Drinking Green Tea: Despite the Risks Due to Mycotoxins, Is It Possible to Increase the Associated Health Benefits?
Abstract
:1. Introduction
2. Results
2.1. Mycotoxins Occurrence in Tea Samples
2.2. Mycotoxins and Catechins Estimated Intake
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Sample Collection
5.2. Analytical Determination of Mycotoxins
5.3. Intake Assessment and Risk Estimates
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silva, R.M.E. O Chá em Portugal: História e Hábitos de Consumo. Master’s Thesis, Universidade do Minho, Braga, Portugal, 2014. Available online: http://hdl.handle.net/1822/33070 (accessed on 5 November 2020).
- CCP (Committee on Commodity Problems)—Intergovernmental Group on Tea. Ccp:te 18/crs1 Current Market Situation and Medium Term Outlook. 2018. Available online: http://www.fao.org/3/a-i4480e.pdf (accessed on 5 November 2020).
- Sedova, I.; Kiseleva, M.; Tutelyan, V. Mycotoxins in Tea: Occurrence, Methods of Determination and Risk Evaluation. Toxins 2018, 10, 444. [Google Scholar] [CrossRef] [Green Version]
- Dufresne, C.J.; Farnworth, E.R. A review of latest research findings on the health promotion properties of tea. J. Nutr. Biochem. 2001, 12, 404–421. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Appropriateness to set a group health-based guidance value for fumonisins and their modified forms. EFSA J. 2018, 16, e05172. [Google Scholar] [CrossRef]
- Dogra, D.; Ahuja, S.; Krishnan, S.; Kohli, S.; Rani, V. In vitro cardioprotec-tive effect of Indian Camellia sinensis extract against hydrogen peroxide induced hypertrophy. J. Pharm. Res. 2011, 4, 1877–1879. [Google Scholar]
- Demeule, M.; Brossard, M.; Pagé, M.; Gingras, D.; Béliveau, R. Matrix metalloproteinase inhibition by green tea catechins. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 2000, 1478, 51–60. [Google Scholar] [CrossRef]
- Kubo, I.; Muroi, H.; Himejima, M. Antimicrobial activity of green tea flavor components and their combination effects. J. Agric. Food Chem. 1992, 40, 245–248. [Google Scholar] [CrossRef]
- Samali, A.; Kirim, R.A.; Mustapha, K.B. Qualitative and quantitative evaluation of some herbal teas commonly consumed in Nigeria. Afr. J. Pharm. Pharmacol. 2012, 6, 384–388. [Google Scholar] [CrossRef]
- Sereshti, H.; Samadi, S.; Jalali-Heravi, M. Determination of volatile components of green, black, oolong and white tea by optimised ultrasound-assisted extraction-dispersive liquid-liquid microextraction coupled with gas chromatography. J. Chromatogr. A 2013, 1280, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Aty, A.M.; Choi, J.-H.; Rahman, M.M.; Kim, S.-W.; Tosun, A.; Shim, J.-H. Residues and contaminants in tea and tea infusions: A review. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2014, 31, 1794–1804. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, Z.; Zhou, Y.; Ling, T.; Wan, X. Chinese dark teas: Postfermentation, chemistry and biological activities. Food Res. Int. 2013, 53, 600–607. [Google Scholar] [CrossRef]
- Cabrera, C.; Artacho, R.; Gimenez, R. Beneficial effects of green tea—A review. J. Am. Coll. Nutr. 2006, 25, 79–99. [Google Scholar] [CrossRef] [PubMed]
- Bernatoniene, J.; Kopustinskiene, D.M. The Role of Catechins in Cellular Responses to Oxidative Stress. Molecules 2018, 23, 965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shammas, M.A.; Neri, P.; Koley, H.; Batchu, R.B.; Bertheau, R.C.; Munshi, V.; Prabhala, R.; Fulciniti, M.; Tai, Y.T.; Treon, S.P.; et al. Specific killing of multiple myeloma cells by epigallocatechin-3-gallate extracted from green tea: Biologic activity and therapeutic implications. Blood 2016, 108, 2804–2810. [Google Scholar] [CrossRef]
