Strong Alterations in the Sphingolipid Profile of Chickens Fed a Dose of Fumonisins Considered Safe
Abstract
:1. Introduction
2. Results and Discussion
2.1. Analysis of Sphingolipids
2.1.1. Separation of the Analytes
2.1.2. Validation of the Method on IS
2.1.3. Validation of the Method on Standards
2.2. Application to Measure the Effects of FB
2.2.1. Effects of FB on Sphingolipid in Liver
2.2.2. Effects of FB on Sphingolipids in Plasma
2.2.3. General Discussion of the Effects of FB on Sphingolipids
3. Material and Methods
3.1. Analytes and Reagents
3.2. Chromatographic Conditions
3.3. Extraction of Samples
3.4. Linearity of the Method and Signal Suppression and Enhancement on the Internal Standards
3.5. Recovery of the Internal Standards in Liver and Plasma
3.6. Preliminary Estimation of Sphingolipid Available as Standard and Linearity of the Method
3.7. Recovery of the Standards in Liver and Plasma
3.8. Application to Sphingolipids in Samples
3.9. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FB | Fumonisin B |
FB1 | Fumonisin B1 |
FB2 | Fumonisin B2 |
Sa | Sphinganine |
So | Sphingosine |
SB | Sphingoid bases |
CER | Ceramide formed with So |
DHCER | Dihydroceramide formed with Sa |
GSL | Glycosylsphingolipid |
SM | Sphingomyelin formed with So |
DHSM | Dihydrosphingomyelin formed with Sa |
IS | Internal Standard |
RSD | Relative standard deviation |
SSE | Signal suppression and enhancement |
R | Recovery |
PLS-DA | Partial least-square discriminant analysis |
References
- Knutsen, H.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Edler, L.; EFSA Panel on Contaminants in the Food Chain (CONTAM); et al. Risks for Animal Health Related to the Presence of Fumonisins, Their Modified Forms and Hidden Forms in Feed. EFSA J. 2018, 16. [Google Scholar] [CrossRef]
- Shao, M.; Li, L.; Gu, Z.; Yao, M.; Xu, D.; Fan, W.; Yan, L.; Song, S. Mycotoxins in Commercial Dry Pet Food in China. Food Addit. Contam. Part B Surveill. 2018, 11, 237–245. [Google Scholar] [CrossRef]
- Agriopoulou, S.; Stamatelopoulou, E.; Varzakas, T. Advances in Occurrence, Importance, and Mycotoxin Control Strategies: Prevention and Detoxification in Foods. Foods Basel Switz. 2020, 9, 137. [Google Scholar] [CrossRef] [PubMed]
- Ochieng, P.E.; Scippo, M.-L.; Kemboi, D.C.; Croubels, S.; Okoth, S.; Kang’ethe, E.K.; Doupovec, B.; Gathumbi, J.K.; Lindahl, J.F.; Antonissen, G. Mycotoxins in Poultry Feed and Feed Ingredients from Sub-Saharan Africa and Their Impact on the Production of Broiler and Layer Chickens: A Review. Toxins 2021, 13, 633. [Google Scholar] [CrossRef]
- Chen, J.; Wen, J.; Tang, Y.; Shi, J.; Mu, G.; Yan, R.; Cai, J.; Long, M. Research Progress on Fumonisin B1 Contamination and Toxicity: A Review. Molecules 2021, 26, 5238. [Google Scholar] [CrossRef]
- Voss, K.A.; Smith, G.W.; Haschek, W.M. Fumonisins: Toxicokinetics, Mechanism of Action and Toxicity. Anim. Feed Sci. Technol. 2007, 137, 299–325. [Google Scholar] [CrossRef]
- Diaz, G.J.; Boermans, H.J. Fumonisin Toxicosis in Domestic Animals: A Review. Vet. Hum. Toxicol. 1994, 36, 548–555. [Google Scholar] [PubMed]
- Riley, R.T.; Merrill, A.H. Ceramide Synthase Inhibition by Fumonisins: A Perfect Storm of Perturbed Sphingolipid Metabolism, Signaling, and Disease. J. Lipid Res. 2019, 60, 1183–1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howard, P.C.; Eppley, R.M.; Stack, M.E.; Warbritton, A.; Voss, K.A.; Lorentzen, R.J.; Kovach, R.M.; Bucci, T.J. Fumonisin B1 Carcinogenicity in a Two-Year Feeding Study Using F344 Rats and B6C3F1 Mice. Environ. Health Perspect. 2001, 109, 277–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thiel, P.G.; Marasas, W.F.; Sydenham, E.W.; Shephard, G.S.; Gelderblom, W.C. The Implications of Naturally Occurring Levels of Fumonisins in Corn for Human and Animal Health. Mycopathologia 1992, 117, 3–9. [Google Scholar] [CrossRef]
- World Health Organization International Agency for Research on Cancer. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC Press: Lyon, France, 2002. [Google Scholar]
- WHO Safety Evaluation of Certain Food Additives and Contaminants. In WHO Food Additives Series: 63; World Health Organization: Geneva, Switzerland; Food and Agriculture Organization of the United Nations: Rome, Italy, 2011.
