Yeast Cell as a Bio-Model for Measuring the Toxicity of Fish-Killing Flagellates
Abstract
:1. Introduction
2. Results
3. Discussion
4. Conclusions
5. Materials and Methods
- Sample A: Intact cells (viable cells and extracellular material) of both species.
- Sample B: Ultrasonic rupture cells suspensions, which were obtained by sonicating 7 mL culture suspensions in an ice bath with a continuous output power of 9 for 1 min with a Virsonic 100 Ultrasonic Cell Disrupter (VirTis Company, Gardiner, NY, USA).
- Sample C: culture supernatants were prepared by centrifuging a 7 mL sample A at 500× g for 10 min at 4 °C, using 15 mL falcon centrifuge tubes in a Beckman GH-3.8/GH-3.8A swing-out rotor (Beckman Coulter, Fullerton, CA, USA).
- Sample D: resuspended pellets in ASW and sonicated for 1 min with a continuous output power of 9.
- Sample E: Sample D supernatants, were prepared by centrifuging sample D at 6100× g for 15 min at 4 °C.
- Sample F: Sample B supernatants, were obtained by centrifuging sample B at 500× g for 10 min at 4 °C.
- Sample G: resuspended pellets from sample B and sonicated with similar output power for sample B and D.
- Sample H: Sample F supernatants, were attained by centrifuging at 6100× g for 15 min at 4 °C.
- Sample I: resuspended, sonicated pellets from sample F, with similar power for pervious samples.
- Negative control was prepared by mixing yeast with ASW.
- Positive control was prepared by sonicating the yeast sample for 1 min with a continuous output power of 9.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anderson, D.M.; Cembella, A.D.; Hallegraeff, G.M. Progress in Understanding Harmful Algal Blooms: Paradigm Shifts and New Technologies for Research, Monitoring, and Management. Annu. Rev. Mar. Sci. 2012, 4, 143–176. [Google Scholar] [CrossRef] [Green Version]
- Hallegraeff, G.M. A review of harmful algal blooms and their apparent global increase. Phycologia 1993, 32, 79–99. [Google Scholar] [CrossRef] [Green Version]
- Hallegraeff, G.M. Ocean Climate change, phytoplankton community responses, and harmful algal blooms: A formidable predictive challenge. J. Phycol. 2010, 46, 220–235. [Google Scholar] [CrossRef]
- Wells, M.L.; Trainer, V.L.; Smayda, T.J.; Karlson, B.S.; Trick, C.G.; Kudela, R.M.; Ishikawa, A.; Bernard, S.; Wulff, A.; Anderson, D.M.; et al. Harmful algal blooms and climate change: Learning from the past and present to forecast the future. Harmful Algae 2015, 49, 68–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smayda, T.J. Harmful algal blooms: Their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnol. Oceanogr. 1997, 42, 1137–1153. [Google Scholar] [CrossRef]
- Smayda, T.J. What is a bloom? A commentary. Limnol. Oceanogr. 1997, 42, 1132–1136. [Google Scholar] [CrossRef]
- Backer, L.C.; Schurz-Rogers, H.; Fleming, L.E.; Kirkpatrick, B.; Benson, J. Marine phycotoxins in seafood. In Toxins in Food; Dabrowski, W.M., Sikorski, Z.E., Eds.; CRC Press LLC: Boca Raton, FL, USA, 2005; pp. 155–190. [Google Scholar]
- Isbister, G.K.; Kiernan, M.C. Neurotoxic marine poisoning. Lancet Neurol. 2005, 4, 219–228. [Google Scholar] [CrossRef]
- Watkins, S.M. Neurotoxic Shellfish Poisoning. Mar. Drugs 2008, 6, 430–455. [Google Scholar] [CrossRef] [PubMed]
