of pharmacology, therapeutics and an update of clinical trial evidence for smoking cessation. Addiction 2019, 114, 1951–1969. [Google Scholar] [CrossRef] [PubMed]
- Walker, N.; Bullen, C.; Barnes, J.; McRobbie, H.; Tutka, P.; Raw, M.; Etter, J.F.; Siddiqi, K.; Courtney, R.J.; Castaldelli-Maia, J.M.; et al. Getting cytisine licensed for use world-wide: A call to action. Addiction 2016, 111, 1895–1898. [Google Scholar] [CrossRef]
- Rollema, H.; Shrikhande, A.; Ward, K.M.; Tingley, F.D.; Coe, J.W.; O’Neill, B.T.; Tseng, E.; Wang, E.Q.; Mather, R.J.; Hurst, R.S.; et al. Pre-clinical properties of the α4β2 nicotinic acetylcholine receptor partial agonists varenicline, cytisine and dianicline translate to clinical efficacy for nicotine dependence. Br. J. Pharmacol. 2010, 160, 334–345. [Google Scholar] [CrossRef]
- Perez, E.G.; Mendez-Galvez, C.; Cassels, B.K. Cytisine: A natural product lead for the development of drugs acting at nicotinic acetylcholine receptors. Nat. Prod. Rep. 2012, 29, 555–567. [Google Scholar] [CrossRef] [PubMed]
- García-García, J.D.; Segura-Ceniceros, E.P.; Zaynullin, R.A.; Kunakova, R.V.; Vafina, G.F.; Tsypysheva, I.P.; Vargas-Segura, A.I.; Ilyina, A. Three (—)-cytisine derivatives and 1-hydroxyquinopimaric acid as acetylcholinesterase inhibitors. Toxicol. Rep. 2019, 6, 862–868. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.F.; Zhang, H.K.; Caldarone, B.J.; Eaton, J.B.; Lukas, R.J.; Kozikowski, A.P. Recent developments in novel antidepressants targeting α4β2-nicotinic acetylcholine receptors. J. Med. Chem. 2014, 57, 8204–8223. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Wang, X.; Chen, Z.F.; Jiang, B.; Shang, D.Y.; Sun, Y.X.; Yang, J.H.; Zhang, L.F.; Ji, Y.B. Cytisine induces apoptosis of HepG2 cells. Mol. Med. Rep. 2017, 16, 3363–3370. [Google Scholar] [CrossRef]
- Xu, W.T.; Li, T.Z.; Li, S.M.; Wang, C.; Wang, H.; Luo, Y.H.; Piao, X.J.; Wang, J.R.; Zhang, Y.; Zhang, T.; et al. Cytisine exerts anti-tumour effects on lung cancer cells by modulating reactive oxygen species-mediated signalling pathways. Artif. Cells Nanomed. Biotechnol. 2020, 48, 84–95. [Google Scholar] [CrossRef] [Green Version]
- Przybył, A.K.; Maj, E.; Wietrzyk, J.; Kubicki, M. Spectroscopic, structural and anticancer activity studies of (–)-cytisine halogenated N-benzyl derivatives. J. Mol. Struct. 2019, 1176, 871–880. [Google Scholar] [CrossRef]
- Tsypysheva, I.P.; Kovalskaya, A.V.; Petrova, P.R.; Lobov, A.N.; Erastov, A.S.; Zileeva, Z.R.; Vakhitov, V.А.; Vakhitova, Y.V. Synthesis of Conjugates of (–)-Cytisine Derivatives with Ferrocene-1-carbaldehyde and their Cytotoxicity against HEK293, Jurkat, A549, MCF-7 and SH-SY5Y cells. Tetrahedron 2020, 76, 130902. [Google Scholar] [CrossRef]
- Czerniecka-Kubicka, A.; Tutka, P.; Pyda, M.; Walczak, M.; Uram, Ł.; Misiorek, M.; Chmiel, E.; Wołowiec, S. Stepwise Glucoheptoamidation of Poly (Amidoamine) Dendrimer G3 to Tune Physicochemical Properties of the Potential Drug Carrier: In Vitro Tests for Cytisine Conjugates. Pharmaceutics 2020, 12, 473. [Google Scholar] [CrossRef]