- Wang, E.; Norred, W.P.; Bacon, C.W.; Riley, R.T.; Merrill, A.H. Inhibition of Sphingolipid Biosynthesis by Fumonisins. Implications for Diseases Associated with Fusarium Moniliforme. J. Biol. Chem. 1991, 266, 14486–14490. [Google Scholar] [CrossRef]
- Yoo, H.S.; Norred, W.P.; Wang, E.; Merrill, A.H.; Riley, R.T. Fumonisin Inhibition of de Novo Sphingolipid Biosynthesis and Cytotoxicity Are Correlated in LLC-PK1 Cells. Toxicol. Appl. Pharmacol. 1992, 114, 9–15. [Google Scholar] [CrossRef]
- Riley, R.T.; An, N.H.; Showker, J.L.; Yoo, H.S.; Norred, W.P.; Chamberlain, W.J.; Wang, E.; Merrill, A.H.; Motelin, G.; Beasley, V.R.; et al. Alteration of Tissue and Serum Sphinganine to Sphingosine Ratio: An Early Biomarker of Exposure to Fumonisin-Containing Feeds in Pigs. Toxicol. Appl. Pharmacol. 1993, 118, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Tran, S.T.; Bailly, J.D.; Tardieu, D.; Durand, S.; Benard, G.; Guerre, P. Sphinganine to Sphingosine Ratio and Predictive Biochemical Markers of Fumonisin B1 Exposure in Ducks. Chem. Biol. Interact. 2003, 146, 61–72. [Google Scholar] [CrossRef]
- Liu, X.; Fan, L.; Yin, S.; Chen, H.; Hu, H. Molecular Mechanisms of Fumonisin B1-Induced Toxicities and Its Applications in the Mechanism-Based Interventions. Toxicon 2019, 167, 1–5. [Google Scholar] [CrossRef]
- Dellafiora, L.; Galaverna, G.; Dall’Asta, C. Mechanisms of Fumonisin B1 Toxicity: A Computational Perspective beyond the Ceramide Synthases Inhibition. Chem. Res. Toxicol. 2018, 31, 1203–1212. [Google Scholar] [CrossRef]
- Merrill, A.H.; Stokes, T.H.; Momin, A.; Park, H.; Portz, B.J.; Kelly, S.; Wang, E.; Sullards, M.C.; Wang, M.D. Sphingolipidomics: A Valuable Tool for Understanding the Roles of Sphingolipids in Biology and Disease. J. Lipid Res. 2009, 50, S97–S102. [Google Scholar] [CrossRef] [Green Version]
- Shaner, R.L.; Allegood, J.C.; Park, H.; Wang, E.; Kelly, S.; Haynes, C.A.; Sullards, M.C.; Merrill, A.H. Quantitative Analysis of Sphingolipids for Lipidomics Using Triple Quadrupole and Quadrupole Linear Ion Trap Mass Spectrometers. J. Lipid Res. 2009, 50, 1692–1707. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.-R.; Zhang, H.; Yau, L.F.; Mi, J.-N.; Lee, S.; Lee, K.C.; Hu, P.; Liu, L.; Jiang, Z.-H. Improved Sphingolipidomic Approach Based on Ultra-High Performance Liquid Chromatography and Multiple Mass Spectrometries with Application to Cellular Neurotoxicity. Anal. Chem. 2014, 86, 5688–5696. [Google Scholar] [CrossRef]
- Mi, S.; Zhao, Y.-Y.; Dielschneider, R.F.; Gibson, S.B.; Curtis, J.M. An LC/MS/MS Method for the Simultaneous Determination of Individual Sphingolipid Species in B Cells. J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci. 2016, 1031, 50–60. [Google Scholar] [CrossRef]
- Laurain, J.; Tardieu, D.; Matard-Mann, M.; Rodriguez, M.A.; Guerre, P. Fumonisin B1 Accumulates in Chicken Tissues over Time and This Accumulation Was Reduced by Feeding Algo-Clay. Toxins 2021, 13, 701. [Google Scholar] [CrossRef] [PubMed]