- Achaibar, K.C.; Moore, S.; Bain, P.G. Ciguatera poisoning. Pract. Neurol. 2007, 7, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Edvardsen, B.; Imai, I. The ecology of harmful flagellates within Prymnesiophyceae and Raphidophyceae. In Ecology of Harmful Algae, Ecological Studies: Analysis and Synthesis; Graneli, E., Turner, J.T., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 189, pp. 67–79. [Google Scholar]
- Hershberger, P.K.; Rensel, J.E.; Matter, A.L.; Taub, F. Vertical distribution of the chloromonad flagellate Heterosigma carterae in columns: Implications for bloom development. Can. J. Fish. Aquat. Sci. 1997, 54, 2228–2234. [Google Scholar] [CrossRef]
- Rensel, J.E.; Whyte, J.N.C. Finfish mariculture and harmful algal blooms. In Manual on Harmful Marine Microalgae. Monographs on Oceanographic Methodology; Hallegraeff, G.M., Anderson, D.M., Cembella, A.D., Eds.; UNESCO Publishing: Paris, France, 2003; Volume 11, pp. 693–722. [Google Scholar]
- O’Halloran, C.; Silver, M.W.; Holman, T.R.; Scholin, C.A. Heterosigma akashiwo in central California waters. Harmful Algae 2006, 5, 124–132. [Google Scholar] [CrossRef]
- Rensel, J.J.; Haigh, N.; Tynan, T.J. Fraser river sockeye salmon marine survival decline and harmful blooms of Heterosigma akashiwo. Harmful Algae 2010, 10, 98–115. [Google Scholar] [CrossRef]
- Livingston, R.J. Phytoplankton bloom effects on a gulf estuary: Water quality changes and biological response. Ecol. Appl. 2007, 17, S110–S128. [Google Scholar] [CrossRef]
- Ono, K.; Khan, S.; Onoue, Y. Effects of temperature and light intensity on the growth and toxicity of Heterosigma akashiwo (Raphidophyceae). Aquac. Res. 2000, 31, 427–433. [Google Scholar] [CrossRef]
- Haque, S.M.; Onoue, Y. Effects of salinity on growth and toxin production of a noxious phytoflagellate, Heterosigma akashiwo (Raphidophyceae). Bot. Mar. 2002, 45, 356–363. [Google Scholar] [CrossRef]
- Clement, A.; Lembeye, G. Phytoplankton monitoring program in the fish farming region of South Chile. In Toxic Phytoplankton Blooms in the Sea, Proceedings of the Fifth International Conference on Toxic Marine Phytoplankton, Newport, RI, USA, 28 October–1 November 1991; Developments in Marine Biology; Smayda, T.J., Shimizu, Y., Eds.; Elsevier: New York, NY, USA, 1993; Volume 3, pp. 223–228. [Google Scholar]
- Tseng, C.K.; Zhou, M.J.; Zou, J.Z. Toxic phytoplankton studies in China. In Toxic Phytoplankton Blooms in the Sea, Proceedings of the Fifth International Conference on Toxic Marine Phytoplankton, Newport, RI, USA, 28 October–1 November 1991; Developments in Marine Biology; Smayda, T.J., Shimizu, Y., Eds.; Elsevier: New York, NY, USA, 1993; Volume 3, pp. 347–352. [Google Scholar]
- Chang, F.H.; Anderson, C.; Boustead, N.C. First record of a Heterosigma (Raphidophyceae) bloom with associated mortality of cage-reared salmon in Big Glory Bay, New Zealand. N. Z. J. Mar. Freshw. Res. 1990, 24, 461–469. [Google Scholar] [CrossRef]
- Pettersson, L.H.; Pozdnyakov, D. Qualification, species variety, and consequences of harmful algal blooms (HABs). In Monitoring of Harmful Algal Blooms; Springer: Singapore, 2013; pp. 1–24. [Google Scholar]
- Ulitzur, S.; Shilo, M. Mode of Action of Prymnesium parvum Ichthyotoxin. J. Protozool. 1966, 13, 332–336. [Google Scholar] [CrossRef]
- Holdway, P.A.; Watson, R.A.; Moss, B. Aspects of the ecology of Prymnesium parvum (Haptophyta) and water chemistry in the Norfolk Broads, England. Freshw. Biol. 1978, 8, 295–311. [Google Scholar] [CrossRef]
