Development and Evaluation of an Immuno-MALDI-TOF Mass Spectrometry Approach for Quantification of the Abrin Toxin in Complex Food Matrices
Abstract
:1. Introduction
2. Results
2.1. Assay Development
2.2. Evaluation of Immuno-MALDI-TOF MS for the Detection and Quantification of Abrin in Food Matrices
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Safety Precaution
5.2. Chemicals and Materials
5.3. Preparation of mAb-Coated Beads
5.4. Abrin Extraction and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dickers, K.J.; Bradberry, S.M.; Rice, P.; Griffiths, G.D.; Vale, J.A. Abrin Poisoning. Toxicol. Rev. 2003, 22, 137–142. [Google Scholar] [CrossRef]
- Jansen, H.J.; Breeveld, F.J.; Stijnis, C.; Grobusch, M.P. Biological warfare, bioterrorism, and biocrime. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2014, 20, 488–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olsnes, S.; Refsnes, K.; Pihl, A. Mechanism of action of the toxic lectins abrin and ricin. Nature 1974, 249, 627–631. [Google Scholar] [CrossRef]
- Fredriksson, S.-Å.; Hulst, A.G.; Artursson, E.; de Jong, A.L.; Nilsson, C.; van Baar, B.L.M. Forensic Identification of Neat Ricin and of Ricin from Crude Castor Bean Extracts by Mass Spectrometry. Anal. Chem. 2005, 77, 1545–1555. [Google Scholar] [CrossRef] [PubMed]
- Hansbauer, E.-M.; Worbs, S.; Volland, H.; Simon, S.; Junot, C.; Fenaille, F.; Dorner, B.G.; Becher, F. Rapid Detection of Abrin Toxin and Its Isoforms in Complex Matrices by Immuno-Extraction and Quantitative High Resolution Targeted Mass Spectrometry. Anal. Chem. 2017, 89, 11719–11727. [Google Scholar] [CrossRef]
- Gill, D.M. Bacterial toxins: A table of lethal amounts. Microbiol. Rev. 1982, 46, 86–94. [Google Scholar] [CrossRef]
- Kalb, S.R.; Lou, J.; Garcia-Rodriguez, C.; Geren, I.N.; Smith, T.J.; Moura, H.; Marks, J.D.; Smith, L.A.; Pirkle, J.L.; Barr, J.R. Extraction and inhibition of enzymatic activity of botulinum neurotoxins/A1, /A2, and /A3 by a panel of monoclonal anti-BoNT/A antibodies. PLoS ONE 2009, 4, e5355. [Google Scholar] [CrossRef] [Green Version]
- Kalb, S.R.; Schieltz, D.M.; Becher, F.; Astot, C.; Fredriksson, S.-Å.; Barr, J.R. Recommended Mass Spectrometry-Based Strategies to Identify Ricin-Containing Samples. Toxins 2015, 7, 4881–4894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schieltz, D.M.; McWilliams, L.G.; Kuklenyik, Z.; Prezioso, S.M.; Carter, A.J.; Williamson, Y.M.; McGrath, S.C.; Morse, S.A.; Barr, J.R. Quantification of ricin, RCA and comparison of enzymatic activity in 18 Ricinus communis cultivars by isotope dilution mass spectrometry. Toxicon Off. J. Int. Soc. Toxinology 2015, 95, 72–83. [Google Scholar] [CrossRef]
- McGrath, S.C.; Schieltz, D.M.; McWilliams, L.G.; Pirkle, J.L.; Barr, J.R. Detection and quantification of ricin in beverages using isotope dilution tandem mass spectrometry. Anal. Chem. 2011, 83, 2897–2905. [Google Scholar] [CrossRef] [PubMed]
- Kalb, S.R.; Barr, J.R. Mass spectrometric detection of ricin and its activity in food and clinical samples. Anal. Chem. 2009, 81, 2037–2042. [Google Scholar] [CrossRef] [PubMed]
- Duriez, E.; Fenaille, F.; Tabet, J.-C.; Lamourette, P.; Hilaire, D.; Becher, F.; Ezan, E. Detection of ricin in complex samples by immunocapture and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J. Proteome Res. 2008, 7, 4154–4163. [Google Scholar] [CrossRef] [PubMed]