- Tardieu, D.; Tran, S.T.; Auvergne, A.; Babilé, R.; Benard, G.; Bailly, J.D.; Guerre, P. Effects of Fumonisins on Liver and Kidney Sphinganine and the Sphinganine to Sphingosine Ratio during Chronic Exposure in Ducks. Chem. Biol. Interact. 2006, 160, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Metayer, J.-P.; Travel, A.; Mika, A.; Bailly, J.-D.; Cleva, D.; Boissieu, C.; Guennec, J.L.; Froment, P.; Albaric, O.; Labrut, S.; et al. Lack of Toxic Interaction Between Fusariotoxins in Broiler Chickens Fed throughout Their Life at the Highest Level Tolerated in the European Union. Toxins 2019, 11, 455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wegner, M.-S.; Schiffmann, S.; Parnham, M.J.; Geisslinger, G.; Grösch, S. The Enigma of Ceramide Synthase Regulation in Mammalian Cells. Prog. Lipid Res. 2016, 63, 93–119. [Google Scholar] [CrossRef]
- Zitomer, N.C.; Mitchell, T.; Voss, K.A.; Bondy, G.S.; Pruett, S.T.; Garnier-Amblard, E.C.; Liebeskind, L.S.; Park, H.; Wang, E.; Sullards, M.C.; et al. Ceramide Synthase Inhibition by Fumonisin B1 Causes Accumulation of 1-Deoxysphinganine: A Novel Category of Bioactive 1-Deoxysphingoid Bases and 1-Deoxydihydroceramides Biosynthesized by Mammalian Cell Lines and Animals. J. Biol. Chem. 2009, 284, 4786–4795. [Google Scholar] [CrossRef] [Green Version]
- Loiseau, N.; Polizzi, A.; Dupuy, A.; Therville, N.; Rakotonirainy, M.; Loy, J.; Viadere, J.-L.; Cossalter, A.-M.; Bailly, J.-D.; Puel, O.; et al. New Insights into the Organ-Specific Adverse Effects of Fumonisin B1: Comparison between Lung and Liver. Arch. Toxicol. 2015, 89, 1619–1629. [Google Scholar] [CrossRef] [PubMed]
- Grösch, S.; Schiffmann, S.; Geisslinger, G. Chain Length-Specific Properties of Ceramides. Prog. Lipid Res. 2012, 51, 50–62. [Google Scholar] [CrossRef]
- Pewzner-Jung, Y.; Park, H.; Laviad, E.L.; Silva, L.C.; Lahiri, S.; Stiban, J.; Erez-Roman, R.; Brügger, B.; Sachsenheimer, T.; Wieland, F.; et al. A Critical Role for Ceramide Synthase 2 in Liver Homeostasis: I. Alterations in Lipid Metabolic Pathways. J. Biol. Chem. 2010, 285, 10902–10910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pewzner-Jung, Y.; Brenner, O.; Braun, S.; Laviad, E.L.; Ben-Dor, S.; Feldmesser, E.; Horn-Saban, S.; Amann-Zalcenstein, D.; Raanan, C.; Berkutzki, T.; et al. A Critical Role for Ceramide Synthase 2 in Liver Homeostasis: II. Insights into Molecular Changes Leading to Hepatopathy. J. Biol. Chem. 2010, 285, 10911–10923. [Google Scholar] [CrossRef] [Green Version]
- Tran, S.T.; Tardieu, D.; Auvergne, A.; Bailly, J.D.; Babilé, R.; Durand, S.; Benard, G.; Guerre, P. Serum Sphinganine and the Sphinganine to Sphingosine Ratio as a Biomarker of Dietary Fumonisins during Chronic Exposure in Ducks. Chem. Biol. Interact. 2006, 160, 41–50. [Google Scholar] [CrossRef]