- Braicu, C.; Ladomery, M.R.; Chedea, V.S.; Irimie, A.; Berindan-Neagoe, I. The relationship between the structure and biological actions of green tea catechins. Food Chem. 2013, 141, 3282–3289. [Google Scholar] [CrossRef] [PubMed]
- Zaveri, N.T. Green tea and its polyphenolic catechins: Medicinal uses in cancer and noncancer applications. Life Sci. 2006, 78, 2073–2080. [Google Scholar] [CrossRef] [PubMed]
- EFSA ANS Panel (EFSA Panel on Food Additives and Nutrient Sources Added to Food); Younes, M.; Aggett, P.; Aguilar, F.; Crebelli, R.; Dusemund, B.; Filipic, M.; Frutos, M.J.; Galtier, P.; Gott, D.; et al. Scientific Opinion on the safety of green tea catechins. EFSA J. 2018, 16, e05239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AHPA. Recommended Microbial Limits for Botanical Ingredients (in Colony-Forming Units (CFU)/g); American Herbal Products Association: Silver Spring, MD, USA, 2016. [Google Scholar]
- Haas, D.; Pfeifer, B.; Reiterich, C.; Partenheimer, R.; Reck, B.; Buzina, W. Identification and quantification of fungi and mycotoxins from Pu-erh tea. Int. J. Food Microbiol. 2013, 166, 316–322. [Google Scholar] [CrossRef]
- Dayananda, K.; Fernando, K.; Perera, S. Assessment of microbial contaminations in dried tea and tea brew. Int. J. Pharm. Sci. Invent. 2017, 6, 6–13. [Google Scholar]
- Viegas, C.; Sá, F.; Mateus, M.; Santos, P.; Almeida, B.; Aranha Caetano, L.; Quintal Gomes, A.; Viegas, S. Commercial green tea from Portugal: Comprehensive microbiologic analyses. Int. J. Food Microbiol. 2020, 333, 108795. [Google Scholar] [CrossRef]
- Marin, S.; Ramos, A.J.; Cano-Sancho, G.; Sanchis, V. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food Chem. Toxicol. 2013, 60, 218–237. [Google Scholar] [CrossRef] [PubMed]
- Halt, M. Moulds and Mycotoxins in Herb Tea and Medicinal Plants. Eur. J. Epidemiol. 1998, 14, 269–274. [Google Scholar] [CrossRef]
- Peraica, M.; Radić, B.; Lucić, A.; Pavlović, M. Toxic effects of mycotoxins in humans. Bull. World Health Organ. 1999, 77, 754–766. [Google Scholar]
- Kabak, B. The fate of mycotoxins during thermal food processing. J. Sci. Food Agric. 2009, 89, 549–554. [Google Scholar] [CrossRef]
- Zhang, L.; Dou, X.-W.; Zhang, C.; Logrieco, A.F.; Yang, M.-H. A Review of Current Methods for Analysis of Mycotoxins in Herbal Medicines. Toxins 2018, 10, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Commission. Commission Regulation (EC). No 1881/2006. Regulation of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union 2006, 364, 5–24. [Google Scholar]
- Boué, G.; Guillou, S.; Antignac, J.-P.; Le Bizec, B.; Membré, J.-M. Public health risk-benefit assessment associated with food consumption–a review. Eur. J. Nutr. Food Saf. 2015, 5, 32–58. [Google Scholar] [CrossRef]
- Tijhuis, M.J.; De Jong, N.; Pohjola, M.V.; Gunnlaugsdóttir, H.; Hendriksen, M.; Hoekstra, J.; Holm, F.; Kalogeras, N.; Leino, O.; Van Leeuwen, F.X.R.; et al. State of the art in benefit-risk analysis: Food and nutrition. Food Chem. Toxicol. 2012, 50, 5–25. [Google Scholar] [CrossRef]
- Verhagen, H.; Andersen, R.; Antoine, J.-M.; Finglas, P.; Hoekstra, J.; Kardinaal, A.; Chiodini, A. Application of the BRAFO tiered approach for benefit–risk assessment to case studies on dietary interventions. Food Chem. Toxicol. 2012, 50, S710–S723. [Google Scholar] [CrossRef]
- Nauta, M.J.; Andersen, R.; Pilegaard, K.; Pires, S.M.; Ravn-Haren, G.; Tetens, I.; Poulsen, M. Meeting the challenges in the development of risk-benefit assessment of foods. Trends Food Sci. Technol. 2018, 76, 90–100. [Google Scholar] [CrossRef]
- Assunção, R.; Alvito, P.; Brazão, R.; Carmona, P.; Fernandes, P.; Jakobsen, L.S.; Lopes, C.; Martins, C.; Membré, J.-M.; Monteiro, S.; et al. Building capacity in risk-benefit assessment of foods: Lessons learned from the RB4EU project. Trends Food Sci. Technol. 2019, 91, 541–548. [Google Scholar] [CrossRef]