- Kaartvedt, S.; Johnsen, T.M.; Aksnes, D.L.; Lie, U.; Svendsen, H. Occurrence of the Toxic Phytoflagellate prymnesium parvum and Associated Fish Mortality in a Norwegian Fjord System. Can. J. Fish. Aquat. Sci. 1991, 48, 2316–2323. [Google Scholar] [CrossRef]
- Guo, M.; Harrison, P.J.; Taylor, F.J.R. Fish kills related to Prymnesium parvum N. Carter (Haptophyta) in the People’s Republic of China. Environ. Biol. Fishes 1996, 8, 111–117. [Google Scholar] [CrossRef]
- Probert, I.; Fresnel, J. Prymnesium lepailleuriisp. nov. (Prymnesiophyceae), a new littoral flagellate from the Mediterranean Sea. Eur. J. Phycol. 2007, 42, 289–294. [Google Scholar] [CrossRef]
- Roelke, D.L.; Grover, J.P.; Brooks, B.W.; Glass, J.; Buzan, D.; Southard, G.M.; Fries, L.; Gable, G.M.; Schwierzke-Wade, L.; Byrd, M.; et al. A decade of fish-killing Prymnesium parvum blooms in Texas: Roles of inflow and salinity. J. Plankton Res. 2011, 33, 243–253. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Arakawa, O.; Onoue, Y. Neurotoxins in a toxic red tide of Heterosigma akashiwo (Raphidophyceae) in Kagoshima Bay, Japan. Aquac. Res. 1997, 28, 9–14. [Google Scholar] [CrossRef]
- Yang, C.; Albright, L.; Yousif, A. Oxygen-radical-mediated effects of the toxic phytoplankter Heterosigma carterae on juvenile rainbow trout Oncorhynchus mykiss. Dis. Aquat. Org. 1995, 23, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Twiner, M.J. Possible physiological mechanisms for production of hydrogen peroxide by the ichthyotoxic flagellate Heterosigma akashiwo. J. Plankton Res. 2000, 22, 1961–1975. [Google Scholar] [CrossRef] [Green Version]
- Neely, T.; Campbell, L. A modified assay to determine hemolytic toxin variability among Karenia clones isolated from the Gulf of Mexico. Harmful Algae 2006, 5, 592–598. [Google Scholar] [CrossRef]
- Ling, C.; Trick, C.G. Expression and standardized measurement of hemolytic activity in Heterosigma akashiwo. Harmful Algae 2010, 9, 522–529. [Google Scholar] [CrossRef]
- Astuya-Villalón, A.; Ramírez, A.E.; Aballay, A.; Araya, J.; Silva, J.; Ulloa, V.; Fuentealba, J. Neurotoxin-like compounds from the ichthyotoxic red tide alga Heterosigma akashiwo induce a TTX-like synaptic silencing in mammalian neurons. Harmful Algae 2015, 47, 1–8. [Google Scholar] [CrossRef]
- Powers, L.; Creed, I.F.; Trick, C.G. Sinking of Heterosigma akashiwo results in increased toxicity of this harmful algal bloom species. Harmful Algae 2012, 13, 95–104. [Google Scholar] [CrossRef]
- Mohamed, Z.A.; Al-Shehri, A.M. The link between shrimp farm runoff and blooms of toxic Heterosigma akashiwo in Red Sea coastal waters. Oceanology 2012, 54, 287–309. [Google Scholar] [CrossRef] [Green Version]
- Endo, M.; Foscarini, R.; Kuroki, A. Electrocardiogram of a marine fish, Pagrus major, exposed to red tide plankton, Chattonella marina. Mar. Biol. 1988, 97, 477–481. [Google Scholar] [CrossRef]
- Endo, M.; Onoue, Y.; Kuroki, A. Neurotoxin-induced cardiac disorder and its role in the death of fish exposed to Chattonella marina. Mar. Biol. 1992, 112, 371–376. [Google Scholar] [CrossRef]
- Nakamura, A.; Okamoto, T.; Komatsu, N.; Ooka, S.; Oda, T.; Ishimatsu, A.; Muramatsu, T. Fish Mucus Stimurates the Generation of Superoxide Anion by Chattonella marina and Heterosigma akashiwo. Fish. Sci. 1998, 64, 866–869. [Google Scholar] [CrossRef] [Green Version]