- Tutka, P.; Zatoński, W. Cytisine for the treatment of nicotine addiction: From a molecule to therapeutic efficacy. Pharmacol Rep. 2006, 58, 777–798. [Google Scholar]
- McDougal, O.M.; Heenan, P.B.; Jaksons, P.; Sansom, C.E.; Smallfield, B.M.; Perry, N.B.; van Klink, J.W. Alkaloid variation in New Zealand kōwhai, Sophora species. Phytochemistry 2015, 118, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.W.; Ching, C.K.; Chan, A.Y.W.; Mak, T.W.L. Simultaneous detection of 22 toxic plant alkaloids (aconitum alkaloids, solanaceous tropane alkaloids, sophora alkaloids, strychnos alkaloids and colchicine) in human urine and herbal samples using liquid chromatography–tandem mass spectrometry. J. Chromatogr. B 2013, 942–943, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lu, J.; Sun, W.; Gu, Y.; Zhang, C.; Jin, R.; Li, L.; Zhang, Z.; Tian, X. Hepatotoxicity induced by radix Sophorae tonkinensis in mice and increased serum cholinesterase as a potential supplemental biomarker for liver injury. Exp. Toxicol. Pathol. 2017, 69, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Pietsch, J.; Gunther, J.; Henle, T.; Dreßler, J. Simultaneous determination of thirteen plant alkaloids in a human specimen by SPE and HPLC. J. Sep. Sci. 2008, 31, 2410–2416. [Google Scholar] [CrossRef]
- Jeong, S.H.; Newcombe, D.; Sheridan, J.; Tingle, M. Pharmacokinetics of cytisine, an α4β2 nicotinic receptor partial agonist, in healthy smokers following a single dose. Drug Test. Anal. 2015, 7, 475–482. [Google Scholar] [CrossRef]
- Musshoff, F.; Madea, B. Fatal cytisine intoxication and analysis of biological samples with LC–MS/MS. Forensic Sci. Int. 2009, 186, e1–e4. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, J.; Zhang, J.; Wei, S.; Ji, H.; Wu, X.; Ma, W.; Chen, J. Different processing methods change the oral toxicity induced by Sophora alopecuroides seeds and the contents of five main toxic alkaloids from the ethanol extracts determined by a validated UHPLC–MS/MS assay. Rev. Bras. Farmacog. 2018, 28, 481–488. [Google Scholar] [CrossRef]
- Carlier, J.; Guitton, J.; Romeu, L.; Bévalot, F.; Boyer, B.; Fanton, L.; Gaillard, Y. Screening approach by ultra-high performance liquid chromatography–tandem mass spectrometry for the blood quantification of thirty-four toxic principles of plant origin. Application to forensic toxicology. J. Chromatogr. B. 2015, 975, 65–76. [Google Scholar] [CrossRef]
- Wang, H.; Guo, S.; Qian, D.; Qian, Y.; Duan, J.A. Comparative analysis of quinolizidine alkaloids from different parts of Sophora alopecuroides seeds by UPLC–MS/MS. J. Pharm. Biomed. Anal. 2012, 67–68, 16–21. [Google Scholar] [CrossRef]