- Riley, R.T.; Showker, J.L.; Lee, C.M.; Zipperer, C.E.; Mitchell, T.R.; Voss, K.A.; Zitomer, N.C.; Torres, O.; Matute, J.; Gregory, S.G.; et al. A Blood Spot Method for Detecting Fumonisin-Induced Changes in Putative Sphingolipid Biomarkers in LM/Bc Mice and Humans. Food Addit. Contam. Part Chem. Anal. Control Expo. Risk Assess. 2015, 32, 934–949. [Google Scholar] [CrossRef] [PubMed]
- Riley, R.T.; Torres, O.; Matute, J.; Gregory, S.G.; Ashley-Koch, A.E.; Showker, J.L.; Mitchell, T.; Voss, K.A.; Maddox, J.R.; Gelineau-van Waes, J.B. Evidence for Fumonisin Inhibition of Ceramide Synthase in Humans Consuming Maize-Based Foods and Living in High Exposure Communities in Guatemala. Mol. Nutr. Food Res. 2015, 59, 2209–2224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, H.; Liu, G.; Wang, J.; Aubry, A.-F.; Arnold, M.E. Selecting the Correct Weighting Factors for Linear and Quadratic Calibration Curves with Least-Squares Regression Algorithm in Bioanalytical LC-MS/MS Assays and Impacts of Using Incorrect Weighting Factors on Curve Stability, Data Quality, and Assay Performance. Anal. Chem. 2014, 86, 8959–8966. [Google Scholar] [CrossRef] [PubMed]
Name 1 | Category 2 | Transition 3 | Frag 4 | EC 4 | RT 5 | Name 1 | Category 2 | Transition 3 | Frag 4 | EC 4 | RT 5 |
---|---|---|---|---|---|---|---|---|---|---|---|
1dSo | SB, S | 284.5; 266.4 | 94 | 8 | 10.4 | 18:1/25:0 | CER, IS | 664.5; 264.3 | 132 | 32 | 22.7 |
d17:1 | SB, IS | 286.3; 268.4 | 84 | 4 | 9 | 18:1/26:2 | CER | 674.6; 264.3 | 132 | 36 | 19.5 |
1dSa | SB, S | 286.5; 268.3 | 112 | 12 | 10.8 | SM18:1/14:0 | SM, S | 676.0; 184.0 | 160 | 28 | 14.5 |
d17:0 | SB, IS | 288.3; 270.4 | 112 | 8 | 9.6 | 18:1/26:1 | CER | 676.6; 264.3 | 132 | 36 | 21.4 |
d18:1 (So) | SB, S | 300.3; 282.3 | 94 | 4 | 9.9 | 18:1/26:0 | CER | 678.6; 264.3 | 132 | 36 | 24.5 |
d18:0 (Sa) | SB, S | 302.3; 284.3 | 122 | 8 | 10.4 | Glu18:1/16:0 | HexCer, S | 700.4; 264.3 | 140 | 30 | 15 |
18:1/2:0 | CER, S | 342.4; 264.3 | 110 | 24 | 11 | SM18:1/16:0 | SM, S | 704.0; 184.0 | 190 | 28 | 15.1 |
18:0/2:0 | DHCER, S | 344.4; 266.3 | 120 | 30 | 11.7 | SM18:0/16:0 | DHSM | 706.0; 184.0 | 190 | 28 | 15.5 |
d17:1P | SBP, IS | 366.2; 250.3 | 114 | 12 | 9.2 | Hex18:1/18:0 | HexCER | 728.4; 264.3 | 120 | 30 | 15.8 |
d17:0P | SBP, IS | 368.2; 270.3 | 122 | 8 | 9.7 | SM18:1/18:1 | SM, S | 730.0; 184.0 | 205 | 30 | 15.2 |
d18:1P | SBP, S | 380.5; 264.3 | 112 | 12 | 10.1 | SM18:1/18:0 | SM, S | 732.0; 184.0 | 205 | 30 | 16 |
d18:0P | SBP, S | 382.5; 284.3 | 122 | 8 | 10.6 | SM18:0/18:0 | DHSM | 734.0; 184.0 | 205 | 30 | 16.4 |
GluSo | HexCER, S | 462.4; 282.3 | 142 | 20 | 9.3 | SM18:1/20:0 | SM, S | 760.0; 184.0 | 220 | 32 | 17 |
LysoSM | SM, S | 465.0; 184.0 | 140 | 24 | 9 | SM18:0/20:0 | DHSM | 762.0; 184.0 | 220 | 32 | 17.6 |
18:1/12:0 | CER, IS | 482.4; 264.3 | 104 | 20 | 14.2 | SM18:1/22:2 | SM | 784.0; 184.0 | 235 | 34 | 16.1 |