- Prasanth, M.Y.; Sivamaruthi, B.S.; Chaiyasut, C.; Tencomnao, T. A Review of the Role of Green Tea (Camellia sinensis) in Antiphotoaging, Stress Resistance, Neuroprotection, and Autophagy. Nutrients 2019, 11, 474. [Google Scholar] [CrossRef] [Green Version]
- Xing, L.; Zhang, H.; Qi, R.; Tsao, R.; Mine, Y. Recent Advances in the Understanding of the Health Benefits and Molecular Mechanisms Associated with Green Tea Polyphenols. J. Agric. Food Chem. 2019, 67, 1029–1043. [Google Scholar] [CrossRef]
- D’Archivio, M.; Filesi, C.; Di Benedetto, R.; Gargiulo, R.; Giovannini, C.; Masela, R. Polyphenols, dietary sources and bioavailability. Ann. Ist. Super. Sanità 2007, 43, 348–361. [Google Scholar] [PubMed]
- Arts, I.C.; van de Putte, B.; Hollman, P.C. Catechin contents of foods commonly consumed in The Netherlands. 1. Fruits, vegetables, staple foods, and processed foods. J. Agric. Food Chem. 2000, 48, 1746–1751. [Google Scholar] [CrossRef]
- Cooper, R.; Morré, D.J.; Morreé, D.M. Medicinal benefits of green tea: Part II. Review of anticancer properties. J. Altern. Complement. Med. 2005, 11, 639–652. [Google Scholar] [CrossRef] [PubMed]
- Chacko, S.M.; Thambi, P.T.; Kuttan, R.; Nishigaki, I. Beneficial effects of green tea: A literature review. Chin. Med. 2000, 5, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, L.M.; Gouveia, S.T.; Nobrega, J.A. Comparison of heating extraction procedures for Al, Ca, Mg and Mn in tea samples. Ann. Sci. 2002, 18, 313–318. [Google Scholar] [CrossRef] [Green Version]
- Hamdaoui, M.H.; Chabchob, S.; Heidhili, A. Iron bioavailability and weight gains to iron-deficient rats fed a commonly consumed Tunisian meal “bean seeds ragout” with or without beef and with green or black tea decoction. J. Trace Elem. Med. Biol. 2003, 17, 159–164. [Google Scholar] [CrossRef]
- Hu, J.; Webster, D.; Cao, J.; Shao, A. The safety of green tea and green tea extract consumption in adults—Results of a systematic review. Regul. Toxicol. Pharmacol. 2018, 95, 412–433. [Google Scholar] [CrossRef]
- Imai, K.; Suga, K.; Nakachi, K. Cancer prevention effects of drinking Green tea among a Japanese population. Prev. Med. 1997, 26, 769–775. [Google Scholar] [CrossRef]
- Pallarés, N.; Font, G.; Mañes, J.; Ferrer, E. Multimycotoxin LC-MS/MS Analysis in Tea Beverages after Dispersive Liquid-Liquid Microextraction (DLLME). J. Agric. Food Chem. 2017, 65, 10282–10289. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Domínguez, G.; Romero-González, R.; Garrido Frenich, A. Multi-class methodology to determine pesticides and mycotoxins in green tea and royal jelly supplements by liquid chromatography coupled to Orbitrap high resolution mass spectrometry. Food Chem. 2016, 197, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Marnewick, J.L.; van der Westhuizen, F.H.; Joubert, E.; Swanevelder, S.; Swart, P.; Gelderblom, W.C.A. Chemoprotective properties of rooibos (Aspalathus linearis), honeybush (Cyclopia intermedia) herbal and green and black (Camellia sinensis) teas against cancer promotion induced by fumonisin B1 in rat liver. Food Chem. Toxicol. 2009, 47, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, K.; Kinoshita, M.; Kamata, Y.; Minai, Y.; Sugita-Konishi, Y. (−)-Epigallocatechin gallate suppresses the cytotoxicity induced by trichothecene mycotoxins in mouse cultural macrophages. Mycotoxin Res. 2011, 27, 281–285. [Google Scholar] [CrossRef]
- ISO. ISO 3103:1980—Tea—Preparation of Liquor for Use in Sensory Tests. 1980. Available online: https://www.iso.org/standard/8250.html (accessed on 5 November 2020).