- Wang, H.; Tong, Y.; Li, W.; Zhang, X.; Gao, X.; Yong, J.; Zhao, J.; Koike, K. Enhanced ultrasound-assisted enzymatic hydrolysis extraction of quinolizidine alkaloids from Sophora alopecuroides L. seeds. J. Nat. Med. 2018, 72, 424–432. [Google Scholar] [CrossRef]
- Wróblewski, K.; Petruczynik, A.; Tuzimski, T.; Przygodzka, D.; Buszewicz, G.; Kołodziejczyk, P.; Tutka, P. Comparison of Various Chromatographic Systems for Analysis of Cytisine in Human Serum, Saliva and Pharmaceutical Formulation by HPLC with Diode Array, Fluorescence or Mass Spectrometry Detection. Molecules 2019, 24, 2580. [Google Scholar] [CrossRef] [Green Version]
- Berkov, S.; Bastida, J.; Sidjimova, B.; Viladomat, F.; Codina, C. Phytochemical differentiation of Galanthus nivalis and Galanthus elwesii (Amaryllidaceae): A case study. Biochem. Systemat. Ecol. 2008, 36, 638–645. [Google Scholar] [CrossRef]
Column | Mobile Phase | Cytisine | N-methylcytisine | ||||
---|---|---|---|---|---|---|---|
tR | As | N/m | tR | As | N/m | ||
Hydro-RP | 5% MeCN + 20% acetate buffer at pH 3.5 H2O + 0.025 ML−1 DEA | 1.69 | 5.87 | 9860 | 4.69 | 3.78 | 16,970 |
5% MeCN + H2O + 0.025 ML−1 NaBF4 | 10.10 | 0.82 | 45,000 | 10.36 | 0.84 | 39,040 | |
5% MeCN + H2O + 0.025 ML−1 NaPF6 | 2.67 | * | 3.05 | * | |||
5% MeCN + H2O + 0.025 ML−1 IL BF4 | 3.41 | * | 3.38 | * | |||
5% MeCN + H2O + 0.025 ML−1 IL PF6 | 4.36 | * | 11.23 | 0.66 | 3500 | ||
Phenyl-Hexyl | 5% MeOH + 20% acetate buffer at pH 3.5 H2O + 0.025 ML−1 DEA | 2.64 | 0.96 | 14,120 | 2.75 | 1.10 | 20,620 |
5% MeCN + H2O + 0.025 ML−1 NaBF4 | 3.44 | * | 3.44 | 0.65 | 18,090 | ||
5% MeCN + H2O + 0.025 ML−1 NaPF6 | 9.56 | * | 11.14 | * | |||
5% MeCN + H2O + 0.025 ML−1 IL BF4 | 2.53 | * | 2.72 | 1.48 | 1720 | ||
5% MeCN + H2O + 0.025 ML−1 IL PF6 | 3.75 | * | 5.83 | * | |||
Polar RP | 5% MeCN + 20% acetate buffer at pH 3.5 H2O + 0.025 ML−1 DEA | 3.49 | 0.63 | 15,430 | 4.32 | 2.02 | 20,130 |
5% MeCN + H2O + 0.025ML−1 NaBF4 | 4.85 | * | 5.46 | * | |||
5% MeCN + H2O + 0.025 ML−1 NaPF6 | 9.93 | 0.73 | 27,270 | 12.46 | 0.79 | 23,300 | |
5% MeCN + H2O + 0.025 ML−1 IL BF4 | 5.99 | * | 6.91 | * | |||
5% MeCN + H2O + 0.025 ML−1 IL PF6 | 4.88 | 1.16 | 9960 | 9.22 | 1.18 | 9070 | |
HILIC A | 90% MeCN + formic buffer at pH 4.0 | 4.08 | 1.09 | 39,570 | 3.03 | 1.39 | 37,620 |
HILIC B | 90% MeCN + formic buffer at pH 4.0 | 2.58 | * | 2.09 | * | ||
HILIC N | 90% MeCN + formic buffer at pH 4.0 | 8.00 | 1.10 | 4920 | 3.31 | 1.48 | 20,600 |
SCX | 25% MeCN + formic buffer at pH 4.0 | 12.43 | 1.15 | 55,000 | 17.58 | 1.38 | 46,200 |
Plant Material | Content of Cytisine (mg mL−1) | Content of N-Methylcytisine (mg mL−1) | ||
---|---|---|---|---|
Extraction Method I | Extraction Method II | Extraction Method I | Extraction Method II | |
Laburnum anagyroides—leaves | 0.426 | 0.679 | 0.042 | 0.044 |
Laburnum alpinum—leaves | 0.487 | 1.543 | 0.299 | 0.184 |
Laburnum watereri—leaves | 0.166 | 0.679 | 0.113 | 0.071 |
Laburnum anagyroides L. quercifolium—leaves | 0.178 | 0.436 | 0.070 | 0.006 |
