Bioengineering of Bordetella pertussis Adenylate Cyclase Toxin for Vaccine Development and Other Biotechnological Purposes
Abstract
:1. Introduction
2. Engineering CyaA as a Molecular Trojan Horse to Deliver Antigens into Antigen-Presenting Cells
- (1)
- CyaA binds with high affinity to the CD11b/CD18 integrin [10]. This integrin is expressed mainly on innate immune cells such as macrophages and neutrophils as well as by a subpopulation of dendritic cells (DCs). Indeed, CyaA was shown to specifically target the CD11b+ DCs subset in vivo [17]. The DCs are the main professional antigen-presenting cells (APCs), the function of which is to process antigens to present them on their cell surfaces to stimulate the T cells of the adaptive immune system [18]. Given the central role of these cells in the initiation of the adaptive immune response, efficient targeting of antigens to DCs represents a crucial component of modern vaccination strategy. The natural tropism of CyaA for the CD11b+ DC subset turned out to be of the utmost advantage for a potential vaccine vehicle.
- (2)
- CyaA can tolerate genetic insertion of polypeptide fragments of a relatively large size (up to a few hundred residues) into its N-terminal catalytic domain without impairing its ability to translocate across the plasma membrane of eukaryotic cells [19]. Therefore, recombinant CyaA vaccines can be easily designed by genetically grafting antigens of interest onto the so-called permissive sites within the catalytic domain of the toxin [20] (Figure 2). To avoid potential toxicity of the recombinant CyaAs due to the cAMP-synthetizing capacity, the enzymatic activity is generally ablated by specific mutations within the catalytic site [19].
3. Application of CyaA for Biotechnological Screening of Protein–Protein Interactions: A Bacterial Adenylate Cyclase-Based Two-Hybrid (BACTH) Assay
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bouchez, V.; Guiso, N. Bordetella Pertussis, B. Parapertussis, Vaccines and Cycles of Whooping Cough. Pathog. Dis. 2015, 73, 362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hewlett, E.L.; Burns, D.L.; Cotter, P.A.; Harvill, E.T.; Merkel, T.J.; Quinn, C.P.; Stibitz, E.S. Pertussis Pathogenesis--What We Know and What We Don’t Know. J. Infect. Dis. 2014, 209, 982–985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melvin, J.A.; Scheller, E.V.; Miller, J.F.; Cotter, P.A. Bordetella Pertussis Pathogenesis: Current and Future Challenges. Nat. Rev. Microbiol. 2014, 12, 274–288. [Google Scholar] [CrossRef] [Green Version]
- Fedele, G.; Schiavoni, I.; Adkins, I.; Klimova, N.; Sebo, P. Invasion of Dendritic Cells, Macrophages and Neutrophils by the Bordetella Adenylate Cyclase Toxin: A Subversive Move to Fool Host Immunity. Toxins 2017, 9, 293. [Google Scholar] [CrossRef] [PubMed]
- Guiso, N. Bordetella Adenylate Cyclase-Hemolysin Toxins. Toxins 2017, 9, 277. [Google Scholar] [CrossRef]
- Ostolaza, H.; Bakas, L.; Goni, F.M. Balance of Electrostatic and Hydrophobic Interactions in the Lysis of Model Membranes by E. Coli Alpha-Haemolysin. J. Membr. Biol. 1997, 158, 137–145. [Google Scholar] [CrossRef]
- Chenal, A.; Ladant, D. Bioengineering of Bordetella Pertussis Adenylate Cyclase Toxin for Antigen-Delivery and Immunotherapy. Toxins 2018, 10, 302. [Google Scholar] [CrossRef] [Green Version]
- Linhartova, I.; Bumba, L.; Masin, J.; Basler, M.; Osicka, R.; Kamanova, J.; Prochazkova, K.; Adkins, I.; Hejnova-Holubova, J.; Sadilkova, L.; et al. RTX Proteins: A Highly Diverse Family Secreted by a Common Mechanism. FEMS Microbiol. Rev. 2010, 34, 1076–1112. [Google Scholar] [CrossRef] [Green Version]
- Chenal, A.; Sotomayor Perez, A.C.; Ladant, D. Structure & Function of RTX toxins. In The Comprehensive Sourcebook of Bacterial Protein Toxins; Alouf, J., Ladant, D., Popoff, M.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 677–718. [Google Scholar]