- EFSA Panel on Contaminants in the Food Chain (CONTAM); Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.; Leblanc, J.-C.; et al. Risk assessment of aflatoxins in food. EFSA J. 2020, 18, e06040. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on the risk for public and animal health related to the presence of sterigmatocystin in food and feed. EFSA J. 2013, 11, 3254. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Appropriateness to set a group health-based guidance value for zearalenone and its modified forms. EFSA J. 2016, 14, e04425. [Google Scholar] [CrossRef]
Green Tea Consumption (g/Day) | Estimated Intake of Mycotoxins (ng/kg bw/Day) and Catechins (mg/Day) | Estimated Risk Associated with the Exposure to Mycotoxins and Catechins | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Current a | AFB1 | FB1 | ZEA | STER | EGCG c | AFB1 d | FB1 e | ZEA e | STER d | EGCG f | |
Minimum | 122.8 | 0.00002 | 0.0005 | 0.0003 | 0.00002 | 86.0 | 17,445,715 | 0.000005 | 0.000001 | 6,978,285,900 | 11 |
Maximum | 458.9 | 0.00009 | 0.0019 | 0.0011 | 0.00009 | 321.2 | 4,669,857 | 0.000019 | 0.000004 | 1,867,942,679 | 40 |
Hypothetical b | |||||||||||
1 cup/day | 150 | 0.00003 | 0.0006 | 0.0004 | 0.00003 | 105 | 14,285,714 | 0.000006 | 0.000001 | 5,714,285,714 | 13 |
2 cups/day | 300 | 0.00006 | 0.0013 | 0.0007 | 0.00006 | 210 | 7,142,857 | 0.000013 | 0.000003 | 2,857,142,857 | 26 |
3 cups/day | 450 | 0.00008 | 0.0019 | 0.0011 | 0.00008 | 315 | 4,761,905 | 0.000019 | 0.000004 | 1,904,761,905 | 39 |
4 cups/day | 600 | 0.00011 | 0.0025 | 0.0014 | 0.00011 | 420 | 3,571,429 | 0.000025 | 0.000006 | 1,428,571,429 | 53 |
5 cups/day | 750 | 0.00014 | 0.0032 | 0.0018 | 0.00014 | 525 | 2,857,143 | 0.000032 | 0.000007 | 1,142,857,143 | 66 |
6 cups/day | 900 | 0.00017 | 0.0038 | 0.0022 | 0.00017 | 630 | 2,380,952 | 0.000038 | 0.000009 | 952,380,952 | 79 |
7 cups/day | 1050 | 0.00020 | 0.0044 | 0.0025 | 0.00020 | 735 | 2,040,816 | 0.000044 | 0.000010 | 816,326,531 | 92 |
8 cups/day | 1200 | 0.00022 | 0.0050 | 0.0029 | 0.00022 | 840 | 1,785,714 | 0.000050 | 0.000011 | 714,285,714 | 105 |
9 cups/day | 1350 | 0.00025 | 0.0057 | 0.0032 | 0.00025 | 945 | 1,587,302 | 0.000057 | 0.000013 | 634,920,635 | 118 |
10 cups/day | 1500 | 0.00028 | 0.0063 | 0.0036 | 0.00028 | 1050 | 1,428,571 | 0.000063 | 0.000014 | 571,428,571 | 131 |
Precursor Ion (m/z) | Product Ions (m/z) | Declustering Potential (V) | Collision Energy (V) | Cell Exit Potential (V) | ||