Laburnum anagyroides—cortex | 0.221 | 0.228 | 0.057 | − |
Genista germanica L.—leaves | 0.109 | 0.464 | 0.035 | − |
Genista tinctoria—herb | 0.062 | 0.058 | 0.400 | 0.189 |
Laburnum anagyroides—seeds | − | 0.993 | − | 0.009 |
Laburnum watereri—seeds | − | 1.543 | − | 0.018 |
Plant Material | Mean % of Control. FaDu, 1 × 105, MTT * 24 h | Mean % of Control, MCF-7, 1 × 105, MTT 24 h | Mean % of Control, MDA-MB-231, 1 × 105, MTT 24 h | Mean % of Control, SCC-25, 1 × 105.MTT 24 h | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10 μg/mL | 25 μg/mL | 50 μg/mL | 100 μg/mL | 10 μg/mL | 25 μg/mL | 50 μg/mL | 100 μg/mL | 10 μg/mL | 25 μg/mL | 50 μg/mL | 100 μg/mL | 10 μg/mL | 25 μg/mL | 50 μg/mL | 100 μg/mL | ||
Laburnum anagyroides—leaves | 61.63 | 51.20 | 38.98 | 2.10 | 62.94 | 62.81 | 54.78 | 5.37 | 71.19 | 66.03 | 36.04 | 9.20 | 64.61 | 60.83 | 4.61 | 3.30 | |
Laburnum alpinum—leaves | 109.94 | 96.18 | 73.31 | 2.29 | 109.85 | 105.41 | 92.68 | 21.16 | 97.15 | 95.96 | 46.25 | 7.55 | 109.59 | 104.90 | 14.42 | 2.87 | |
Laburnum watereri—leaves | 112.0 | 102.5 | 93.10 | 8.13 | 114.76 | 109.04 | 100.05 | 22.41 | 105.11 | 95.72 | 65.49 | 31.53 | 103.51 | 99.17 | 39.67 | 1.37 | |
Laburnum anagyroides L. quercifolium—leaves | 79.24 | 75.95 | 67.76 | 53.67 | 94.38 | 90.91 | 81.62 | 77.62 | 84.45 | 78.92 | 69.26 | 66.19 | 91.51 | 88.31 | 75.45 | 64.27 | |
Laburnum anagyroides—cortex | 87.94 | 81.75 | 58.21 | 5.24 | 114.74 | 105.43 | 53.15 | 12.15 | 99.54 | 48.63 | 19.43 | 12.44 | 98.18 | 85.87 | 47.43 | 12.46 | |
Genista germanica L.—leaves | 102.52 | 60.2 | 2.27 | 0.16 | 117.29 | 97.76 | 1.03 | 0.93 | 101.66 | 96.76 | 2.09 | 0.18 | 114.20 | 108.94 | 6.38 | 3.59 | |
Genista tinctoria—herb | 78.84 | 50.28 | 36.32 | 1.28 | 81.06 | 49.32 | 24.58 | 9.07 | 92.01 | 66.40 | 41.11 | 17.76 | 94.23 | 93.77 | 27.46 | 4.51 | |
Laburnum anagyroides—seeds | 94.98 | 87.13 | 78.36 | 8.38 | 103.26 | 95.35 | 85.37 | 63.40 | 98.90 | 90.63 | 61.19 | 39.375 | 101.20 | 58.76 | 4.43 | 2.34 | |
Laburnum watereri—seeds | 90.62 | 70.38 | 60.67 | 18.56 | 87.14 | 83.54 | 61.75 | 35.06 | 84.14 | 79.03 | 47.74 | 26.06 | 103.22 | 25.56 | 1.20 | 0.64 | |
Etoposide | 57.73 | 42.57 | 45.79 | 36.74 | 112.14 | 117.49 | 99.00 | 86.39 | 119.18 | 102.78 | 95.59 | 79.22 | 90.02 | 80.48 | 71.87 | 70.25 |
Genistia tinctoria Herb Extract | |||||
Compound | Retention Time (min) | Formula | Molecular Ion [M + H]+ | Fragment Ions | Collision Energy (eV) |
Sparteine | 4.385 | C15H26N2 | 235.2181 | 150.1273 134.0955 100.1026 | 40 |
Isolupanine | 5.392 | C15H24N2O | 249.1971 | 219.1834 166.1215 148.1125 134.0967 110.0965 | 40 |
N-formylcytysine | 7.505 | C12H14N2O2 | 219.1499 | 160.0745 146.0696 133.0718 120.0746 108.0844 104.0486 | 40 |
Lupanine | 9.920 | C15H24N2O | 249.1965 | 231.1873 150.1278 136.1119 114.0907 | 40 |
Cytisine | 10.826 | C11H14N2O | 191.1182 | 162.0956 148.0756 133.0516 118.0641 105.0569 | 40 |
