Cell-Penetrating Peptides Derived from Animal Venoms and Toxins
Abstract
:1. Introduction
Context
2. Cell-Penetrating Peptides from Animal Venoms and Toxins
2.1. CPPs from Insects
2.1.1. Melittin
2.1.2. Anoplin
2.1.3. Mastoparan
2.2. CPPs from Arachnids
2.2.1. Latarcin-1
2.2.2. Lycosin-I
2.2.3. Chlorotoxin
2.2.4. Maurocalcine
2.2.5. Imperatoxin
2.2.6. Hadrucalcin
2.2.7. Wasabi Receptor Toxin
2.3. CPPs from Fish
Pardaxins
2.4. CPPs from Amphibian
Bombesin
2.5. CPPs from Snakes
2.5.1. Crotamine
2.5.2. Crotalicidin and Elapid CRAMPs
2.5.3. Cardiotoxin
2.5.4. Phospholipase A2
2.5.5. BPP-like
3. Discussion
4. Conclusions
5. Future Direction
6. Materials and Methods
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, S.; Peláez, F. Biodiversity, chemical diversity and drug discovery. Prog. Drug Res. 2008, 65, 141, 143–174. [Google Scholar] [CrossRef] [PubMed]
- Nelsen, D.R.; Nisani, Z.; Cooper, A.M.; Fox, G.A.; Gren, E.C.; Corbit, A.G.; Hayes, W.K. Poisons, toxungens and venoms: Redefining and classifying toxic biological secretions and the organisms that employ them. Biol. Rev. Camb. Philos. Soc. 2014, 89, 450–465. [Google Scholar] [CrossRef] [PubMed]
- Modahl, C.M.; Brahma, R.K.; Koh, C.Y.; Shioi, N.; Kini, R.M. Omics Technologies for Profiling Toxin Diversity and Evolution in Snake Venom: Impacts on the Discovery of Therapeutic and Diagnostic Agents. Annu. Rev. Anim. Biosci. 2020, 8, 91–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazuma, K.; Masuko, K.; Konno, K.; Inagaki, H. Combined Venom Gland Transcriptomic and Venom Peptidomic Analysis of the Predatory Ant Odontomachus monticola. Toxins 2017, 9, 323. [Google Scholar] [CrossRef]
- Wiezel, G.A.; Shibao, P.Y.T.; Cologna, C.T.; Filho, M.R.; Vieira, U.C.; De Pauw, E.; Quinton, L.; Arantes, E.C. In-Depth Venome of the Brazilian Rattlesnake Crotalus durissus terrificus: An Integrative Approach Combining Its Venom Gland Transcriptome and Venom Proteome. J. Proteome Res. 2018, 17, 3941–3958. [Google Scholar] [CrossRef]
- Liao, Q.; Gong, G.; Poon, T.C.W.; Ang, I.L.; Lei, K.M.K.; Siu, S.W.I.; Wong, C.T.T.; Baptista, R.G.; Lee, S.M. Combined transcriptomic and proteomic analysis reveals a diversity of venom-related and toxin-like peptides expressed in the mat anemone Zoanthus natalensis (Cnidaria, Hexacorallia). Arch. Toxicol. 2019, 93, 1745–1767. [Google Scholar] [CrossRef]
- Carreto, R.S.; Estrella, V.R.; Bobadilla, P.T.; Navarro, L.A.; Sarabia, B.J.; Piñera, R.E.; Verleyen, J.J.; Rodríguez, E.; Almazán, R.C. Transcriptomic and Proteomic Analysis of the Tentacles and Mucus of Anthopleura dowii Verrill, 1869. Mar. Drugs 2019, 17, 436. [Google Scholar] [CrossRef] [Green Version]
- Aili, S.R.; Touchard, A.; Hayward, R.; Robinson, S.D.; Pineda, S.S.; Lalagüe, H.; Vetter, I.; Undheim, E.A.B.; Kini, R.M.; Escoubas, P.; et al. An Integrated Proteomic and Transcriptomic Analysis Reveals the Venom Complexity of the Bullet Ant Paraponera clavata. Toxins 2020, 12, 324. [Google Scholar] [CrossRef]
- Dalmazzone, S. Economics and Policy of Biodiversity Loss. In Sustainable Development and Environmental Management: Experiences and Case Studies; Clini, C., Musu, I., Gullino, M.L., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 451–466. [Google Scholar] [CrossRef]
- Kessler, P.; Marchot, P.; Silva, M.; Servent, D. The three-finger toxin fold: A multifunctional structural scaffold able to modulate cholinergic functions. J. Neurochem. 2017, 142, 7–18. [Google Scholar] [CrossRef]
- Shafee, T.M.A.; Lay, F.T.; Phan, T.K.; Anderson, M.A.; Hulett, M.D. Convergent evolution of defensin sequence, structure and function. Cell. Mol. Life Sci. 2017, 74, 663–682. [Google Scholar] [CrossRef]
- Zhang, S.K.; Song, J.W.; Gong, F.; Li, S.B.; Chang, H.Y.; Xie, H.M.; Gao, H.W.; Tan, Y.X.; Ji, S.P. Design of an α-helical antimicrobial peptide with improved cell-selective and potent anti-biofilm activity. Sci. Rep. 2016, 6, 7394. [Google Scholar] [CrossRef] [Green Version]
- Joliot, A.; Prochiantz, A. Transduction peptides: From technology to physiology. Nat. Cell Biol. 2004, 6, 189–196. [Google Scholar] [CrossRef]
- Mándity, I.M.; Fülöp, F. An overview of peptide and peptoid foldamers in medicinal chemistry. Expert Opin. Drug Discov. 2015, 10, 1163–1177. [Google Scholar] [CrossRef] [PubMed]
- Kalafatovic, D.; Giralt, E. Cell-Penetrating Peptides: Design Strategies beyond Primary Structure and Amphipathicity. Molecules 2017, 22, 1929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandvig, K.; van Deurs, B. Delivery into cells: Lessons learned from plant and bacterial toxins. Gene Ther. 2005, 12, 865–872. [Google Scholar] [CrossRef] [PubMed]
- Baptista, R.G.; Kerkis, A.; Silva, P.Á.R.; Hayashi, M.A.F.; Kerkis, I.; Tetsuo, Y. Membrane-translocating peptides and toxins: From nature to bedside. J. Braz. Chem. Soc. 2008, 19, 211–225. [Google Scholar] [CrossRef] [Green Version]
- Sandvig, K.; Bergan, J.; Kavaliauskiene, S.; Skotland, T. Lipid requirements for entry of protein toxins into cells. Prog. Lipid Res. 2014, 54, 1–13. [Google Scholar] [CrossRef]
- Bechara, C.; Sagan, S. Cell-penetrating peptides: 20years later, where do we stand? FEBS Lett. 2013, 587, 1693–1702. [Google Scholar] [CrossRef] [PubMed]
- Copolovici, D.M.; Langel, K.; Eriste, E.; Langel, Ü. Cell-Penetrating Peptides: Design, Synthesis and Applications. ACS Nano 2014, 8, 1972–1994. [Google Scholar] [CrossRef]
- Gautam, A.; Singh, H.; Tyagi, A.; Chaudhary, K.; Kumar, R.; Kapoor, P.; Raghava, G.P. CPPsite: A curated database of cell penetrating peptides. Database J. Biol. Databases Curation 2012, 2012. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, P.; Bhalla, S.; Usmani, S.S.; Singh, S.; Chaudhary, K.; Raghava, G.P.; Gautam, A. CPPsite 2.0: A repository of experimentally validated cell-penetrating peptides. Nucleic Acids Res. 2016, 44, D1098–D1103. [Google Scholar] [CrossRef]
- Kardani, K.; Bolhassani, A. Cppsite 2.0: An Available Database of Experimentally Validated Cell-Penetrating Peptides Predicting their Secondary and Tertiary Structures. J. Mol. Biol. 2020, 6703. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.H.; Yang, W.; Tang, H.; Lin, H. The Development of Machine Learning Methods in Cell-Penetrating Peptides Identification: A Brief Review. Curr. Drug Metab. 2019, 20, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, H.; Kato, T.; Oba, M.; Misawa, T.; Hattori, T.; Ohoka, N.; Tanaka, M.; Naito, M.; Kurihara, M.; Demizu, Y. Development of a Cell-penetrating Peptide that Exhibits Responsive Changes in its Secondary Structure in the Cellular Environment. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eiríksdóttir, E.; Konate, K.; Langel, Ü.; Divita, G.; Deshayes, S. Secondary structure of cell-penetrating peptides controls membrane interaction and insertion. Biochim. Biophys. Acta (BBA) Biomembr. 2010, 1798, 1119–1128. [Google Scholar] [CrossRef] [Green Version]
- Milletti, F. Cell-penetrating peptides: Classes, origin and current landscape. Drug Discov. Today 2012, 17, 850–860. [Google Scholar] [CrossRef]
- Borrelli, A.; Tornesello, A.L.; Tornesello, M.L.; Buonaguro, F.M. Cell Penetrating Peptides as Molecular Carriers for Anti-Cancer Agents. Molecules 2018, 23, 295. [Google Scholar] [CrossRef] [Green Version]
- Baptista, R.G.; Campelo, I.S.; Morlighem, J.R.L.; Melo, L.M.; Freitas, V.J.F. Cell-penetrating peptides (CPPs): From delivery of nucleic acids and antigens to transduction of engineered nucleases for application in transgenesis. J. Biotechnol. 2017, 252, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.W.; Lee, H.J. 13-Cell-penetrating peptides for medical theranostics and targeted drug delivery. In Peptide Applications in Biomedicine, Biotechnology and Bioengineering; Koutsopoulos, S., Ed.; Woodhead Publishing: Cambridge, UK, 2018; pp. 359–370. [Google Scholar] [CrossRef]