- Shimada, M.; Murakami, T.H.; Imahayashi, T.; Ozaki, H.S.; Toyoshima, T.; Okaichi, T. Effects of sea bloom, Chattonella antiqua, on gill primary lamellae of the young yellowtail, Seriola quinqueradiata. Acta Histochem. Cytochem. 1983, 16, 232–244. [Google Scholar] [CrossRef] [Green Version]
- Endo, M.; Sakai, T.; Kuroki, A. Histological and histochemical changes in the gills of the yellowtail Seriola quinqueradiata exposed to the Raphidphycean flagellate Chattonella marina. Mar. Biol. 1985, 87, 193–197. [Google Scholar] [CrossRef]
- Ishimatsu, A.; Sameshima, M.; Tamura, A.; Oda, T. Histological Analysis of the Mechanisms of Chattonella-Induced Hypoxemia in Yellowtail. Fish. Sci. 1996, 62, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Botana, L.M.; Alfonso, A.; Botana, A.; Vieytes, M.R.; Vale, C.; Vilariño, N.; Louzao, C. Functional assays for marine toxins as an alternative, high-throughput-screening solution to animal tests. TrAC Trends Anal. Chem. 2009, 28, 603–611. [Google Scholar] [CrossRef]
- Stewart, I.; McLeod, C. The Laboratory Mouse in Routine Food Safety Testing for Marine Algal Biotoxins and Harmful Algal Bloom Toxin Research: Past, Present and Future. J. AOAC Int. 2014, 97, 356–372. [Google Scholar] [CrossRef]
- Manger, R.L.; Leja, L.S.; Lee, S.Y.; Hungerford, J.M.; Wekell, M.M. Tetrazolium-Based Cell Bioassay for Neurotoxins Active on Voltage-Sensitive Sodium Channels: Semiautomated Assay for Saxitoxins, Brevetoxins, and Ciguatoxins. Anal. Biochem. 1993, 214, 190–194. [Google Scholar] [CrossRef]
- Ikeda, C.E.; Cochlan, W.P.; Bronicheski, C.M.; Trainer, V.L.; Trick, C.G. The effects of salinity on the cellular permeability and cytotoxicity of Heterosigma akashiwo. J. Phycol. 2016, 52, 745–760. [Google Scholar] [CrossRef]
- Dorantes-Aranda, J.J.; Waite, T.D.; Godrant, A.; Rose, A.L.; Tovar, C.D.; Woods, G.M.; Hallegraeff, G.M. Novel application of a fish gill cell line assay to assess ichthyotoxicity of harmful marine microalgae. Harmful Algae 2011, 10, 366–373. [Google Scholar] [CrossRef]
- Dorantes-Aranda, J.J.; Nichols, P.D.; Waite, T.D.; Hallegraeff, G.M. Strain variability in fatty acid composition of Chattonella marina (Raphidophyceae) and its relation to differing ichthyotoxicity toward rainbow trout gill cells. J. Phycol. 2013, 49, 427–438. [Google Scholar] [CrossRef] [PubMed]
- Dorantes-Aranda, J.J.; Seger, A.; Mardones, J.I.; Nichols, P.D.; Hallegraeff, G.M. Progress in Understanding Algal Bloom-Mediated Fish Kills: The Role of Superoxide Radicals, Phycotoxins and Fatty Acids. PLoS ONE 2015, 10, e0133549. [Google Scholar] [CrossRef]
- Žegura, B.; Sedmak, B.; Filipič, M. Microcystin-LR induces oxidative DNA damage in human hepatoma cell line HepG2. Toxicon 2003, 41, 41–48. [Google Scholar] [CrossRef]
- Bazin, E.; Mourot, A.; Humpage, A.R. Genotoxicity of a freshwater cyanotoxin, cylindrospermopsin, in two human cell lines: Caco-2 and HepaRG. Environ. Mol. Mutagen. 2009, 51, 251–259. [Google Scholar] [CrossRef] [PubMed]
- McCall, J.R.; Elliott, E.A.; Bourdelais, A.J. A New Cytotoxicity Assay for Brevetoxins Using Fluorescence Microscopy. Mar. Drugs 2014, 12, 4868–4882. [Google Scholar] [CrossRef] [Green Version]
- Karathia, H.; Vilaprinyo, E.; Sorribas, A.; Alves, R. Saccharomyces cerevisiae as a Model Organism: A Comparative Study. PLoS ONE 2011, 6, e16015. [Google Scholar] [CrossRef] [Green Version]