Anagyrine | 12.336 | C15H20N2O | 245.1659 | 162.0949 148.1118 134.0959 120.0825 | 40 |
N-methylcitisine | 13.543 | C12H16N2O | 205.1341 | 160.0790 146.0592 133.0533 117.0589 108.0793 104.0473 | 40 |
Laburnum anagyroides Leaf Extract | |||||
Compound | Retention Time (min) | Formula | Molecular Ion [M + H]+ | Fragment Ions | Collision Energy (eV) |
Laburnamin | 6.800 | C12H22N2O | 211.1821 | 127.1236 110.0974 | 20 |
Ammodendrin | 8.191 | C12H20N2O | 209.1665 | 150.1261 122.0939 110.0960 | 40 |
Cytisine | 12.838 | C11H14N2O | 191.1194 | 162.0922 148.0762 133.0525 120.0811 109.0530 | 40 |
Anagyrine | 14.398 | C15H20N2O | 245.1618 | 162.0898 148.1116 134.0952 122.0603 110.0595 | 40 |
N-methylcitisine | 15.455 | C12H16N2O | 205.1358 | 162.0930 146.0616 133.0532 117.0621 108.0816 | 40 |
Laburnum anagyroides L. quercifolium Leaf Extract | |||||
Compound | Retention Time (min) | Formula | Molecular Ion [M + H]+ | Fragment Ions | Collision Energy (eV) |
Laburnamin | 6.951 | C12H22N2O | 211.1821 | 127.1231 110.0974 | 20 |
Ammodendrin | 7.504 | C12H20N2O | 209.1656 | 150.1271 138.1270 122.0960 110.0970 | 40 |
Cytisine | 12.234 | C11H14N2O | 191.1184 | 162.0932 148.0756 133.0525 120.0807 106.0651 | 40 |
N-methylcitisine | 14.750 | C12H16N2O | 205.1344 | 160.0748 146.0603 133.0532 118.0786 108.0786 | 40 |
Laburnum alpinum Leaf Extract | |||||
Compound | Retention Time (min) | Formula | Molecular Ion [M + H]+ | Fragment Ions | Collision Energy (eV) |
Sparteine | 5.485 | C15H26N2 | 235.2189 | 150.1268 134.0965 100.1032 | 40 |
Ammodendrin | 6.424 | C12H20N2O | 209.1660 | 150.1279 134.0989 122.0970 105.0701 | 40 |
Lupanine | 11.372 | C15H24N2O | 249.1974 | 164.1123 150.1278 136.1120 114.0917 | 40 |
Cytisine | 12.238 | C11H14N2O | 191.1186 | 162.0902 148.0761 133.0524 120.0802 104.0509 | 40 |
Epi-Baptifolin | 14.643 | C15H20N2O2 | 261.1618 | 164.1069 114.0921 | 20 |
N-Methylcytysine | 15.751 | C12H16N2O | 205.1344 | − | − |
Aburnum watereri Leaf Extract | |||||
Compound | Retention Time (min) | Formula | Molecular Ion [M + H]+ | Fragment Ions | Collision Energy (eV) |
Ammodendrin | 6.456 | C12H20N2O | 209.1670 | 150.1269 122.0964 105.0702 | 40 |
Cytisine | 12.240 | C11H14N2O | 191.1190 | 162.0908 148.0761 133.0525 120.0808 104.0513 | 40 |
Epi-Baptifolin | 14.790 | C15H20N2O2 | 261.1617 | 164.1080 114.0921 | 20 |
N-methylcitisine | 15.561 | C12H16N2O | 205.1344 | 160.0762 146.0610 133.0527 117.0613 108.0803 | 40 |
Genista germanica Leaf Extract | |||||
Compound | Retention Time (min) | Formula | Molecular Ion [M + H]+ | Fragment Ions | Collision Energy (eV) |
Sparteine | 5.184 | C15H26N2 | 235.2184 | 150.1287 134.0969 110.0984 100.1034 | 40 |
Lupanine | 11.272 | C15H24N2O | 249.1970 | 231.1834 204.1424 150.1274 136.1116 114.0916 | 40 |
Cytisine | 12.229 | C11H14N2O | 191.1189 | 162.0917 148.0757 133.0528 120.0809 118.0652 105.0588 | 40 |
Anagyrine | 13.738 | C15H20N2O | 245.1659 | 162.0910 148.1112 134.0938 122.0585 110.0595 | 40 |