- Pierantoni, G.M.; Paladino, S. Cell-penetrating peptides: Two faces of the same coin. Biochem. J. 2020, 477, 1363–1366. [Google Scholar] [CrossRef] [Green Version]
- Ruseska, I.; Zimmer, A. Internalization mechanisms of cell-penetrating peptides. Beilstein J. Nanotechnol. 2020, 11, 101–123. [Google Scholar] [CrossRef]
- Tünnemann, G.; Martin, R.M.; Haupt, S.; Patsch, C.; Edenhofer, F.; Cardoso, M.C. Cargo-dependent mode of uptake and bioavailability of TAT-containing proteins and peptides in living cells. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2006, 20, 1775–1784. [Google Scholar] [CrossRef] [Green Version]
- Andaloussi, E.S.; Järver, P.; Johansson, H.J.; Langel, U. Cargo-dependent cytotoxicity and delivery efficacy of cell-penetrating peptides: A comparative study. Biochem. J. 2007, 407, 285–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hedegaard, S.F.; Derbas, M.S.; Lind, T.K.; Kasimova, M.R.; Christensen, M.V.; Michaelsen, M.H.; Campbell, R.A.; Jorgensen, L.; Franzyk, H.; Cárdenas, M.; et al. Fluorophore labeling of a cell-penetrating peptide significantly alters the mode and degree of biomembrane interaction. Sci. Rep. 2018, 8, 6327. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.G.; Sayers, E.J.; He, L.; Narayan, R.; Williams, T.L.; Mills, E.M.; Allemann, R.K.; Luk, L.Y.P.; Jones, A.T.; Tsai, Y.H. Cell-penetrating peptide sequence and modification dependent uptake and subcellular distribution of green florescent protein in different cell lines. Sci. Rep. 2019, 9, 6298. [Google Scholar] [CrossRef] [PubMed]
- Yacoub, T.; Rima, M.; Karam, M.; Fajloun, J. Antimicrobials from Venomous Animals: An Overview. Molecules 2020, 25, 2402. [Google Scholar] [CrossRef] [PubMed]
- Splith, K.; Neundorf, I. Antimicrobial peptides with cell-penetrating peptide properties and vice versa. Eur. Biophys. J. EBJ 2011, 40, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Neundorf, I. Antimicrobial and Cell-Penetrating Peptides: How to Understand Two Distinct Functions Despite Similar Physicochemical Properties. Adv. Exp. Med. Biol. 2019, 1117, 93–109. [Google Scholar] [CrossRef] [PubMed]
- Le, C.F.; Fang, C.M.; Sekaran, S. Intracellular Targeting Mechanisms by Antimicrobial Peptides. Antimicrob. Agents Chemother. 2017, 61. [Google Scholar] [CrossRef] [Green Version]
- Park, C.B.; Yi, K.S.; Matsuzaki, K.; Kim, M.S.; Kim, S.C. Structure–activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: The proline hinge is responsible for the cell-penetrating ability of buforin II. Proc. Natl. Acad. Sci. USA 2000, 97, 8245–8250. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Zhang, X.; Yuan, Y.; Bao, Y.; Xiong, M. Role and modulation of the secondary structure of antimicrobial peptides to improve selectivity. Biomater. Sci. 2020, 8, 6858–6866. [Google Scholar] [CrossRef]
- Abid, S.N.; Othman, H.; Aissaoui, D.; Aissa, B.R. Anti-tumoral effect of scorpion peptides: Emerging new cellular targets and signaling pathways. Cell Calcium 2019, 80, 160–174. [Google Scholar] [CrossRef] [PubMed]
- Rady, I.; Siddiqui, I.A.; Rady, M.; Mukhtar, H. Melittin, a major peptide component of bee venom and its conjugates in cancer therapy. Cancer Lett. 2017, 402, 16–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wehbe, R.; Frangieh, J.; Rima, M.; Obeid, E.D.; Sabatier, J.M.; Fajloun, Z. Bee Venom: Overview of Main Compounds and Bioactivities for Therapeutic Interests. Molecules 2019, 24, 2997. [Google Scholar] [CrossRef] [Green Version]
- Shaw, J.E.; Epand, R.F.; Hsu, J.C.; Mo, G.C.; Epand, R.M.; Yip, C.M. Cationic peptide-induced remodelling of model membranes: Direct visualization by in situ atomic force microscopy. J. Struct. Biol. 2008, 162, 121–138. [Google Scholar] [CrossRef]
- Hong, J.; Lu, X.; Deng, Z.; Xiao, S.; Yuan, B.; Yang, K. How Melittin Inserts into Cell Membrane: Conformational Changes, Inter-Peptide Cooperation and Disturbance on the Membrane. Molecules 2019, 24, 1775. [Google Scholar]
- Jia, H.R.; Zhu, Y.X.; Xu, K.F.; Wu, F.G. Turning Toxicants into Safe Therapeutic Drugs: Cytolytic Peptide-Photosensitizer Assemblies for Optimized In Vivo Delivery of Melittin. Adv. Healthc. Mater. 2018, 7, 380. [Google Scholar] [CrossRef] [PubMed]
- Jamasbi, E.; Lucky, S.S.; Li, W.; Hossain, M.A.; Gopalakrishnakone, P.; Separovic, F. Effect of dimerized melittin on gastric cancer cells and antibacterial activity. Amino Acids 2018, 50, 1101–1110. [Google Scholar] [CrossRef]
- Luo, L.; Wu, W.; Sun, D.; Dai, H.B.; Wang, Y.; Zhong, Y.; Wang, J.X.; Maruf, A.; Nurhidayah, D.; Zhang, X.J.; et al. Acid-Activated Melittin for Targeted and Safe Antitumor Therapy. Bioconjugate Chem. 2018, 29, 2936–2944. [Google Scholar] [CrossRef]
- Liu, H.; Hu, Y.; Sun, Y.; Wan, C.; Zhang, Z.; Dai, X.; Lin, Z.; He, Q.; Yang, Z.; Huang, P.; et al. Co-delivery of Bee Venom Melittin and a Photosensitizer with an Organic-Inorganic Hybrid Nanocarrier for Photodynamic Therapy and Immunotherapy. ACS Nano 2019, 13, 12638–12652. [Google Scholar] [CrossRef]
- Salomone, F.; Cardarelli, F.; Di Luca, M.; Boccardi, C.; Nifosì, R.; Bardi, G.; Di Bari, L.; Serresi, M.; Beltram, F. A novel chimeric cell-penetrating peptide with membrane-disruptive properties for efficient endosomal escape. J. Control. Release 2012, 163, 293–303. [Google Scholar] [CrossRef]
- Lee, C.; Jeong, H.; Bae, Y.; Shin, K.; Kang, S.; Kim, H.; Oh, J.; Bae, H. Targeting of M2-like tumor-associated macrophages with a melittin-based pro-apoptotic peptide. J. Immunother. Cancer 2019, 7, 147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, K.K.; Pan, H.; Lanza, G.M.; Wickline, S.A. Melittin derived peptides for nanoparticle based siRNA transfection. Biomaterials 2013, 34, 3110–3119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mills, K.A.; Quinn, J.M.; Roach, S.T.; Palisoul, M.; Nguyen, M.; Noia, H.; Guo, L.; Fazal, J.; Mutch, D.G.; Wickline, S.A.; et al. p5RHH nanoparticle-mediated delivery of AXL siRNA inhibits metastasis of ovarian and uterine cancer cells in mouse xenografts. Sci. Rep. 2019, 9, 4762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, Y.X.; Chen, C.; Wang, Y.L.; Lin, S.; Wang, Y.; Li, S.B.; Jin, X.P.; Gao, H.W.; Du, F.S.; Gong, F.; et al. Truncated peptides from melittin and its analog with high lytic activity at endosomal pH enhance branched polyethylenimine-mediated gene transfection. J. Gene Med. 2012, 14, 241–250. [Google Scholar] [CrossRef]
- Kyung, H.; Ki, M.H.; Lee, H.J.; Lee, S.J. Enhanced intracellular delivery of macromolecules by melittin derivatives mediated cellular uptake. J. Ind. Eng. Chem. 2018, 58, 290–295. [Google Scholar] [CrossRef]
- Konno, K.; Hisada, M.; Fontana, R.; Lorenzi, C.C.; Naoki, H.; Itagaki, Y.; Miwa, A.; Kawai, N.; Nakata, Y.; Yasuhara, T.; et al. Anoplin, a novel antimicrobial peptide from the venom of the solitary wasp Anoplius samariensis. Biochim. Biophys. Acta 2001, 1550, 70–80. [Google Scholar] [CrossRef]
- Leung, B.O.; Hitchcock, A.P.; Won, A.; Ianoul, A.; Scholl, A. Imaging interactions of cationic antimicrobial peptides with model lipid monolayers using X-ray spectromicroscopy. Eur. Biophys. J. EBJ 2011, 40, 805–810. [Google Scholar] [CrossRef]
- Wu, Y.; Huang, R.; Jin, J.M.; Zhang, L.J.; Zhang, H.; Chen, H.Z.; Chen, L.L.; Luan, X. Advances in the Study of Structural Modification and Biological Activities of Anoplin. Front. Chem. 2020, 8, 519. [Google Scholar] [CrossRef]
- Zhong, C.; Gou, S.; Liu, T.; Zhu, Y.; Zhu, N.; Liu, H.; Zhang, Y.; Xie, J.; Guo, X.; Ni, J. Study on the effects of different dimerization positions on biological activity of partial d-Amino acid substitution analogues of Anoplin. Microb. Pathog. 2020, 139, 103871. [Google Scholar] [CrossRef]
- Tian, X.; Sun, F.; Zhou, X.R.; Luo, S.Z.; Chen, L. Role of peptide self-assembly in antimicrobial peptides. J. Pept. Sci. 2015, 21, 530–539. [Google Scholar] [CrossRef]