18:1/14:0 | CER, S | 510.4; 264.3 | 114 | 24 | 14.8 | Hex18:1/22:0 | HexCer | 784.5; 264.3 | 120 | 30 | 18 |
18:1/16:0 | CER, S | 538.5; 264.3 | 122 | 24 | 15.6 | SM18:1/22:1 | SM | 786.0; 184.0 | 235 | 34 | 17 |
18:0/16:0 | CER, S | 540.4; 284.3 | 140 | 32 | 16 | SM18:1/22:0 | SM | 788.0; 184.0 | 235 | 34 | 18.3 |
18:1/12:0P | CERP, IS | 562.6; 264.3 | 130 | 32 | 13.6 | SM18:0/22:0 | DHSM | 790.0; 184.0 | 235 | 34 | 19.1 |
18:1/18:1 | CER | 564.4; 264.3 | 132 | 24 | 15.7 | SM18:1/23:1 | SM | 800.0; 184.0 | 240 | 34 | 17.6 |
18:1/18:0 | CER, S | 566.4; 264.3 | 132 | 24 | 16.5 | SM18:1/23:0 | SM | 802.0; 184.0 | 240 | 34 | 19.1 |
18:0/18:0 | DHCER | 568.4; 284.3 | 132 | 24 | 17 | SM18:0/23:0 | DHSM | 804.0; 184.0 | 240 | 34 | 20.1 |
18:1/20:0 | CER, S | 594.5; 264.3 | 130 | 24 | 17.7 | Lac18:1/12:0 | LacCER, IS | 806.5; 264.3 | 140 | 24 | 13.7 |
18:0/20:0 | DHCER | 596.4; 284.3 | 132 | 24 | 18.3 | SM18:1/24:3 | SM | 810.0; 184.0 | 250 | 36 | 16.3 |
18:1/22:2 | CER | 618.5; 264.3 | 122 | 36 | 16.7 | Glu18:1/24:1 | HexCER, S | 810.5; 264.3 | 100 | 40 | 18 |
18:1/16:0P | CERP | 618.6; 264.3 | 130 | 36 | 14.7 | SM18:1/24:2 | SM | 812.0; 184.0 | 250 | 36 | 17.1 |
18:1/22:1 | CER | 620.5; 264.3 | 122 | 36 | 17.7 | Hex18:1/24:0 | HexCER | 812.5; 264.3 | 100 | 40 | 19.7 |
18:1/22:0 | CER, S | 622.5; 264.3 | 122 | 36 | 19.3 | SM18:1/24:1 | SM, S | 814.0; 184.0 | 250 | 36 | 18.2 |
LacSo | LacCER, S | 624.4; 282.3 | 160 | 28 | 9 | SM18:1/24:0 | SM, S | 816.0; 184.0 | 250 | 36 | 20.1 |
18:0/22:0 | DHCER | 624.5; 266.3 | 122 | 36 | 20.1 | SM18:0/24:1 | DHSM | 816.0; 184.0 | 250 | 36 | 19 |
18:1/:23:1 | CER | 634.5; 264.3 | 122 | 36 | 18.4 | SM18:0/24:0 | DHSM | 818.0; 184.0 | 250 | 36 | 21.1 |
18:1/23:0 | CER | 636.5; 264.3 | 122 | 36 | 20.3 | SM18:1/25:2 | SM | 826.0; 184.0 | 250 | 36 | 17.7 |
18:0/23:0 | DHCER | 638.5; 266.3 | 122 | 36 | 21.2 | SM18:1/25:1 | SM | 828.0; 184.0 | 250 | 36 | 19 |
Glu18:1/12:0 | HexCER, IS | 644.4; 264.3 | 120 | 20 | 13.8 | SM18:1/25:0 | SM | 830.0; 184.0 | 250 | 36 | 21.1 |
18:1/24:2 | CER | 646.5; 264.3 | 122 | 36 | 17.9 | SM18:1/26:3 | SM | 838.0; 184.0 | 250 | 36 | 17.4 |
18:1/18:0_P | CERP | 646.6; 264.3 | 130 | 36 | 15.4 | SM18:1/26:2 | SM | 840.0; 184.0 | 250 | 36 | 18.4 |
SM18:1/12:0 | SM, IS | 648.0; 184.0 | 140 | 24 | 13.9 | SM18:1/26:1 | SM | 842.0; 184.0 | 250 | 36 | 20 |
18:1/24:1 | CER, S | 648.5; 264.3 | 122 | 36 | 19.3 | SM18:1/26:0 | SM | 844.0; 184.0 | 250 | 36 | 22.4 |
18:1/24:0 | CER, S | 650.5; 264.3 | 132 | 32 | 21.5 | Lac18:1/16:0 | LacCER, S | 862.5; 264.3 | 180 | 44 | 14.8 |
18:0/24:0 | DHCER, S | 652.5; 266.3 | 190 | 40 | 22.6 | Lac18:1/18:0 | LacCER | 890.5; 264.3 | 160 | 44 | 15.5 |
18:1/25:1 | CER | 662.5; 264.3 | 132 | 32 | 20.2 | Lac18:1/24:1 | LacCER, S | 972.5; 264.3 | 100 | 48 | 17.5 |
Net Solvant 1 | Liver | Plasma | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Analyte | a | (R2) | SSE (%) 2 | RA (%) 3 | R (%) 3 | RSD (%) 3,4 | RSD (%) 3,5 | SSE (%) 2 | RA (%) 3 | R (%) 3 | RSD (%) 3,4 | RSD (%) 3,5 |