- Dupré, M.; Gilquin, B.; Fenaille, F.; Feraudet-Tarisse, C.; Dano, J.; Ferro, M.; Simon, S.; Junot, C.; Brun, V.; Becher, F. Multiplex quantification of protein toxins in human biofluids and food matrices using immunoextraction and high-resolution targeted mass spectrometry. Anal. Chem. 2015, 87, 8473–8480. [Google Scholar] [CrossRef] [PubMed]
- Fredriksson, S.-Å.; Artursson, E.; Bergström, T.; Östin, A.; Nilsson, C.; Åstot, C. Identification of RIP-II toxins by affinity enrichment, enzymatic digestion and LC-MS. Anal. Chem. 2015, 87, 967–974. [Google Scholar] [CrossRef] [PubMed]
- Alam, S.I.; Kumar, B.; Kamboj, D.V. Multiplex detection of protein toxins using MALDI-TOF-TOF tandem mass spectrometry: Application in unambiguous toxin detection from bioaerosol. Anal. Chem. 2012, 84, 10500–10507. [Google Scholar] [CrossRef] [PubMed]
- Sousa, R.B.; Lima, K.S.C.; Santos, C.G.M.; França, T.C.C.; Nepovimova, E.; Kuca, K.; Dornelas, M.R.; Lima, A.L.S. A New Method for Extraction and Analysis of Ricin Samples through MALDI-TOF-MS/MS. Toxins 2019, 11, 201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kull, S.; Pauly, D.; Störmann, B.; Kirchner, S.; Stämmler, M.; Dorner, M.B.; Lasch, P.; Naumann, D.; Dorner, B.G. Multiplex detection of microbial and plant toxins by immunoaffinity enrichment and matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 2010, 82, 2916–2924. [Google Scholar] [CrossRef]
- Popp, R.; Basik, M.; Spatz, A.; Batist, G.; Zahedi, R.P.; Borchers, C.H. How iMALDI can improve clinical diagnostics. Analyst 2018, 143, 2197–2203. [Google Scholar] [CrossRef] [Green Version]
- Popp, R.; Li, H.; LeBlanc, A.; Mohammed, Y.; Aguilar-Mahecha, A.; Chambers, A.G.; Lan, C.; Poetz, O.; Basik, M.; Batist, G.; et al. Immuno-Matrix-Assisted Laser Desorption/Ionization Assays for Quantifying AKT1 and AKT2 in Breast and Colorectal Cancer Cell Lines and Tumors. Anal. Chem. 2017, 89, 10592–10600. [Google Scholar] [CrossRef]
- Seyer, A.; Fenaille, F.; Féraudet-Tarisse, C.; Volland, H.; Popoff, M.R.; Tabet, J.-C.; Junot, C.; Becher, F. Rapid quantification of clostridial epsilon toxin in complex food and biological matrixes by immunopurification and ultraperformance liquid chromatography-tandem mass spectrometry. Anal. Chem. 2012, 84, 5103–5109. [Google Scholar] [CrossRef]
- Wang, D.; Baudys, J.; Barr, J.R.; Kalb, S.R. Improved Sensitivity for the Qualitative and Quantitative Analysis of Active Ricin by MALDI-TOF Mass Spectrometry. Anal. Chem. 2016, 88, 6867–6872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krause, E.; Wenschuh, H.; Jungblut, P.R. The dominance of arginine-containing peptides in MALDI-derived tryptic mass fingerprints of proteins. Anal. Chem. 1999, 71, 4160–4165. [Google Scholar] [CrossRef] [PubMed]
- Lange, V.; Picotti, P.; Domon, B.; Aebersold, R. Selected reaction monitoring for quantitative proteomics: A tutorial. Mol. Syst. Biol. 2008, 4, 222. [Google Scholar] [CrossRef] [PubMed]
- Garber, E.A.E. Toxicity and Detection of Ricin and Abrin in Beverages. J. Food Prot. 2008, 71, 1875–1883. [Google Scholar] [CrossRef] [PubMed]
- Brinkworth, C.S. Identification of ricin in crude and purified extracts from castor beans using on-target tryptic digestion and MALDI mass spectrometry. Anal. Chem. 2010, 82, 5246–5252. [Google Scholar] [CrossRef] [PubMed]
- Becher, F.; Duriez, E.; Volland, H.; Tabet, J.C.; Ezan, E. Detection of functional ricin by immunoaffinity and liquid chromatography-tandem mass spectrometry. Anal. Chem. 2007, 79, 659–665. [Google Scholar] [CrossRef]
- Kalb, S.R.; Baudys, J.; Kiernan, K.; Wang, D.; Becher, F.; Barr, J.R. Proposed BoNT/A and /B Peptide Substrates Cannot Detect Multiple Subtypes in the Endopep-MS Assay. J. Anal. Toxicol. 2020, 44, 173–179. [Google Scholar] [CrossRef]