- Cong, Y.; Ji, L.; Gao, Y.J.; Liu, F.H.; Cheng, D.B.; Hu, Z.; Qiao, Z.Y.; Wang, H. Microenvironment-Induced In Situ Self-Assembly of Polymer–Peptide Conjugates That Attack Solid Tumors Deeply. Angew. Chem. Int. Ed. 2019, 58, 4632–4637. [Google Scholar] [CrossRef] [PubMed]
- Hirai, Y.; Yasuhara, T.; Yoshida, H.; Nakajima, T.; Fujino, M.; Kitada, C. A new mast cell degranulating peptide “mastoparan” in the venom of Vespula lewisii. Chem. Pharm. Bull. 1979, 27, 1942–1944. [Google Scholar] [CrossRef] [Green Version]
- Hirai, Y.; Kuwada, M.; Yasuhara, T.; Yoshida, H.; Nakajima, T. A new mast cell degranulating peptide homologous to mastoparan in the venom of Japanese hornet (Vespa xanthoptera). Chem. Pharm. Bull. 1979, 27, 1945–1946. [Google Scholar] [CrossRef] [Green Version]
- Pooga, M.; Hällbrink, M.; Zorko, M.; Langel, U. Cell penetration by transportan. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 1998, 12, 67–77. [Google Scholar] [CrossRef]
- Soomets, U.; Lindgren, M.; Gallet, X.; Hällbrink, M.; Elmquist, A.; Balaspiri, L.; Zorko, M.; Pooga, M.; Brasseur, R.; Langel, U. Deletion analogues of transportan. Biochim. Biophys. Acta 2000, 1467, 165–176. [Google Scholar] [CrossRef] [Green Version]
- Howl, J.; Howl, L.; Jones, S. The cationic tetradecapeptide mastoparan as a privileged structure for drug discovery: Enhanced antimicrobial properties of mitoparan analogues modified at position-14. Peptides 2018, 101, 95–105. [Google Scholar] [CrossRef] [Green Version]
- Lindberg, M.; Jarvet, J.; Langel, U.; Gräslund, A. Secondary structure and position of the cell-penetrating peptide transportan in SDS micelles as determined by NMR. Biochemistry 2001, 40, 3141–3149. [Google Scholar] [CrossRef]
- Yandek, L.E.; Pokorny, A.; Almeida, P.F. Wasp mastoparans follow the same mechanism as the cell-penetrating peptide transportan 10. Biochemistry 2009, 48, 7342–7351. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Kai, M.; Zhang, W.; Zhang, J.; Liu, L.; Zhang, B.; Liu, X.; Wang, R. Cellular uptake of transportan 10 and its analogs in live cells: Selectivity and structure-activity relationship studies. Peptides 2011, 32, 1934–1941. [Google Scholar] [CrossRef] [PubMed]
- Suhorutsenko, J.; Oskolkov, N.; Arukuusk, P.; Kurrikoff, K.; Eriste, E.; Copolovici, D.M.; Langel, Ü. Cell-Penetrating Peptides, PepFects, Show No Evidence of Toxicity and Immunogenicity In Vitro and In Vivo. Bioconjugate Chem. 2011, 22, 2255–2262. [Google Scholar] [CrossRef]
- Zhang, C.; Ren, W.; Liu, Q.; Tan, Z.; Li, J.; Tong, C. Transportan-derived cell-penetrating peptide delivers siRNA to inhibit replication of influenza virus in vivo. Drug Des. Dev. Ther. 2019, 13, 1059–1068. [Google Scholar] [CrossRef] [Green Version]
- Pepe, D.; Carvalho, V.F.; McCall, M.; de Lemos, D.P.; Lopes, L.B. Transportan in nanocarriers improves skin localization and antitumor activity of paclitaxel. Int. J. Nanomed. 2016, 11, 2009–2019. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, O.S.; Geörg, M.; Sjölinder, H.; Sillard, R.; Lindberg, S.; Langel, U.; Jonsson, A.B. Identification of cell-penetrating peptides that are bactericidal to Neisseria meningitidis and prevent inflammatory responses upon infection. Antimicrob. Agents Chemother. 2013, 57, 3704–3712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, J.; Gou, Y.; Zhao, Q.; Li, S.; Zhang, W.; Song, J.; Mou, L.; Li, J.; Wang, K.; Zhang, B.; et al. Antimicrobial activities and action mechanism studies of transportan 10 and its analogues against multidrug-resistant bacteria. J. Pept. Sci. Off. Publ. Eur. Pept. Soc. 2015, 21, 599–607. [Google Scholar] [CrossRef] [PubMed]
- Ruczyński, J.; Rusiecka, I.; Turecka, K.; Kozłowska, A.; Alenowicz, M.; Gągało, I.; Kawiak, A.; Rekowski, P.; Waleron, K.; Kocić, I. Transportan 10 improves the pharmacokinetics and pharmacodynamics of vancomycin. Sci. Rep. 2019, 9, 3247. [Google Scholar] [CrossRef] [Green Version]
- Jones, S.; Martel, C.; Casagrande, B.A.S.; Brenner, C.; Howl, J. Mitoparan and target-selective chimeric analogues: Membrane translocation and intracellular redistribution induces mitochondrial apoptosis. Biochim. Biophys. Acta 2008, 1783, 849–863. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.; Howl, J. Enantiomer-specific bioactivities of peptidomimetic analogues of mastoparan and mitoparan: Characterization of inverso mastoparan as a highly efficient cell penetrating peptide. Bioconjugate Chem. 2012, 23, 47–56. [Google Scholar] [CrossRef]
- Richardson, A.; Muir, L.; Mousdell, S.; Sexton, D.; Jones, S.; Howl, J.; Ross, K. Modulation of mitochondrial activity in HaCaT keratinocytes by the cell penetrating peptide Z-Gly-RGD(DPhe)-mitoparan. BMC Res. Notes 2018, 11, 82. [Google Scholar] [CrossRef] [Green Version]
- Kozlov, S.A.; Vassilevski, A.A.; Feofanov, A.V.; Surovoy, A.Y.; Karpunin, D.V.; Grishin, E.V. Latarcins, Antimicrobial and Cytolytic Peptides from the Venom of the Spider Lachesana tarabaevi (Zodariidae) That Exemplify Biomolecular Diversity. J. Biol. Chem. 2006, 281, 20983–20992. [Google Scholar] [CrossRef] [Green Version]
- Ponnappan, N.; Chugh, A. Cell-penetrating and cargo-delivery ability of a spider toxin-derived peptide in mammalian cells. Eur. J. Pharm. Biopharm. 2017, 114, 145–153. [Google Scholar] [CrossRef]
- Budagavi, D.P.; Zarin, S.; Chugh, A. Antifungal activity of Latarcin 1 derived cell-penetrating peptides against Fusarium solani. Biochim. Biophys. Acta Biomembr. 2018, 1860, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Ding, X.; Meng, S.; Liu, C.; Wang, H.; Xia, L.; Liu, Z.; Liang, S. Antimicrobial potential of lycosin-I, a cationic and amphiphilic peptide from the venom of the spider Lycosa singorensis. Curr. Mol. Med. 2013, 13, 900–910. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Deng, M.; Xiang, J.; Ma, H.; Hu, W.; Zhao, Y.; Li, D.W.; Liang, S. A novel spider peptide toxin suppresses tumor growth through dual signaling pathways. Curr. Mol. Med. 2012, 12, 1350–1360. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, Y.J.; Liu, Y.Y.; Li, H.; Guo, L.X.; Liu, Z.H.; Shi, X.L.; Hu, M. In vivo Potential of Lycosin-I as an Alternative Antimicrobial Drug for Treatment of Multidrug-Resistant Acinetobacter baumannii Infections. Antimicrob. Agents Chemother. 2014, 58, 6999. [Google Scholar] [CrossRef] [Green Version]
- Tan, H.; Luo, W.; Wei, L.; Chen, B.; Li, W.; Xiao, L.; Manzhos, S.; Liu, Z.; Liang, S. Quantifying the Distribution of the Stoichiometric Composition of Anticancer Peptide Lycosin-I on the Lipid Membrane with Single Molecule Spectroscopy. J. Phys. Chem. B 2016, 120, 3081–3088. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Huang, Y.; Xu, J.; Chen, B.; Zhang, P.; Ye, Z.; Liang, S.; Xiao, L.; Liu, Z. Spider Toxin Peptide Lycosin-I Functionalized Gold Nanoparticles for in vivo Tumor Targeting and Therapy. Theranostics 2017, 7, 3168–3178. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Ma, J.; Yan, Y.; Chen, B.; Liu, B.; Jian, C.; Zhu, B.; Liang, S.; Zeng, Y.; Liu, Z. Arginine modification of lycosin-I to improve inhibitory activity against cancer cells. Org. Biomol. Chem. 2017, 15, 9379–9388. [Google Scholar] [CrossRef]
- De Bin, J.A.; Maggio, J.E.; Strichartz, G.R. Purification and characterization of chlorotoxin, a chloride channel ligand from the venom of the scorpion. Am. J. Physiol. 1993, 264, C361–C369. [Google Scholar] [CrossRef] [PubMed]
- Deshane, J.; Garner, C.C.; Sontheimer, H. Chlorotoxin inhibits glioma cell invasion via matrix metalloproteinase-2. J. Biol. Chem. 2003, 278, 4135–4144. [Google Scholar] [CrossRef] [Green Version]
- The MICAD Research Team, N. 131I-Chlorotoxin. 2007 Jul 17. Molecular Imaging and Contrast Agent Database (MICAD). Available online: https://www.ncbi.nlm.nih.gov/books/NBK23317/ (accessed on 8 August 2007).