d17:1 | 1.0001 | 0.9998 | 102 | 105 | 104 | 6 | 12 | 98 | 71 | 72 | 7 | 9 |
d17:0 | 1.0472 | 0.9962 | 97 | 98 | 101 | 6 | 12 | 96 | 71 | 74 | 7 | 7 |
d17:1P | 0.9949 | 0.9992 | 180 | 228 | 127 | 8 | 10 | 168 | 187 | 111 | 7 | 17 |
d17:0P | 0.9982 | 0.9994 | 181 | 219 | 121 | 7 | 10 | 163 | 205 | 126 | 7 | 14 |
18:1/12:0 | 1.0002 | 0.9999 | 102 | 91 | 90 | 5 | 8 | 99 | 87 | 87 | 5 | 7 |
18:1/12:0P | 0.9965 | 0.9998 | 173 | 142 | 82 | 8 | 5 | 98 | 163 | 166 | 13 | 18 |
Glu18:1C12:0 | 1 | 0.9999 | 96 | 90 | 95 | 7 | 13 | 98 | 89 | 91 | 7 | 11 |
SM18:1/12:0 | 1 | 0.9999 | 95 | 82 | 85 | 7 | 11 | 100 | 112 | 112 | 10 | 11 |
18:1/25:0 | 1 | 1 | 118 | 84 | 72 | 22 | 18 | 105 | 58 | 55 | 12 | 22 |
Lac18:1/12:0 | 1.00002 | 0.9999 | 89 | 75 | 85 | 8 | 15 | 96 | 87 | 91 | 10 | 15 |
Liver | Plasma | |||||
---|---|---|---|---|---|---|
Analyte 1 | Range of Conc 2 | R (%) 3 | RSD (%) 4 | Range of Conc 2 | R (%) 3 | RSD (%) 4 |
1dSo | 16–250 | 77 | 7 | 2–31 | 81 | 8 |
1dSa | 16–250 | 96 | 8 | 2–31 | 68 | 9 |
d18:1 (So) | 5000–80,000 | 110 | 11 | 313–5000 | 115 | 3 |
d18:0 (Sa) | 625–10,000 | 157 | 10 | 156–2500 | 109 | 8 |
18:1/2:0 | 78–1250 | 104 | 1 | 20–313 | 85 | 3 |
18:0/2:0 | 156–2500 | 116 | 6 | 39–625 | 86 | 4 |
d18:1P | 1250–20,000 | 119 | 17 | 625–5000 | 200 | 11 |
d18:0P | 1250–20,000 | 136 | 16 | 313–5000 | 263 | 8 |
GluSo | 156–2500 | 114 | 8 | 10–156 | 93 | 7 |
LysoSM | 78–1250 | 111 | 3 | 10–156 | 149 | 15 |
18:1/14:0 | 313–5000 | 102 | 14 | 20–313 | 77 | 11 |
18:1/16:0 | 80,000–640,000 | 86 | 3 | 2500–40,000 | 107 | 9 |
18:0/16:0 | 10,000–80,000 | 119 | 8 | 313–5000 | 98 | 10 |
18:1/18:0 | 10,000–80,000 | 94 | 16 | 313–5000 | 97 | 8 |
18:1/20:0 | 5000–40,000 | 123 | 6 | 156–2500 | 90 | 14 |
18:1/16:0P | 5000–80,000 | 56 | 44 | 313–5000 | 100 | 16 |
18:1/22:0 | 40,000–320,000 | 81 | 9 | 1250–20,000 | 82 | 9 |
LacSo | 39–625 | 104 | 11 | 10–156 | 110 | 21 |
18:1/24:1 | 40,000–320,000 | 79 | 19 | 2500–40,000 | 108 | 16 |
18:1/24:0 | 20,000–160,000 | 67 | 4 | 1250–20,000 | 110 | 10 |
18:0/24:0 | 2500–40,000 | 53 | 26 | 156–2500 | 104 | 18 |
SM18:1/14:0 | 156–5000 | 77 | 11 | 156–1250 | 80 | 12 |
Glu18:1/16:0 | 2500–40,000 | 84 | 7 | 313–5000 | 86 | 27 |
SM18:1/16:0 | 20,000–320,000 | 73 | 22 | 10,000–40,000 | 87 | 15 |
SM18:1/18:1 | 313–5000 | 54 | 5 | 156–2500 | 63 | 9 |
SM18:1/18:0 | 20,000–320,000 | 103 | 11 | 5000–80,000 | 81 | 15 |
SM18:1/20:0 | 20,000–320000 | 90 | 18 | 625–10,000 | 84 | 11 |
SM18:1/22:0 | 40,000–320,000 | 82 | 21 | 2500–40,000 | 88 | 19 |
Glu18:1/24:1 | 2500–40,000 | 95 | 13 | 156–2500 | 77 | 27 |
SM18:1/24:1 | 40,000–640,000 | 94 | 17 | 5000–80,000 | 82 | 14 |
SM18:1/24:0 | 10,000–80,000 | 84 | 15 | 625–10,000 | 85 | 22 |
Lac18:1/16:0 | 2500–40,000 | 105 | 15 | 313–5000 | 78 | 16 |
Lac18:1/24:1 | 1250–20,000 | 115 | 13 | 156–2500 | 104 | 24 |