---|---|---|---|---|---|---|
15-Acetyldeoxynivalenol | [M+H]+ | 339.1 | 321.2/137.2 | 91 | 13/17 | 18/8 |
3-Acetyldeoxynivalenol | [M+Ac]− | 397.3 | 59.2/307.1 | −70 | −38/−20 | −8/−7 |
Aflatoxin B1 | [M+H]+ | 313.1 | 285.2/128.1 | 106 | 33/91 | 16/10 |
Aflatoxin B2 | [M+H]+ | 315.1 | 287.2/259.2 | 96 | 37/43 | 18/18 |
Aflatoxin G1 | [M+H]+ | 329.1 | 243.1/200.0 | 86 | 39/59 | 14/12 |
Aflatoxin G2 | [M+H]+ | 331.1 | 313.2/245.2 | 111 | 35/43 | 18/14 |
Aflatoxin M1 | [M+H]+ | 329.1 | 273.2/229.1 | 91 | 35/59 | 16/12 |
α-Zearalanol | [M−H]− | 321.2 | 277.2/303.2 | −115 | −32/−30 | −13/−15 |
α-Zearalenol | [M−H]− | 319.2 | 160.1/130.1 | −115 | −44/−50 | −13/−20 |
β-Zearalanol | [M−H]− | 321.2 | 277.2/303.2 | −115 | −32/−30 | −13/−15 |
β-Zearalenol | [M−H]− | 319.2 | 160.0/130.0 | −115 | −44/−50 | −13/−20 |
Deepoxydeoxynivalenol | [M+Ac]− | 339.1 | 59.1/249.0 | −70 | −20/−18 | −9/−17 |
Deoxynivalenol | [M+Ac]− | 355.1 | 265.2/59.2 | −70 | −22/−40 | −13/−8 |
Diacetoxyscirpenol | [M+NH4]+ | 384.2 | 307.2/105.1 | 81 | 17/61 | 9/7 |
DON-3- Glucosid | [M+Ac]− | 517.3 | 427.1/59.1 | −80 | −30/−85 | −11/−7 |
Fumonisin B1 | [M+H]+ | 722.5 | 334.4/352.3 | 121 | 57/55 | 4/12 |
Fumonisin B2 | [M+H]+ | 706.5 | 336.4/318.4 | 126 | 59/51 | 8/2 |
Fumonisin B3 | [M+H]+ | 706.5 | 336.3/318.5 | 126 | 59/51 | 8/2 |
Fusarenon-X | [M+Ac]− | 413.2 | 59.1/263.0 | −70 | −44/−22 | −9/−16 |
Gliotoxin | [M+H]+ | 327.1 | 263.2/245.3 | 61 | 15/25 | 16/20 |
Griseofulvin | [M+H]+ | 353.2 | 165.2/215.2 | 81 | 27/27 | 10/12 |
HT-2 Toxin | [M+NH4]+ | 442.2 | 263.1/345.1 | 76 | 21/27 | 19/20 |
Mevinolin | [M+H]+ | 405.3 | 199.2/173.3 | 76 | 17/29 | 14/10 |
Moniliformin | [M−H]− | 96.9 | 41.2 | −100 | −24 | −5 |
Monoacetoxyscirpenol | [M+NH4]+ | 342.2 | 265.1/307.2 | 71 | 13/13 | 26/8 |
Mycophenolic acid | [M+NH4]+ | 338.1 | 207.2/303.2 | 61 | 33/19 | 16/18 |
Neosolaniol | [M+NH4]+ | 400.2 | 215.0/185.0 | 76 | 25/29 | 12/14 |
Nivalenol | [M+Ac]− | 371.1 | 281.1/59.1 | −75 | −22/−45 | −15/−7 |
Ochratoxin A | [M+H]+ | 404.0 | 239.0/102.0 | 91 | 37/105 | 16/14 |
Ochratoxin B | [M+H]+ | 370.1 | 205.0/103.1 | 86 | 33/77 | 12/16 |
Patulin | [M−H]− | 153.0 | 109.0/81.0 | −50 | −12/−18 | −9/−11 |
Roquefortine C | [M+H]+ | 390.2 | 193.2/322.2 | 91 | 39/29 | 10/18 |
Sterigmatocystin | [M+H]+ | 325.1 | 310.2/281.1 | 96 | 35/51 | 18/16 |
T-2 Tetraol | [M+NH4]+ | 316.2 | 215.2/281.2 | 61 | 13/13 | 16/8 |