- Cohen, G.; Burks, S.R.; Frank, J.A. Chlorotoxin-A Multimodal Imaging Platform for Targeting Glioma Tumors. Toxins 2018, 10, 496. [Google Scholar] [CrossRef] [Green Version]
- Wiranowska, M.; Colina, L.; Johnson, J. Clathrin-mediated entry and cellular localization of chlorotoxin in human glioma. Cancer Cell Int. 2011, 11, 27. [Google Scholar] [CrossRef] [Green Version]
- Ojeda, P.G.; Henriques, S.T.; Pan, Y.; Nicolazzo, J.A.; Craik, D.J.; Wang, C.K. Lysine to arginine mutagenesis of chlorotoxin enhances its cellular uptake. Biopolymers 2017, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fajloun, Z.; Kharrat, R.; Chen, L.; Lecomte, C.; Di Luccio, E.; Bichet, D.; El Ayeb, M.; Rochat, H.; Allen, P.D.; Pessah, I.N.; et al. Chemical synthesis and characterization of maurocalcine, a scorpion toxin that activates Ca(2+) release channel/ryanodine receptors. FEBS Lett. 2000, 469, 179–185. [Google Scholar] [CrossRef] [Green Version]
- Mosbah, A.; Kharrat, R.; Fajloun, Z.; Renisio, J.G.; Blanc, E.; Sabatier, J.M.; El Ayeb, M.; Darbon, H. A new fold in the scorpion toxin family, associated with an activity on a ryanodine-sensitive calcium channel. Proteins 2000, 40, 436–442. [Google Scholar] [CrossRef]
- Estève, E.; Mabrouk, K.; Dupuis, A.; Rezgui, S.S.; Altafaj, X.; Grunwald, D.; Platel, J.C.; Andreotti, N.; Marty, I.; Sabatier, J.M.; et al. Transduction of the scorpion toxin maurocalcine into cells. Evidence that the toxin crosses the plasma membrane. J. Biol. Chem. 2005, 280, 12833–12839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boisseau, S.; Mabrouk, K.; Ram, N.; Garmy, N.; Collin, V.; Tadmouri, A.; Mikati, M.; Sabatier, J.M.; Ronjat, M.; Fantini, J.; et al. Cell penetration properties of maurocalcine, a natural venom peptide active on the intracellular ryanodine receptor. Biochim. Biophys. Acta 2006, 1758, 308–319. [Google Scholar] [CrossRef] [PubMed]
- Aroui, S.; Brahim, S.; De Waard, M.; Bréard, J.; Kenani, A. Efficient induction of apoptosis by doxorubicin coupled to cell-penetrating peptides compared to unconjugated doxorubicin in the human breast cancer cell line MDA-MB 231. Cancer Lett. 2009, 285, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Aroui, S.; Ram, N.; Appaix, F.; Ronjat, M.; Kenani, A.; Pirollet, F.; De Waard, M. Maurocalcine as a non-toxic drug carrier overcomes doxorubicin resistance in the cancer cell line MDA-MB 231. Pharm. Res. 2009, 26, 836–845. [Google Scholar] [CrossRef] [Green Version]
- Ram, N.; Weiss, N.; Nogues, T.I.; Aroui, S.; Andreotti, N.; Pirollet, F.; Ronjat, M.; Sabatier, J.M.; Darbon, H.; Jacquemond, V.; et al. Design of a disulfide-less, pharmacologically inert and chemically competent analog of maurocalcine for the efficient transport of impermeant compounds into cells. J. Biol. Chem. 2008, 283, 27048–27056. [Google Scholar] [CrossRef] [Green Version]
- Poillot, C.; Bichraoui, H.; Tisseyre, C.; Bahemberae, E.; Andreotti, N.; Sabatier, J.M.; Ronjat, M.; De Waard, M. Small efficient cell-penetrating peptides derived from scorpion toxin maurocalcine. J. Biol. Chem. 2012, 287, 17331–17342. [Google Scholar] [CrossRef] [Green Version]
- Poillot, C.; Dridi, K.; Bichraoui, H.; Pêcher, J.; Alphonse, S.; Douzi, B.; Ronjat, M.; Darbon, H.; De Waard, M. D-Maurocalcine, a pharmacologically inert efficient cell-penetrating peptide analogue. J. Biol. Chem. 2010, 285, 34168–34180. [Google Scholar] [CrossRef] [Green Version]
- Tisseyre, C.; Bahembera, E.; Dardevet, L.; Sabatier, J.M.; Ronjat, M.; De Waard, M. Cell penetration properties of a highly efficient mini maurocalcine Peptide. Pharmaceuticals 2013, 6, 320–339. [Google Scholar] [CrossRef]
- Perret, P.; Ahmadi, M.; Riou, L.; Bacot, S.; Pecher, J.; Poillot, C.; Broisat, A.; Ghezzi, C.; De Waard, M. Biodistribution, Stability and Blood Distribution of the Cell Penetrating Peptide Maurocalcine in Mice. Int. J. Mol. Sci. 2015, 16, 27730–27740. [Google Scholar] [CrossRef] [Green Version]
- Aroui, S.; Dardevet, L.; Ajmia, B.W.; de Boisvilliers, M.; Perrin, F.; Laajimi, A.; Boumendjel, A.; Kenani, A.; Muller, J.M.; De Waard, M. A Novel Platinum-Maurocalcine Conjugate Induces Apoptosis of Human Glioblastoma Cells by Acting through the ROS-ERK/AKT-p53 Pathway. Mol. Pharm. 2015, 12, 4336–4348. [Google Scholar] [CrossRef] [PubMed]
- Khamehchian, S.; Nikkhah, M.; Madani, R.; Hosseinkhani, S. Enhanced and selective permeability of gold nanoparticles functionalized with cell penetrating peptide derived from maurocalcine animal toxin. J. Biomed. Mater. Res. Part A 2016, 104, 2693–2700. [Google Scholar] [CrossRef] [PubMed]
- Gurrola, G.B.; Capes, E.M.; Zamudio, F.Z.; Possani, L.D.; Valdivia, H.H. Imperatoxin A, a Cell-Penetrating Peptide from Scorpion Venom, as a Probe of Ca-Release Channels/Ryanodine Receptors. Pharmaceuticals 2010, 3, 1093–1107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwartz, E.F.; Capes, E.M.; García, D.E.; Zamudio, F.Z.; Fuentes, O.; Possani, L.D.; Valdivia, H.H. Characterization of hadrucalcin, a peptide from Hadrurus gertschi scorpion venom with pharmacological activity on ryanodine receptors. Br. J. Pharmacol. 2009, 157, 392–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zamaleeva, A.I.; Collot, M.; Bahembera, E.; Tisseyre, C.; Rostaing, P.; Yakovlev, A.V.; Oheim, M.; de Waard, M.; Mallet, J.M.; Feltz, A. Cell-penetrating nanobiosensors for pointillistic intracellular Ca2+-transient detection. Nano Lett. 2014, 14, 2994–3001. [Google Scholar] [CrossRef]
- King, L.J.V.; Emrick, J.J.; Kelly, M.J.S.; Herzig, V.; King, G.F.; Medzihradszky, K.F.; Julius, D. A Cell-Penetrating Scorpion Toxin Enables Mode-Specific Modulation of TRPA1 and Pain. Cell 2019, 178, 1362–1374. [Google Scholar] [CrossRef] [PubMed]
- Lazarovici, P.; Primor, N.; Loew, L.M. Purification and pore-forming activity of two hydrophobic polypeptides from the secretion of the Red Sea Moses sole (Pardachirus marmoratus). J. Biol. Chem. 1986, 261, 16704–16713. [Google Scholar] [CrossRef]
- Thompson, S.A.; Tachibana, K.; Nakanishi, K.; Kubota, I. Melittin-Like Peptides from the Shark-Repelling Defense Secretion of the Sole Pardachirus pavoninus. Science 1986, 233, 341–343. [Google Scholar] [CrossRef] [PubMed]
- Hsu, J.C.; Lin, L.C.; Tzen, J.T.; Chen, J.Y. Pardaxin-induced apoptosis enhances antitumor activity in HeLa cells. Peptides 2011, 32, 1110–1116. [Google Scholar] [CrossRef]
- Kolusheva, S.; Lecht, S.; Derazon, Y.; Jelinek, R.; Lazarovici, P. Pardaxin, a fish toxin peptide interaction with a biomimetic phospholipid/polydiacetylene membrane assay. Peptides 2008, 29, 1620–1625. [Google Scholar] [CrossRef] [PubMed]
- Paul, Y.; Weiss, A.; Adermann, K.; Erdmann, G.; Kassebaum, C.; Lazarovici, P.; Hochman, J.; Wellhöner, H. Translocation of acylated pardaxin into cells. FEBS Lett. 1998, 440, 131–134. [Google Scholar] [CrossRef] [Green Version]