Epi-Baptifolin | 14.694 | C15H20N2O2 | 261.1619 | 164.1073 114.0916 | 40 |
N-Methylcytysine | 15.751 | C12H16N2O | 205.1344 | − | − |
Phase | Functional Group | Length (mm) | I.D. (mm) | Endcapped | Particle Size (μm) | Pore Size (Å) | Surface Area (m2/g) | Carbon Load (%) | Recommended pH Range |
---|---|---|---|---|---|---|---|---|---|
Synergy Polar RP | Ether-linked phenyl | 150 | 4.6 | Proprietary (polar group) | 4 | 80 | 475 | 11 | 1.5–7.0 |
CSH Phenyl-Hexyl | Phenyl-hexyl | 150 | 4.6 | Proprietary | 5 | 130 | 185 | 15 | 1.0−11.0 |
Synergi Hydro-RP | Octadecyl (C18) | 150 | 4.6 | Proprietary (polar group) | 4 | 80 | 475 | 19 | 1.5–7.5 |
ACE HILIC-A | Proprietary SIL | 150 | 4.6 | NO | 5 | 100 | 300 | − | 2.0–7.0 |
ACE HILIC-B | Proprietary Aminopropyl | 150 | 4.6 | NO | 5 | 100 | 300 | 4 | 2.0–7.0 |
ACE HILIC-C | Proprietary Polyhydroxy | 150 | 4.6 | NO | 5 | 100 | 300 | 7 | 2.0–7.0 |
Luna SCX | Benzene Sulfonic Acid | 150 | 4.6 | NO | 5 | 100 | 400 | 0.55 Sulfur Load | 2.0–7.0 |
Compound | Formula | Molecular Ion [M + H]+ | Fragment Ions | Collision Energy (eV) |
---|---|---|---|---|
Cytisine | C11H14N2O | 191.1153 | 162.0915 148.0756 133.0522 120.0811 104.0513 | 40 |
N-methylcitisine | C12H16N2O | 205.1344 | 160.0918 146.0617 133.0533 127.0549 117.0616 108.0810 104.0503 | 40 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petruczynik, A.; Wróblewski, K.; Misiurek, J.; Plech, T.; Szalast, K.; Wojtanowski, K.; Mroczek, T.; Szymczak, G.; Waksmundzka-Hajnos, M.; Tutka, P. Determination of Cytisine and N-Methylcytisine from Selected Plant Extracts by High-Performance Liquid Chromatography and Comparison of Their Cytotoxic Activity. Toxins 2020, 12, 557. https://doi.org/10.3390/toxins12090557
Petruczynik A, Wróblewski K, Misiurek J, Plech T, Szalast K, Wojtanowski K, Mroczek T, Szymczak G, Waksmundzka-Hajnos M, Tutka P. Determination of Cytisine and N-Methylcytisine from Selected Plant Extracts by High-Performance Liquid Chromatography and Comparison of Their Cytotoxic Activity. Toxins. 2020; 12(9):557. https://doi.org/10.3390/toxins12090557
Chicago/Turabian StylePetruczynik, Anna, Karol Wróblewski, Justyna Misiurek, Tomasz Plech, Karolina Szalast, Krzysztof Wojtanowski, Tomasz Mroczek, Grażyna Szymczak, Monika Waksmundzka-Hajnos, and Piotr Tutka. 2020. "Determination of Cytisine and N-Methylcytisine from Selected Plant Extracts by High-Performance Liquid Chromatography and Comparison of Their Cytotoxic Activity" Toxins 12, no. 9: 557. https://doi.org/10.3390/toxins12090557
APA StylePetruczynik, A., Wróblewski, K., Misiurek, J., Plech, T., Szalast, K., Wojtanowski, K., Mroczek, T., Szymczak, G., Waksmundzka-Hajnos, M., & Tutka, P. (2020). Determination of Cytisine and N-Methylcytisine from Selected Plant Extracts by High-Performance Liquid Chromatography and Comparison of Their Cytotoxic Activity. Toxins, 12(9), 557. https://doi.org/10.3390/toxins12090557