- Engler, K.H.; Coker, R.; Evans, I.H. A novel colorimetric yeast bioassay for detecting trichothecene mycotoxins. J. Microbiol. Methods 1999, 35, 207–218. [Google Scholar] [CrossRef]
- Kuroda, A.; Nakashima, T.; Yamaguchi, K.; Oda, T. Isolation and characterization of light-dependent hemolytic cytotoxin from harmful red tide phytoplankton Chattonella marina. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2005, 141, 297–305. [Google Scholar] [CrossRef]
- De Boer, M.K.; Tyl, M.R.; Fu, M.; Kulk, G.; Liebezeit, G.; Tomas, C.R.; Lenzi, A.; Naar, J.; Vrieling, E.G.; van Rijssel, M. Haemolytic activity within the species Fibrocapsa japonica (Raphidophyceae). Harmful Algae 2009, 8, 699–705. [Google Scholar] [CrossRef]
- Seger, A.; Dorantes-Aranda, J.J.; Müller, M.N.; Body, A.; Peristyy, A.; Place, A.R.; Park, T.G.; Hallegraeff, G. Mitigating Fish-Killing Prymnesium parvum Algal Blooms in Aquaculture Ponds with Clay: The Importance of pH and Clay Type. J. Mar. Sci. Eng. 2015, 3, 154–174. [Google Scholar] [CrossRef]
- Guillard, R.R.L. Culture of phytoplankton for feeding marine invertebrates. In Culture of Marine Invertebrate Animals; Smith, W.L., Chanley, M.H., Eds.; Plenum Press: New York, NY, USA, 1975; pp. 26–60. [Google Scholar]
- Harrison, P.J.; Berges, J.A. Marine Culture Media. In Algal Culturing Techniques; Elsevier BV: Amsterdam, The Netherlands, 2005; pp. 21–33. [Google Scholar]
- Lebaron, P.; Catala, P.; Parthuisot, N. Effectiveness of SYTOX Green Stain for Bacterial Viability Assessment. Appl. Environ. Microbiol. 1998, 64, 2697–2700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Algae | Source | Remark | Sum of Squares | Degree of Freedom | Mean Square | f-Value | p-Value |
---|---|---|---|---|---|---|---|
Heterosigma akashiwo | Time | † Sig. | 994.76 | 1 | 994.76 | 56.21 | <0.001 |
§ Treat. | Sig. | 40,758.84 | 10 | 4075.88 | 230.29 | <0.001 | |
Time × Treat. | Sig. | 1358.04 | 10 | 135.80 | 7.67 | <0.001 | |
Residual | 778.75 | 44 | 17.7 | ||||
Prymnesium parvum | Time | Sig. | 247.58 | 1 | 247.58 | 6.37 | 0.015 |
Treat. | Sig. | 51,661.38 | 10 | 5166.14 | 132.85 | <0.001 | |
Time × Treat. | ‡ N-Sig | 302.93 | 10 | 30.29 | 0.78 | 0.648 | |
Residual | 1711.04 | 44 | 38.89 |
Source | Remark | Sum of Squares | Degree of Freedom | Mean Square | f-Value | p-Value |
---|---|---|---|---|---|---|
† Algal species | Nonsignificant | 1.397 | 1 | 1.397 | 0.0130 | 0.911 |
** Treatment | Significant | 1840.645 | 3 | 613.548 | 5.697 | 0.008 |
Algal species × Treatment | Significant | 2721.014 | 3 | 907.005 | 8.422 | 0.001 |
Residual | 1723.203 | 16 | 107.700 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allaf, M.M.; Trick, C.G. Yeast Cell as a Bio-Model for Measuring the Toxicity of Fish-Killing Flagellates. Toxins 2021, 13, 821. https://doi.org/10.3390/toxins13110821
Allaf MM, Trick CG. Yeast Cell as a Bio-Model for Measuring the Toxicity of Fish-Killing Flagellates. Toxins. 2021; 13(11):821. https://doi.org/10.3390/toxins13110821
Chicago/Turabian StyleAllaf, Malihe Mehdizadeh, and Charles G. Trick. 2021. "Yeast Cell as a Bio-Model for Measuring the Toxicity of Fish-Killing Flagellates" Toxins 13, no. 11: 821. https://doi.org/10.3390/toxins13110821
APA StyleAllaf, M. M., & Trick, C. G. (2021). Yeast Cell as a Bio-Model for Measuring the Toxicity of Fish-Killing Flagellates. Toxins, 13(11), 821. https://doi.org/10.3390/toxins13110821