- Jensen, R.T.; Moody, T.W. Chapter 161-Bombesin-Related Peptides. In Handbook of Biologically Active Peptides, 2nd ed.; Kastin, A.J., Ed.; Academic Press: Boston, MA, USA, 2013; pp. 1188–1196. [Google Scholar] [CrossRef]
- König, E.; Emonds, B.O.R.; Shaw, C. The diversity and evolution of anuran skin peptides. Peptides 2015, 63, 96–117. [Google Scholar] [CrossRef] [PubMed]
- Valverde, A.; Gutierrez, G.P.; Perez, J.J. Assessment of the conformational profile of bombesin by computational methods. J. Mol. Graph. Model. 2020, 98, 7590. [Google Scholar] [CrossRef]
- Mu, L.; Honer, M.; Becaud, J.; Martic, M.; Schubiger, P.A.; Ametamey, S.M.; Stellfeld, T.; Graham, K.; Borkowski, S.; Lehmann, L.; et al. In Vitro and in Vivo Characterization of Novel 18F-Labeled Bombesin Analogues for Targeting GRPR-Positive Tumors. Bioconjugate Chem. 2010, 21, 1864–1871. [Google Scholar] [CrossRef]
- Faintuch, B.L.; Oliveira, E.A.; Nunez, E.G.F.; Moro, A.M.; Nanda, P.K.; Smith, C.J. Comparison of two peptide radiotracers for prostate carcinoma targeting. Clinics 2012, 67, 163–170. [Google Scholar] [CrossRef]
- Liolios, C.C.; Fragogeorgi, E.A.; Zikos, C.; Loudos, G.; Xanthopoulos, S.; Bouziotis, P.; Petsotas, P.M.; Livaniou, E.; Varvarigou, A.D.; Sivolapenko, G.B. Structural modifications of ⁹⁹mTc-labelled bombesin-like peptides for optimizing pharmacokinetics in prostate tumor targeting. Int. J. Pharm. 2012, 430, 1–17. [Google Scholar] [CrossRef]
- Mancilla, J.N.; Flores, F.G.; Cuevas, S.C.; García, O.B.; Gutiérrez, L.M.; Vega, A.E.; Olivé, I.K.; López, C.M.; García, T.E. Multifunctional targeted therapy system based on (99m) Tc/(177) Lu-labeled gold nanoparticles-Tat(49-57)-Lys(3) -bombesin internalized in nuclei of prostate cancer cells. J. Label. Compd. Radiopharm. 2013, 56, 663–671. [Google Scholar] [CrossRef]
- Oguiura, N.; Mitake, B.M.; Baptista, R.G. New view on crotamine, a small basic polypeptide myotoxin from South American rattlesnake venom. Toxicon Off. J. Int. Soc. Toxinology 2005, 46, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Oguiura, N.; Collares, M.A.; Furtado, M.F.; Ferrarezzi, H.; Suzuki, H. Intraspecific variation of the crotamine and crotasin genes in Crotalus durissus rattlesnakes. Gene 2009, 446, 35–40. [Google Scholar] [CrossRef]
- Tasima, L.J.; -Silva, S.C.; Hatakeyama, D.M.; Nishiduka, E.S.; Tashima, A.K.; Sant Anna, S.S.; Grego, K.F.; Zani, M.K.d.; Azevedo, T.A.M. Crotamine in Crotalus durissus: Distribution according to subspecies and geographic origin, in captivity or nature. J. Venom. Anim. Toxins Incl. Trop. Dis. 2020, 26. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.C.; Tseng, K.H. Effect of crotamine, a toxin of South American rattlesnake venom, on the sodium channel of murine skeletal muscle. Br. J. Pharmacol. 1978, 63, 551–559. [Google Scholar] [CrossRef] [Green Version]
- Rizzi, C.T.; Souza, C.d.J.L.; Schiavon, E.; Cassola, A.C.; Wanke, E.; Troncone, L.R. Crotamine inhibits preferentially fast-twitching muscles but is inactive on sodium channels. Toxicon Off. J. Int. Soc. Toxinology 2007, 50, 553–562. [Google Scholar] [CrossRef] [PubMed]
- Ownby, C.L.; Aird, S.D.; Kaiser, I.I. Physiological and immunological properties of small myotoxins from the venom of the midget faded rattlesnake (Crotalus viridis concolor). Toxicon Off. J. Int. Soc. Toxinology 1988, 26, 319–323. [Google Scholar] [CrossRef]
- Torres, A.M.; Kuchel, P.W. The beta-defensin-fold family of polypeptides. Toxicon Off. J. Int. Soc. Toxinology 2004, 44, 581–588. [Google Scholar] [CrossRef]
- Yeaman, M.R.; Yount, N.Y. Unifying themes in host defence effector polypeptides. Nat. Rev. Microbiol. 2007, 5, 727–740. [Google Scholar] [CrossRef]
- Sieber, M.; Bosch, B.; Hanke, W.; de Lima, F.V.M. Membrane-modifying properties of crotamine, a small peptide-toxin from Crotalus durissus terifficus venom. Biochim. Biophys. Acta 2014, 1840, 945–950. [Google Scholar] [CrossRef]
- de Lima, V.M.; Spencer, P.; Hanke, W. Interaction of small cationic peptides with intact basement membranes. A study using intrinsic optical signals of chick retinas. Curr. Med. Chem. 2014, 21, 1458–1466. [Google Scholar] [CrossRef]
- Falcao, C.B.; Baptista, R.G. Crotamine and crotalicidin, membrane active peptides from Crotalus durissus terrificus rattlesnake venom and their structurally-minimized fragments for applications in medicine and biotechnology. Peptides 2020, 126, 234. [Google Scholar] [CrossRef] [PubMed]
- Kerkis, I.; Silva Fde, S.; Pereira, A.; Kerkis, A.; Baptista, R.G. Biological versatility of crotamine--a cationic peptide from the venom of a South American rattlesnake. Expert Opin. Investig. Drugs 2010, 19, 1515–1525. [Google Scholar] [CrossRef] [PubMed]
- Baptista, R.G.; Kerkis, I. Crotamine, a small basic polypeptide myotoxin from rattlesnake venom with cell-penetrating properties. Curr. Pharm. Des. 2011, 17, 4351–4361. [Google Scholar] [CrossRef] [PubMed]
- Kerkis, I.; Hayashi, M.A.; da Silva, P.A.R.; Pereira, A.; De Júnior, S.P.L.; Zaharenko, A.J.; Baptista, R.G.; Kerkis, A.; Yamane, T. State of the art in the studies on crotamine, a cell penetrating peptide from South American rattlesnake. BioMed Res. Int. 2014, 2014, 5985. [Google Scholar] [CrossRef] [Green Version]
- Kerkis, A.; Kerkis, I.; Baptista, R.G.; Oliveira, E.B.; Morgante, V.A.M.; Pereira, L.V.; Yamane, T. Crotamine is a novel cell-penetrating protein from the venom of rattlesnake Crotalus durissus terrificus. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2004, 18, 1407–1409. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, F.D.; Hayashi, M.A.; Kerkis, A.; Oliveira, V.; Oliveira, E.B.; Baptista, R.G.; Nader, H.B.; Yamane, T.; Tersariol, I.L.; Kerkis, I. Crotamine mediates gene delivery into cells through the binding to heparan sulfate proteoglycans. J. Biol. Chem. 2007, 282, 21349–21360. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.C.; Hayashi, M.A.; Oliveira, E.B.; Karpel, R.L. DNA-interactive properties of crotamine, a cell-penetrating polypeptide and a potential drug carrier. PLoS ONE 2012, 7, 8913. [Google Scholar] [CrossRef] [Green Version]
- Pereira, A.; Kerkis, A.; Hayashi, M.A.; Pereira, A.S.; Silva, F.S.; Oliveira, E.B.; da Silva, P.A.R.; Yamane, T.; Baptista, R.G.; Kerkis, I. Crotamine toxicity and efficacy in mouse models of melanoma. Expert Opin. Investig. Drugs 2011, 20, 1189–1200. [Google Scholar] [CrossRef]