T-2 Toxin | [M+NH4]+ | 484.3 | 215.2/185.1 | 56 | 29/31 | 18/11 |
T-2 Triol | [M+NH4]+ | 400.2 | 281.3/215.2 | 71 | 13/17 | 16/12 |
Zearalanone | [M−H]− | 319.2 | 205.2/107.0 | −125 | −34/−40 | −13/−5 |
Zearalenon | [M−H]− | 317.1 | 131.1/175.0 | −110 | −42/−34 | −8/−13 |
Mycotoxins | LOQ | LOD |
---|---|---|
15-Acetyldeoxynivalenol | 75.0 | 22.5 |
3-AcetylDON | 22.9 | 6.9 |
Aflatoxin B1 | 2.4 | 0.7 |
Aflatoxin B2 | 1.5 | 0.5 |
Aflatoxin G1 | 1.7 | 0.5 |
Aflatoxin G2 | 3.1 | 0.9 |
Aflatoxin M1 | 2.8 | 0.9 |
Deepoxy-deoxynivalenol | 63.1 | 19.0 |
Deoxynivalenol | 66.5 | 20.0 |
Diacetoxyscirpenol | 12.3 | 3.7 |
DON Glucoside | 31.5 | 9.5 |
Fumonisin B1 | 42.4 | 12.7 |
Fumonisin B2 | 24.0 | 7.2 |
Fumonisin B3 | 29.9 | 9.0 |
Fusarenon-X | 49.2 | 14.8 |
Gliotoxin | 19.6 | 5.9 |
Griseofulvin | 9.9 | 3.0 |
HT-2 Toxin | 15.2 | 4.6 |
Mevinolin | 8.0 | 2.4 |
Moniliformin | 10.1 | 3.0 |
Monoacetoxyscirpenol | 15.1 | 4.5 |
Mycophenolic acid | 16.2 | 4.9 |
Neosolaniol | 6.5 | 1.9 |
Nivalenol | 35.1 | 10.5 |
Ochratoxin A | 2.6 | 0.8 |
Ochratoxin B | 4.2 | 1.3 |
Patulin | 73.4 | 22.1 |
Roquefortine C | 8.2 | 2.5 |
Sterigmatocystin | 2.4 | 0.7 |
T2-Tetraol | 32.8 | 9.8 |
T2-Toxin | 7.1 | 2.1 |
T2-Triol | 30.9 | 9.3 |
Zearalanone | 5.5 | 1.7 |
Zearalenone | 3.5 | 1.0 |
α-Zearalanol | 7.7 | 2.3 |
α-Zearalenol | 3.0 | 0.9 |
β-Zearalanol | 12.5 | 3.7 |
β-Zearalenol | 7.4 | 2.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Assunção, R.; Twarużek, M.; Kosicki, R.; Viegas, C.; Viegas, S. Drinking Green Tea: Despite the Risks Due to Mycotoxins, Is It Possible to Increase the Associated Health Benefits? Toxins 2021, 13, 119. https://doi.org/10.3390/toxins13020119
Assunção R, Twarużek M, Kosicki R, Viegas C, Viegas S. Drinking Green Tea: Despite the Risks Due to Mycotoxins, Is It Possible to Increase the Associated Health Benefits? Toxins. 2021; 13(2):119. https://doi.org/10.3390/toxins13020119
Chicago/Turabian StyleAssunção, Ricardo, Magdalena Twarużek, Robert Kosicki, Carla Viegas, and Susana Viegas. 2021. "Drinking Green Tea: Despite the Risks Due to Mycotoxins, Is It Possible to Increase the Associated Health Benefits?" Toxins 13, no. 2: 119. https://doi.org/10.3390/toxins13020119
APA StyleAssunção, R., Twarużek, M., Kosicki, R., Viegas, C., & Viegas, S. (2021). Drinking Green Tea: Despite the Risks Due to Mycotoxins, Is It Possible to Increase the Associated Health Benefits? Toxins, 13(2), 119. https://doi.org/10.3390/toxins13020119