Peptides | m/z [M + H]+ Theo | m/z [M + H]+ Obs | Difference (ppm) | Matching Protein | Modifications |
---|---|---|---|---|---|
(R) YEPTVR (I) | 764.3937 | 764.39 | −1 | a,b,c,d | |
(R) WAHQSR (Q) | 784.3849 | 784.38 | −1 | a, agg | |
(K) QFIEALR (E) | 859.4672 | 859.47 | −1 | a,b,c,d | Pyroglutamate |
(K) QFIEALR (E) | 876.4938 | 876.49 | −4 | a,b,c,d | |
(R) AGTQSYFLR (D) | 1042.5316 | 1042.53 | −2 | a | |
(K) QFIEALRER (L) | 1144.6109 | 1144.60 | −10 | a | Pyroglutamate; Miscleavage |
(R) QQIPLGLQALR (H) | 1236.7423 | 1236.75 | 2 | b | |
(R) YLFTGTQQYSLR (F) | 1476.7482 | 1476.75 | 1 | b | |
(K) DRLEENQLWTLK (S) | 1544.8067 | 1544.81 | 5 | a,b,c,d | Miscleavage |
(K) EQQWALYTDGSIR (S) | 1566.7547 | 1566.76 | 0 | a,b,c,d | |
(R) DAPASASTYLFPGTQR (Y) | 1681.8180 | 1681.82 | 1 | c,d | |
(K) QGSPIVLMACSNGWASQR (W) | 1887.8840 | 1887.93 | 23 | b,c,d | Pyroglutamate |
(R) NDGSIYNLHDDMVMDVK (R) | 1965.8681 | 1965.89 | 10 | b,c | |
(R) QQIPLGLQALTHGISFFR (S) | 2009.0967 | 2009.10 | −1 | a | Pyroglutamate |
(R) QQIPLGLQALTHGISFFR (S) | 2026.1233 | 2026.12 | −1 | a | |
(R) GGLIHDIPVLPDPTTLQER (N) | 2071.1182 | 2071.12 | −1 | a | |
(R) NDGSIYNLHDDMVMDVKR (S) | 2121.9692 | 2121.96 | −3 | b,c | Miscleavage |
(R) LTGGLIHGIPVLPDPTTLQER (N) | 2227.2445 | 2227.24 | −2 | b | |
(R) GVQESVQDTFPNQVTLTNIR (N) | 2246.1412 | 2246.14 | −1 | a | |
(R) LTGGLIHDIPVLPDPTTVEER (N) | 2272.2183 | 2272.23 | 3 | c,d | |
(K) EIILHPYHGKPNQIWLTLF (-) | 2319.2648 | 2319.29 | 9 | b,c | |
(R) LRGGLIHDIPVLPDPTTLQER (N) | 2340.3034 | 2340.31 | 2 | a | Miscleavage |
(K) SALVLSAESSSMGGTLTVQTNEYLMR (Q) | 2745.3434 | 2745.35 | 1 | a,b,c,d | |
(K) SALVLSAESSSMGGTLTVQTNEYLMR (Q) | 2761.3383 | 2761.34 | 1 | a,b,c,d | Oxidation |
(R) VSIQTGTAFQPDAAMISLENNWDNLSR (G) | 2978.4313 | 2978.44 | 3 | a | |
(R) DAPSSASDYLFTGTDQHSLPFYGTYGDLER (W) | 3310.4811 | 3310.50 | 5 | a |
Peptides | |||
---|---|---|---|
Matrix | GVQESVQDTFPNQVTLTNIR | AGTQSYFLR | |
Milk | LOD (ng/mL) | 40.0 | 40.0 |
CV% 75 ng/mL | 13.0 | 6.9 | |
CV% 250 ng/mL | 17.3 | 22.0 | |
Apple juice | LOD (ng/mL) | 40.0 | 40.0 |
CV% 75 ng/mL | 8.4 | 16.5 | |
CV% 250 ng/mL | 15.5 | 11.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Livet, S.; Worbs, S.; Volland, H.; Simon, S.; Dorner, M.B.; Fenaille, F.; Dorner, B.G.; Becher, F. Development and Evaluation of an Immuno-MALDI-TOF Mass Spectrometry Approach for Quantification of the Abrin Toxin in Complex Food Matrices. Toxins 2021, 13, 52. https://doi.org/10.3390/toxins13010052
Livet S, Worbs S, Volland H, Simon S, Dorner MB, Fenaille F, Dorner BG, Becher F. Development and Evaluation of an Immuno-MALDI-TOF Mass Spectrometry Approach for Quantification of the Abrin Toxin in Complex Food Matrices. Toxins. 2021; 13(1):52. https://doi.org/10.3390/toxins13010052
Chicago/Turabian StyleLivet, Sandrine, Sylvia Worbs, Hervé Volland, Stéphanie Simon, Martin B. Dorner, François Fenaille, Brigitte G. Dorner, and François Becher. 2021. "Development and Evaluation of an Immuno-MALDI-TOF Mass Spectrometry Approach for Quantification of the Abrin Toxin in Complex Food Matrices" Toxins 13, no. 1: 52. https://doi.org/10.3390/toxins13010052
APA StyleLivet, S., Worbs, S., Volland, H., Simon, S., Dorner, M. B., Fenaille, F., Dorner, B. G., & Becher, F. (2021). Development and Evaluation of an Immuno-MALDI-TOF Mass Spectrometry Approach for Quantification of the Abrin Toxin in Complex Food Matrices. Toxins, 13(1), 52. https://doi.org/10.3390/toxins13010052