- Lisboa, M.N.C.; Sciani, J.M.; da Silva, B.P.A.R.; Kerkis, I. Co-Localization of Crotamine with Internal Membranes and Accentuated Accumulation in Tumor Cells. Molecules 2018, 23, 968. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, M.A.; Nascimento, F.D.; Kerkis, A.; Oliveira, V.; Oliveira, E.B.; Pereira, A.; Baptista, R.G.; Nader, H.B.; Yamane, T.; Kerkis, I.; et al. Cytotoxic effects of crotamine are mediated through lysosomal membrane permeabilization. Toxicon Off. J. Int. Soc. Toxinology 2008, 52, 508–517. [Google Scholar] [CrossRef]
- Ponnappan, N.; Budagavi, D.P.; Chugh, A. CyLoP-1: Membrane-active peptide with cell-penetrating and antimicrobial properties. Biochim. Biophys. Acta Biomembr. 2017, 1859, 167–176. [Google Scholar] [CrossRef]
- Baptista, R.G.; de la Torre, B.G.; Andreu, D. A novel cell-penetrating peptide sequence derived by structural minimization of a snake toxin exhibits preferential nucleolar localization. J. Med. Chem. 2008, 51, 7041–7044. [Google Scholar] [CrossRef]
- Baptista, R.G.; de la Torre, B.G.; Andreu, D. Insights into the uptake mechanism of NrTP, a cell-penetrating peptide preferentially targeting the nucleolus of tumour cells. Chem. Biol. Drug Des. 2012, 79, 907–915. [Google Scholar] [CrossRef]
- Rodrigues, M.; de la Torre, B.G.; Baptista, R.G.; Santos, N.C.; Andreu, D. Efficient cellular delivery of beta-galactosidase mediated by NrTPs, a new family of cell-penetrating peptides. Bioconjug. Chem. 2011, 22, 2339–2344. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.; Santos, A.; de la Torre, B.G.; Baptista, R.G.; Andreu, D.; Santos, N.C. Molecular characterization of the interaction of crotamine-derived nucleolar targeting peptides with lipid membranes. Biochim. Biophys. Acta 2012, 1818, 2707–2717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, M.; de la Torre, B.G.; Andreu, D.; Santos, N.C. Kinetic uptake profiles of cell penetrating peptides in lymphocytes and monocytes. Biochim. Biophys. Acta 2013, 1830, 4554–4563. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.; Andreu, D.; Santos, N.C. Uptake and cellular distribution of nucleolar targeting peptides (NrTPs) in different cell types. Biopolymers 2015, 104, 101–109. [Google Scholar] [CrossRef]
- Tansi, F.L.; Filatova, M.P.; Koroev, D.O.; Volpina, O.M.; Lange, S.; Schumann, C.; Teichgräber, U.K.; Reissmann, S.; Hilger, I. New generation CPPs show distinct selectivity for cancer and noncancer cells. J. Cell. Biochem. 2019, 120, 6528–6541. [Google Scholar] [CrossRef]
- Falcao, C.B.; de La Torre, B.G.; Peinado, P.C.; Barron, A.E.; Andreu, D.; Baptista, R.G. Vipericidins: A novel family of cathelicidin-related peptides from the venom gland of South American pit vipers. Amino Acids 2014, 46, 2561–2571. [Google Scholar] [CrossRef]
- Sørensen, O.E.; Follin, P.; Johnsen, A.H.; Calafat, J.; Tjabringa, G.S.; Hiemstra, P.S.; Borregaard, N. Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood 2001, 97, 3951–3959. [Google Scholar] [CrossRef] [Green Version]
- Peinado, P.C.; Defaus, S.; Andreu, D. Hitchhiking with Nature: Snake Venom Peptides to Fight Cancer and Superbugs. Toxins 2020, 12, 255. [Google Scholar] [CrossRef] [Green Version]
- Baptista, R.G. Vipericidins, Snake Venom Cathelicidin-Related Peptides, in the Milieu of Reptilian Antimicrobial Polypeptides. Snake Venoms 2015, 1–25. [Google Scholar] [CrossRef]
- van Hoek, M.L. Antimicrobial peptides in reptiles. Pharmaceuticals 2014, 7, 723–753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, F.; Lan, X.Q.; Du, Y.; Chen, P.Y.; Zhao, J.; Zhao, F.; Lee, W.H.; Zhang, Y. King cobra peptide OH-CATH30 as a potential candidate drug through clinic drug-resistant isolates. Zool. Res. 2018, 39, 87–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, M.; Ji, M.; Hu, J.; Zhu, T.; Chen, Y.; Bai, X.; Mwangi, J.; Mo, G.; Lai, R.; Jin, L. Snake Cathelicidin Derived Peptide Inhibits Zika Virus Infection. Front. Microbiol. 2020, 11. [Google Scholar] [CrossRef]
- Zhang, H.; Xia, X.; Han, F.; Jiang, Q.; Rong, Y.; Song, D.; Wang, Y. Cathelicidin-BF, a Novel Antimicrobial Peptide from Bungarus fasciatus, Attenuates Disease in a Dextran Sulfate Sodium Model of Colitis. Mol. Pharm. 2015, 12, 1648–1661. [Google Scholar] [CrossRef]
- Wei, L.; Gao, J.; Zhang, S.; Wu, S.; Xie, Z.; Ling, G.; Kuang, Y.Q.; Yang, Y.; Yu, H.; Wang, Y. Identification and Characterization of the First Cathelicidin from Sea Snakes with Potent Antimicrobial and Anti-inflammatory Activity and Special Mechanism. J. Biol. Chem. 2015, 290, 16633–16652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlile, S.R.; Shiels, J.; Kerrigan, L.; Delaney, R.; Megaw, J.; Gilmore, B.F.; Weldon, S.; Dalton, J.P.; Taggart, C.C. Sea snake cathelicidin (Hc-cath) exerts a protective effect in mouse models of lung inflammation and infection. Sci. Rep. 2019, 9, 6071. [Google Scholar] [CrossRef]
- Girão, V.P.R.N.; Falcão, C.B.; Rocha, I.; Lucena, H.M.R.; Costa, F.H.F.; Baptista, R.G. Antiviral Activity of Ctn[15–34], A Cathelicidin-Derived Eicosapeptide, Against Infectious Myonecrosis Virus in Litopenaeus vannamei Primary Hemocyte Cultures. Food Environ. Virol. 2017, 9, 277–286. [Google Scholar] [CrossRef]
- Amer, L.S.; Bishop, B.M.; van Hoek, M.L. Antimicrobial and antibiofilm activity of cathelicidins and short, synthetic peptides against Francisella. Biochem. Biophys. Res. Commun. 2010, 396, 246–251. [Google Scholar] [CrossRef]
- de Latour, F.A.; Amer, L.S.; Papanstasiou, E.A.; Bishop, B.M.; van Hoek, M.L. Antimicrobial activity of the Naja atra cathelicidin and related small peptides. Biochem. Biophys. Res. Commun. 2010, 396, 825–830. [Google Scholar] [CrossRef]
- Chen, W.; Yang, B.; Zhou, H.; Sun, L.; Dou, J.; Qian, H.; Huang, W.; Mei, Y.; Han, J. Structure-activity relationships of a snake cathelicidin-related peptide, BF-15. Peptides 2011, 32, 2497–2503. [Google Scholar] [CrossRef]
- de Aguiar, F.L.L.; Cavalcante, C.; Dos Fontenelle, S.R.O.; Falcão, C.B.; Andreu, D.; Baptista, R.G. The antiproliferative peptide Ctn[15–34] is active against multidrug-resistant yeasts Candida albicans and Cryptococcus neoformans. J. Appl. Microbiol. 2020, 128, 414–425. [Google Scholar] [CrossRef]
- Zhou, H.; Dou, J.; Wang, J.; Chen, L.; Wang, H.; Zhou, W.; Li, Y.; Zhou, C. The antibacterial activity of BF-30 in vitro and in infected burned rats is through interference with cytoplasmic membrane integrity. Peptides 2011, 32, 1131–1138. [Google Scholar] [CrossRef]
- Juba, M.L.; Porter, D.K.; Williams, E.H.; Rodriguez, C.A.; Barksdale, S.M.; Bishop, B.M. Helical cationic antimicrobial peptide length and its impact on membrane disruption. Biochim. Biophys. Acta 2015, 1848, 1081–1091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavalcante, C.S.P.; de Aguiar, F.L.L.; Fontenelle, R.O.S.; de Menezes, R.; Martins, A.M.C.; Falcão, C.B.; Andreu, D.; Baptista, R.G. Insights into the candidacidal mechanism of Ctn[15–34] - a carboxyl-terminal, crotalicidin-derived peptide related to cathelicidins. J. Med Microbiol. 2018, 67, 129–138. [Google Scholar] [CrossRef]