Name | Liver 1 | Plasma 2 | Name | Liver 1 | Plasma 2 | ||||
---|---|---|---|---|---|---|---|---|---|
Control | FB | Control | FB | Control | FB | Control | FB | ||
1dSo | 1.15 ± 0.24 | 1.76 ± 0.82 | 0.34 ± 0.12 | 0.42 ± 0.25 | 18:1/26:0 | 99 ± 71 | 143 ± 39 | 8.2 ± 7.4 | 8.0 ± 6.6 |
1dSa | 10.01 ± 3.29 | 10 ± 4.2 | 0.51 ± 0.17 | 0.46 ± 0.18 | Glu18:1/16:0 | 8516 ± 1397 | 5699 ± 1836 * | 598 ± 126 | 452 ± 103 |
d18:1 (So) | 7635 ± 2247 | 10,463 ± 2869 * | 198.8 ± 84.0 | 184.7 ± 39.4 | SM18:1/16:0 | 74,212 ± 17,808 | 59,550 ± 22,640 | 56,060 ± 14,141 | 44,320 ± 9165 * |
d18:0 (Sa) | 815 ± 222 | 2288 ± 924 * | 59.0 ± 6.9 | 60.1 ± 8.6 | SM18:0/16:0 | 22,531 ± 5717 | 30,358 ± 10,496 | 9961 ± 2375 | 11,000 ± 2849 |
18:1/2:0 | 121 ± 54 | 173 ± 43 | 12.2 ± 2.4 | 14.8 ± 3.1 | Hex18:1/18:0 | 2979 ± 717 | 2520 ± 629 | 111 ± 27 | 112 ± 23 |
18:0/2:0 | ND | 38.7 ± 21 | 0.72 ± 1.44 | 3.60 ± 2.03 | SM18:1/18:1 | 157 ± 49 | 211 ± 104 | 3113 ± 574 | 2852 ± 337 |
d18:1P | 573 ± 191 | 1147 ± 419 * | 1534 ± 603 | 1811 ± 944 | SM18:1/18:0 | 51,624 ± 11,361 | 53,407 ± 16,578 | 17,499 ± 3123 | 18,240 ± 3873 |
d18:0P | 55 ± 30 | 138 ± 73 * | 122 ± 46 | 311 ± 225 * | SM18:0/18:0 | 5509 ± 1371 | 7406 ± 2279 * | 751 ± 113 | 868 ± 147 |
GluSo | 1344 ± 252 | 2082 ± 892 * | 9.1 ± 3.2 | 9.8 ± 2.7 | SM18:1/20:0 | 9693 ± 2262 | 12,346 ± 3365 | 1555 ± 293 | 1838 ± 331 |
LysoSM | 160 ± 29 | 172 ± 31 | 31.5 ± 11.9 | 34.5 ± 10.3 | SM18:0/20:0 | 1536 ± 483 | 2109 ± 581 * | 122 ± 16 | 146 ± 15 * |
18:1/14:0 | 1285 ± 226 | 945 ± 203 * | 9.07 ± 2.60 | 7.65 ± 1.26 | SM18:1/22:2 | 924 ± 234 | 1159 ± 303 | 882 ± 156 | 1003 ± 185 |
18:1/16:0 | 706,486 ± 124,469 | 504,758 ± 73,900 * | 2812 ± 867 | 2644 ± 973 | Hex18:1/22:0 | 8406 ± 2007 | 14,866 ± 4845 * | 261 ± 63 | 304 ± 84 |
18:0/16:0 | 51,847 ± 25,043 | 66,188 ± 17,952 | 514 ± 186 | 421 ± 122 | SM18:1/22:1 | 1886 ± 507 | 2388 ± 635 | 724 ± 156 | 819 ± 156 |
18:1/18:1 | 876 ± 170 | 1286 ± 328 * | 97 ± 33 | 90 ± 22 | SM18:1/22:0 | 126,082 ± 20,545 | 179,131 ± 45,760 * | 6839 ± 1346 | 8473 ± 1611 * |
18:1/18:0 | 75,382 ± 15,379 | 72,004 ± 13,639 | 414 ± 307 | 388 ± 135 | SM18:0/22:0 | 6766 ± 3216 | 11,118 ± 3186 * | 162 ± 33 | 244 ± 46 * |
18:0/18:0 | 1796 ± 742 | 2610 ± 632 * | 51 ± 9 | 57 ± 9 | SM18:1/23:1 | 1197 ± 461 | 1416 ± 333 | 1466 ± 162 | 1590 ± 217 |
18:1/20:0 | 37,367 ± 11,762 | 44,027 ± 11,764 | 226 ± 137 | 230 ± 75 | SM18:1/23:0 | 51,549 ± 10,638 | 72,012 ± 17,340 * | 1814 ± 417 | 2482 ± 491 * |
18:0/20:0 | 294 ± 145 | 446 ± 141 * | 29 ± 4 | 30 ± 5 | SM18:0/23:0 | 2268 ± 934 | 3400 ± 853 * | 89 ± 13 | 114 ± 11 * |
18:1/22:2 | 3724 ± 486 | 4220 ± 675 | 171 ± 20 | 175 ± 15 | SM18:1/24:3 | 703 ± 148 | 887 ± 201 * | 609 ± 92 | 693 ± 123 |
18:1/16:0P | - | - | ND | ND | Glu18:1/24:1 | 7094 ± 1206 | 10,498 ± 2830 | 405 ± 191 | 456 ± 155 |
18:1/22:1 | 9731 ± 2342 | 10,427 ± 1943 | 217 ± 47 | 217 ± 28 | SM18:1/24:2 | 12,586 ± 3184 | 14,501 ± 4015 | 5324 ± 812 | 6157 ± 992 |