- Peinado, P.C.; Dias, S.A.; Domingues, M.M.; Benfield, A.H.; Freire, J.M.; Baptista, R.G.; Gaspar, D.; Castanho, M.; Craik, D.J.; Henriques, S.T.; et al. Mechanisms of bacterial membrane permeabilization by crotalicidin (Ctn) and its fragment Ctn(15-34), antimicrobial peptides from rattlesnake venom. J. Biol. Chem. 2018, 293, 1536–1549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguiar, F.L.L.; Santos, N.C.; de Cavalcante, P.C.S.; Andreu, D.; Baptista, G.R.; Gonçalves, S. Antibiofilm Activity on Candida albicans and Mechanism of Action on Biomembrane Models of the Antimicrobial Peptide Ctn[15–34]. Int. J. Mol. Sci. 2020, 21, 8339. [Google Scholar] [CrossRef] [PubMed]
- Falcao, C.B.; Peinado, P.C.; de la Torre, B.G.; Mayol, X.; Carreras, Z.H.; Jiménez, M.; Baptista, R.G.; Andreu, D. Structural Dissection of Crotalicidin, a Rattlesnake Venom Cathelicidin, Retrieves a Fragment with Antimicrobial and Antitumor Activity. J. Med. Chem. 2015, 58, 8553–8563. [Google Scholar] [CrossRef]
- Wang, L.; Chan, J.Y.; Rêgo, J.V.; Chong, C.M.; Ai, N.; Falcão, C.B.; Baptista, R.G.; Lee, S.M. Rhodamine B-conjugated encrypted vipericidin nonapeptide is a potent toxin to zebrafish and associated with in vitro cytotoxicity. Biochim. Biophys. Acta 2015, 1850, 1253–1260. [Google Scholar] [CrossRef] [PubMed]
- Hao, Q.; Wang, H.; Wang, J.; Dou, J.; Zhang, M.; Zhou, W.; Zhou, C. Effective antimicrobial activity of Cbf-K16 and Cbf-A7A13 against NDM-1-carrying Escherichia coli by DNA binding after penetrating the cytoplasmic membrane in vitro. J. Pept. Sci. 2013, 19, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Peinado, P.C.; Valle, J.; Freire, J.M.; Andreu, D. Tumor Cell Attack by Crotalicidin (Ctn) and Its Fragment Ctn[15–34]: Insights into Their Dual Membranolytic and Intracellular Targeting Mechanism. ACS Chem. Biol. 2020, 15, 2945–2957. [Google Scholar] [CrossRef] [PubMed]
- Dubovskii, P.V.; Konshina, A.G.; Efremov, R.G. Cobra cardiotoxins: Membrane interactions and pharmacological potential. Curr. Med. Chem. 2014, 21, 270–287. [Google Scholar] [CrossRef] [PubMed]
- Chiou, J.T.; Shi, Y.J.; Wang, L.J.; Huang, C.H.; Lee, Y.C.; Chang, L.S. Naja atra Cardiotoxin 3 Elicits Autophagy and Apoptosis in U937 Human Leukemia Cells through the Ca(2+)/PP2A/AMPK Axis. Toxins 2019, 11, 527. [Google Scholar] [CrossRef] [Green Version]
- Feofanov, A.V.; Sharonov, G.V.; Astapova, M.V.; Rodionov, D.I.; Utkin, Y.N.; Arseniev, A.S. Cancer cell injury by cytotoxins from cobra venom is mediated through lysosomal damage. Biochem. J. 2005, 390, 11–18. [Google Scholar] [CrossRef]
- Zhang, B.; Li, F.; Chen, Z.; Shrivastava, I.H.; Gasanoff, E.S.; Dagda, R.K. Naja mossambica mossambica Cobra Cardiotoxin Targets Mitochondria to Disrupt Mitochondrial Membrane Structure and Function. Toxins 2019, 11, 152. [Google Scholar] [CrossRef] [Green Version]
- Ambra, D.I.; Lauritano, C. A Review of Toxins from Cnidaria. Mar. Drugs 2020, 18, 507. [Google Scholar] [CrossRef]
- Lee, G.; Bae, H. Bee Venom Phospholipase A2: Yesterday’s Enemy Becomes Today’s Friend. Toxins 2016, 8, 48. [Google Scholar] [CrossRef] [Green Version]
- Krayem, N.; Gargouri, Y. Scorpion venom phospholipases A(2): A minireview. Toxicon Off. J. Int. Soc. Toxinology 2020, 184, 48–54. [Google Scholar] [CrossRef]
- Zambelli, V.O.; Picolo, G.; Fernandes, C.A.H.; Fontes, M.R.M.; Cury, Y. Secreted Phospholipases A₂ from Animal Venoms in Pain and Analgesia. Toxins 2017, 9, 406. [Google Scholar] [CrossRef] [Green Version]
- Mendes, B.; Almeida, J.R.; Vale, N.; Gomes, P.; Gadelha, F.R.; Da Silva, S.L.; Miguel, D.C. Potential use of 13-mer peptides based on phospholipase and oligoarginine as leishmanicidal agents. Comp. Biochem. Physiol. Toxicol. Pharmacol. CBP 2019, 226, 108612. [Google Scholar] [CrossRef]
- Lameu, C.; Neiva, M.; Hayashi, M. Venom Bradykinin-Related Peptides (BRPs) and Its Multiple Biological Roles; IntechOpen Limited: London, UK, 2013; Volume 5, pp. 119–151. [Google Scholar] [CrossRef] [Green Version]
- Sciani, J.M.; Vigerelli, H.; Costa, A.S.; Câmara, D.A.; Junior, P.L.; Pimenta, D.C. An unexpected cell-penetrating peptide from Bothrops jararaca venom identified through a novel size exclusion chromatography screening. J. Pept. Sci. Off. Publ. Eur. Pept. Soc. 2017, 23, 68–76. [Google Scholar] [CrossRef]
- Alouf, J.E. Pore-Forming Bacterial Protein Toxins: An Overview. In Pore-Forming Toxins; van der Goot, F.G., Ed.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 1–14. [Google Scholar] [CrossRef]
- Barth, H.; Aktories, K.; Popoff, M.R.; Stiles, B.G. Binary bacterial toxins: Biochemistry, biology and applications of common Clostridium and Bacillus proteins. Microbiol. Mol. Biol. Rev. 2004, 68, 373–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pluzhnikov, K.; Nosyreva, E.; Shevchenko, L.; Kokoz, Y.; Schmalz, D.; Hucho, F.; Grishin, E. Analysis of ectatomin action on cell membranes. Eur. J. Biochem. 1999, 262, 501–506. [Google Scholar] [CrossRef] [Green Version]
- Nentwig, K.L. Antimicrobial and cytolytic peptides of venomous arthropods. Cell. Mol. Life Sci. CMLS 2003, 60, 2651–2668. [Google Scholar] [CrossRef]
- Vassilevski, A.A.; Kozlov, S.A.; Samsonova, O.V.; Egorova, N.S.; Karpunin, D.V.; Pluzhnikov, K.A.; Feofanov, A.V.; Grishin, E.V. Cyto-insectotoxins, a novel class of cytolytic and insecticidal peptides from spider venom. Biochem. J. 2008, 411, 687–696. [Google Scholar] [CrossRef] [Green Version]
- Anderluh, G.; Sepčić, K.; Turk, T.; Maček, P. Cytolytic proteins from cnidarians - an overview. Acta Chim. Slov. 2011, 58, 724–729. [Google Scholar] [PubMed]
- Podobnik, M.; Anderluh, G. Pore-forming toxins in Cnidaria. Semin. Cell Dev. Biol. 2017, 72, 133–141. [Google Scholar] [CrossRef]
- Huang, C.; Morlighem, J.R.; Zhou, H.; Lima, É.P.; Gomes, P.B.; Cai, J.; Lou, I.; Pérez, C.D.; Lee, S.M.; Baptista, R.G. The Transcriptome of the Zoanthid Protopalythoa variabilis (Cnidaria, Anthozoa) Predicts a Basal Repertoire of Toxin-like and Venom-Auxiliary Polypeptides. Genome Biol. Evol. 2016, 8, 3045–3064. [Google Scholar] [CrossRef] [Green Version]
- Galloso, M.H.; Pedrera, L.; Ros, U. Pore-forming proteins: From defense factors to endogenous executors of cell death. Chem. Phys. Lipids 2020, 2020, 5026. [Google Scholar] [CrossRef]
- Geny, B.; Popoff, M.R. Bacterial protein toxins and lipids: Pore formation or toxin entry into cells. Biol. Cell 2006, 98, 667–678. [Google Scholar] [CrossRef]
- Fabbrini, M.S.; Katayama, M.; Nakase, I.; Vago, R. Plant Ribosome-Inactivating Proteins: Progesses, Challenges and Biotechnological Applications (and a Few Digressions). Toxins 2017, 9, 314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ladokhin, A.S. Cellular Entry of Binary and Pore-Forming Bacterial Toxins. Toxins 2018, 10, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. PLoS Med. 2009, 6, 100. [Google Scholar] [CrossRef] [PubMed]
CPP | Origin | Sequence | Physicochemical Class and Secondary Structure |
---|---|---|---|
Protein-derived | |||
TAT48-60 | Protein of HIV-1 | GRKKRRQRRRPQ | cationic random coil (rdc) * |
Penetratin (Antp43-68) | Antennapedia homeodomain of D. melanogaster | RQIKIWFQNRRMKWKK | cationic β-strand/rdc * |
VP22 | Herpes simplex virus type I | NAKTRRHERRRKLAIER | amphipathic α-helix |
pVEC | Cadherin615–632 | IRKQAHAHSK | amphipathic β-strand/rdc * |
Chimeric | |||
Transportan | Galanine/Mastoparan | GWTLNSAGYLLGKINLKALAALAKKIL | amphipathic α-helix * |
Pep-1 | HIV-reverse transcriptase/SV40 T-antigen | KETWWETWWTEWSQPKKKRKV | amphipathic α-helix * |
MPG | HIV-gp41/SV40 T-antigen | GALFLGFLGAAGSTMGAWSQPKKKRKV | amphipathic β-strand/rdc |
Synthetic | |||
Polyarginines | Based on Tat peptide | Poly-arginine, (R)n; 6 < n < 12 | cationic rdc * |
MAP | designed | KLALKLALKALKAALKLA | amphipathic α-helix * |
KALA | designed | WEAKLAKALAKALAKHLAKALAKALKACEA | amphipathic α-helix |
Peptide | Sequence a | Size | Major Structural Features b | Mechanism(s) of Cell Penetration c | Cargo Delivery d | Ref. |
---|---|---|---|---|---|---|
Honey bee | ||||||
Mellitin (MEL) | GIGAVLKVLTTGLPALISWIKRKRQQ-NH2 | 26 | Amphipathic α-helix | DT, PF | FD | [49] |
Tat/CM18 hybrid | Chimera | DT, MD, ND | CI | [52] | ||
MEL-d(KLAKLAK)2 | GIGAVLKVLTTGLPALISWIKRKRQQGGGGS-d[KLAKLAKKLAKLAK] | 45 | Chimera | DT (?) | AP | [53] |
p5RHH | VLTTGLPALISWIRRRHRRHC | 21 | C-terminal fragment | Endocytosis (?) | DNA polyplexes | [54,55] |
p5RWR | VLTTGLPALISWIKRKRQQRWRRRR | 25 | C-terminal fragment | Endocytosis (?) | DNA polyplexes | [54,55] |
MT20 | GIGAVLKVLTTGLPALISWI | 20 | Hydrophobic helix | DT, MD | DNA polyplexes | [56] |
FL20 | GIGAILKVLATGLPTLISWI | 20 | Hydrophobic helix | DT, MD | DNA polyplexes | [56] |
Melittin [1,2,3,4,5,6,7,8,9,10,11,12,13,14] | GIGAVLKVLTTGLP | 14 | N-terminal fragment | DT | NC, LP | [57] |
Wasp | ||||||
Anoplin | GLLKRIKTLL-NH2 | 10 | Amphipathic α-helix | DT, PF | FD | [60] |
Anoplin dimer | (GLLKRIKTLL-NH2)2 | 20 | C-N terminal dimer | DT, PF | - | [61] |
Mastoparan | INLKALAALAKKIL-NH2 | 14 | Amphipathic α-helix | DT, PF | - | [64] |
Mastoparan-X | INWKGIAAMAKKLL-NH2 | 14 | Amphipathic α-helix | DT, PF | - | [65] |
Transportan | GWTLNSAGYLLGKINLKALAALAKKIL-NH2 | 27 | Chimera | multiple | CI | [66] |
TP10 | AGYLLGKINLKALAALAKKIL-NH2 | 21 | Shorter transportan | multiple | CI | [70,77] |
TP10-5 | AGYLLGKINLKKLAKL(Aib)KKIL-NH2 | 21 | Helical stabilized | DT | FD | [71] |
Transportan 9dR | GWTLNSAGYLLGKINLKALAALAKKIL(dR)9 | 36 | Chimera | Endocytosis (?) | siRNA | [73] |
Mitoparan | INLKKLAKL(Aib)KKIL-NH2 | 14 | Mastoparan analogue | DT | FD, AP | [78,79,80] |
Peptide | Sequence | Size | Major Structural Features | Mechanism(s) of Cell Penetration | Cargo Delivery | Ref. |
---|---|---|---|---|---|---|
Spider | ||||||
Latarcin-1 (Ltc1) | SMWSGMWRRKLKKLRNALKKKLKGE | 25 | cationic α-helix | DT, PF | FD | [81] |
Ltc1-decapeptide (LDP) | KWRRKLKKLR | 10 | Designed | DT | FD | [82] |
LDP-NLS | KWRRKLKKLRPKKKRKV | 17 | Chimera | ED | FD, EZ | [83] |
Lycosin-I | RKGWFKAMKSIAKFIAKEKLKEHL | 24 | Amphipathic α-helix | DT, ND | FD, NP | [87,88] |
R-lycosin-I | Ac-RGWFRAMRSIARFIARERLREHL-amide | 24 | Lys→Arg analogue | ED | FD | [89] |
Scorpion | ||||||
Chlorotoxin (CTX) | MCMPCFTTDHQMARKCDDCCGGKGRGKCYGPQCLCR | 36 | ICKfold/knottin | ED | FD, RD | [91,92,93] |
[K15R/K23R]CTX | MCMPCFTTDHQMARRCDDCCGGRGRGKCYGPQCLCR | 36 | Mutant analogue | ED | FD | [95] |
[K15R/K23R/Y29W]CTX | MCMPCFTTDHQMARRCDDCCGGRGRGKCWGPQCLCR | 36 | Mutant analogue | ED | FD | [95] |
Maurocalcine (MCa) | GDCLPHLKLCKENKDCCSKKCKRRGTNIEKRCR | 33 | ICK fold/knottin | DT, ND | CI, NP | [99,100,101] |
MCaUF1–9-C | GDAbuLPHLKLC | 10 | Truncated, unfold | DT | FD | [105] |
Imperatoxin A (IpTxa) | GDCLPHLKRCKADNDCCGKKCKRRGTNAEKRCR | 33 | ICK fold/knottin | n | FD | [109] |
Hadrucalcin (HdCa) | SEKDCIKHLQRCRENKDCCSKKCSRRGTNPEKRCR | 35 | ICK fold/knottin | DT, ND | - | [110] |
HadUF1−11 (H11) | SEKDAbuIKHLQR-C | 12 | N-terminal fragment | DT, ND, ED (?) | NP | [111] |
WaTx | ASPQQAKYCYEQCNVNKVPFDQCYQMCSPLERS | 33 | CS-helical hairpin | DT, ND | FD | [112] |
Peptide | Sequence a | Size | Major Structural Features b | Mechanism(s) of Cell Penetration c | Cargo Delivery d | Ref. |
---|---|---|---|---|---|---|
Fish | ||||||
Ac-Pardaxin P5 | Ac-GFFALIPKIISSPLFKTLLSAVGSALSSSGDQE | 33 | Hydrophobic helix | DT, PF | FD | [117] |
Amphibian | ||||||
bombesin | EQKLGNQWAVGHLM-NH2 | 14 | helical harpin | RM | - | [118,119,120] |
Tat-K3-bombesin1-14 | RKKRRQRRRGGCGEQKLGNQWAVGHLM-NH2 | 27 | Chimera | RM | RD | [124] |
Snake | ||||||
Crotamine | YKQCHKKGGHCFPKEKICLPPSSDFGKMDCRWRWKCCKKGSG | 42 | β-defensin fold | multiple | FD, CI | [138] |
NrTP1 | YKQCHKKGGKKGSG | 14 | N↔C splice variant | multiple | FD | [146,147] |
NrTP6 | YKQSHKKGGKKGSG | 14 | NrTP1 CysΔSer | multiple | FD, EZ | [148] |
DY676-NrTP6 | C-YKQSHKKGGKKGSG | 15 | Extra Cys | IR | [152] | |
CyLop-1 | CRWRWKCCKK | 10 | Encrypted sequence | DT, ED | FD | [145] |
Crotalicidin | KRFKKFFKKVKKSVKKRLKKIFKKPMVIGVTIPF | 34 | Amphipathic α-helix | DT, PF | FD | [176] |
Ctn[15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34] | KKRLKKIFKKPMVIGVTIPF-NH2 | 20 | C-terminal fragment | DT, PF | FD | [170,176] |
cathelicidin- BF30 | KFFRKLKKSVKKRAKEFFKKPRVIGVSIPF | 30 | Shorter analogue | DT, PF | - | |
Cardiotoxin | LKCNKLIPLAYKTCPAGKNLCYKMFMVSNKTVPVKRGCID ACPKNSLLVKYVCCNTDRCN | 60 | Three-finger fold | DT, HI | FD | [179] |
PLA2 C-terminal | KKYKAYFKFKCKK-NH2 | 13 | C-terminal fragment | DT, MD | - | [185] |
PLA2 fragment K→R | RRYRAYFRFRCRR-NH2 | 13 | Mutant K→R | DT, MD | - | [185] |
BPP-13a | <EGGWPRPGEIPP | 12 | Native | DT (?) | - | [187] |
desPyr-BPP13a | GGWPRPGPEIPP | 12 | Mutant analogue | DT (?) | FD | [187] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rádis-Baptista, G. Cell-Penetrating Peptides Derived from Animal Venoms and Toxins. Toxins 2021, 13, 147. https://doi.org/10.3390/toxins13020147
Rádis-Baptista G. Cell-Penetrating Peptides Derived from Animal Venoms and Toxins. Toxins. 2021; 13(2):147. https://doi.org/10.3390/toxins13020147
Chicago/Turabian StyleRádis-Baptista, Gandhi. 2021. "Cell-Penetrating Peptides Derived from Animal Venoms and Toxins" Toxins 13, no. 2: 147. https://doi.org/10.3390/toxins13020147
APA StyleRádis-Baptista, G. (2021). Cell-Penetrating Peptides Derived from Animal Venoms and Toxins. Toxins, 13(2), 147. https://doi.org/10.3390/toxins13020147