18:1/22:0 | 137,824 ± 23,336 | 158,290 ± 25,717 | 2651 ± 1440 | 2746 ± 1234 | Hex18:1/24:0 | 9382 ± 2539 | 13,386 ± 4989 * | 293 ± 69 | 367 ± 68 |
LacSo | 19.6 ± 7.3 | 24.4 ± 10.6 | ND | ND | SM18:1/24:1 | 58,984 ± 15,967 | 79,297 ± 14,028 * | 10,551 ± 1717 | 12,718 ± 1684 * |
18:0/22:0 | 2169 ± 567 | 2857 ± 420 * | 205 ± 27 | 198 ± 23 | SM18:1/24:0 | 19,388 ± 8080 | 29,423 ± 7158 * | 1221 ± 229 | 1712 ± 264 * |
18:1/:23:1 | 3575 ± 902 | 3916 ± 165 | 183 ± 20 | 176 ± 17 | SM18:0/24:1 | 1672 ± 672 | 2435 ± 479 * | 144 ± 20 | 197 ± 32 * |
18:1/23:0 | 57,081 ± 8932 | 74,409 ± 16,213 * | 2516 ± 909 | 2705 ± 787 | SM18:0/24:0 | 1217 ± 404 | 1647 ± 445 * | 71 ± 10 | 85 ± 9 * |
18:0/23:0 | 258 ± 165 | 404 ± 100 * | 38 ± 19 | 25 ± 16 | SM18:1/25:2 | 424 ± 67 | 484 ± 61 | 121 ± 19 | 142 ± 15 * |
18:1/24:2 | 141,334 ± 26,043 | 161,388 ± 24,647 | 4596 ± 2742 | 5429 ± 1769 | SM18:1/25:1 | 886 ± 178 | 1148 ± 163 * | 17 ± 30 | 209 ± 27 * |
18:1/18:0_P | - | - | ND | ND | SM18:1/25:0 | 678 ± 162 | 922 ± 169 * | 85 ± 14 | 98 ± 11 * |
18:1/24:1 | 195,825 ± 22,357 | 208,497 ± 28,894 | 6237 ± 3462 | 6943 ± 3549 | SM18:1/26:3 | ND | ND | 133 ± 13 | 145 ± 23 |
18:1/24:0 | 51,054 ± 9607 | 66,790 ± 13,946 * | 3095 ± 1081 | 3209 ± 1092 | SM18:1/26:2 | 466 ± 61 | 544 ± 71 * | 153 ± 14 | 161 ± 20 |
18:0/24:0 | 2531 ± 1321 | 3218 ± 556 | 588 ± 240 | 480 ± 160 | SM18:1/26:1 | 554 ± 96 | 640 ± 58 * | 100 ± 11 | 109 ± 12 |
18:1/25:1 | 1260 ± 192 | 1685 ± 386 * | 64 ± 27 | 77 ± 30 | SM18:1/26:0 | 392 ± 39 | 433 ± 26 * | 67 ± 10 | 73 ± 7 |
18:1/26:2 | 289 ± 85 | 370 ± 115 | 3.1 ± 4.6 | 4.2 ± 6.8 | Lac18:1/16:0 | 9215 ± 2180 | 6374 ± 1446 * | 514 ± 138 | 407 ± 95 |
SM18:1/14:0 | 258 ± 91 | 216 ± 95 | 579 ± 84 | 495 ± 90 * | Lac18:1/18:0 | 1953 ± 403 | 1875 ± 512 | 87 ± 27 | 99 ± 37 |
18:1/26:1 | 351 ± 69 | 449 ± 96 * | 11 ± 13 | 23 ± 9 | Lac18:1/24:1 | 3830 ± 1108 | 4639 ± 2487 | ND | ND |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tardieu, D.; Matard-Mann, M.; Collén, P.N.; Guerre, P. Strong Alterations in the Sphingolipid Profile of Chickens Fed a Dose of Fumonisins Considered Safe. Toxins 2021, 13, 770. https://doi.org/10.3390/toxins13110770
Tardieu D, Matard-Mann M, Collén PN, Guerre P. Strong Alterations in the Sphingolipid Profile of Chickens Fed a Dose of Fumonisins Considered Safe. Toxins. 2021; 13(11):770. https://doi.org/10.3390/toxins13110770
Chicago/Turabian StyleTardieu, Didier, Maria Matard-Mann, Pi Nyvall Collén, and Philippe Guerre. 2021. "Strong Alterations in the Sphingolipid Profile of Chickens Fed a Dose of Fumonisins Considered Safe" Toxins 13, no. 11: 770. https://doi.org/10.3390/toxins13110770
APA StyleTardieu, D., Matard-Mann, M., Collén, P. N., & Guerre, P. (2021). Strong Alterations in the Sphingolipid Profile of Chickens Fed a Dose of Fumonisins Considered Safe. Toxins, 13(11), 770. https://doi.org/10.3390/toxins13110770