- Guermonprez, P.; Khelef, N.; Blouin, E.; Rieu, P.; Ricciardi-Castagnoli, P.; Guiso, N.; Ladant, D.; Leclerc, C. The Adenylate Cyclase Toxin of Bordetella Pertussis Binds to Target Cells via the alpha(M)beta(2) Integrin (CD11b/CD18). J. Exp. Med. 2001, 193, 1035–1044. [Google Scholar] [CrossRef]
- Carbonetti, N.H. Pertussis Toxin and Adenylate Cyclase Toxin: Key Virulence Factors of Bordetella Pertussis and Cell Biology Tools. Future Microbiol. 2010, 5, 455–469. [Google Scholar] [CrossRef] [Green Version]
- Ostolaza, H.; Martin, C.; Gonzalez-Bullon, D.; Uribe, K.B.; Etxaniz, A. Understanding the Mechanism of Translocation of Adenylate Cyclase Toxin across Biological Membranes. Toxins 2017, 9, 295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dal Molin, F.; Tonello, F.; Ladant, D.; Zornetta, I.; Zamparo, I.; Di Benedetto, G.; Zaccolo, M.; Montecucco, C. Cell Entry and cAMP Imaging of Anthrax Edema Toxin. EMBO J. 2006, 25, 5405–5413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paccani, S.R.; Finetti, F.; Davi, M.; Patrussi, L.; D’Elios, M.M.; Ladant, D.; Baldari, C.T. The Bordetella Pertussis Adenylate Cyclase Toxin Binds to T Cells via LFA-1 and Induces Its Disengagement from the Immune Synapse. J. Exp. Med. 2011, 208, 1317–1330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arumugham, V.B.; Ulivieri, C.; Onnis, A.; Finetti, F.; Tonello, F.; Ladant, D.; Baldari, C.T. Compartmentalized Cyclic AMP Production by the Bordetella Pertussis and Bacillus Anthracis Adenylate Cyclase Toxins Differentially Affects the Immune Synapse in T Lymphocytes. Front. Immunol. 2018, 9, 919. [Google Scholar] [CrossRef] [Green Version]
- Hasan, S.; Rahman, W.U.; Sebo, P.; Osicka, R. Distinct Spatiotemporal Distribution of Bacterial Toxin-Produced Cellular cAMP Differentially Inhibits Opsonophagocytic Signaling. Toxins 2019, 11, 362. [Google Scholar] [CrossRef] [Green Version]
- Guermonprez, P.; Fayolle, C.; Rojas, M.-J.; Rescigno, M.; Ladant, D.; Leclerc, C. In Vivo Receptor-Mediated Delivery of a Recombinant Invasive Bacterial Toxoid to CD11c + CD8 Alpha -CD11bhigh Dendritic Cells. Eur. J. Immunol. 2002, 32, 3071–3081. [Google Scholar] [CrossRef]
- Cohn, L.; Delamarre, L. Dendritic Cell-Targeted Vaccines. Front. Immunol. 2014, 5, 255. [Google Scholar] [CrossRef]
- Ladant, D.; Glaser, P.; Ullmann, A. Insertional Mutagenesis of Bordetella Pertussis Adenylate Cyclase. J. Biol. Chem. 1992, 267, 2244–2250. [Google Scholar] [CrossRef]
- Sebo, P.; Fayolle, C.; d’Andria, O.; Ladant, D.; Leclerc, C.; Ullmann, A. Cell-Invasive Activity of Epitope-Tagged Adenylate Cyclase of Bordetella Pertussis Allows in Vitro Presentation of a Foreign Epitope to CD8+ Cytotoxic T Cells. Infect. Immun. 1995, 63, 3851–3857. [Google Scholar] [CrossRef] [Green Version]
- Fayolle, C.; Sebo, P.; Ladant, D.; Ullmann, A.; Leclerc, C. In Vivo Induction of CTL Responses by Recombinant Adenylate Cyclase of Bordetella Pertussis Carrying Viral CD8+ T Cell Epitopes. J. Immunol. Baltim. 1996, 156, 4697–4706. [Google Scholar]
- Guermonprez, P.; Ladant, D.; Karimova, G.; Ullmann, A.; Leclerc, C. Direct Delivery of the Bordetella Pertussis Adenylate Cyclase Toxin to the MHC Class I Antigen Presentation Pathway. J. Immunol. Baltim. 1999, 162, 1910–1916. [Google Scholar]
- Loucka, J.; Schlecht, G.; Vodolanova, J.; Leclerc, C.; Sebo, P. Delivery of a MalE CD4(+)-T-Cell Epitope into the Major Histocompatibility Complex Class II Antigen Presentation Pathway by Bordetella Pertussis Adenylate Cyclase. Infect. Immun. 2002, 70, 1002–1005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlecht, G.; Loucka, J.; Najar, H.; Sebo, P.; Leclerc, C. Antigen Targeting to CD11b Allows Efficient Presentation of CD4+ and CD8+ T Cell Epitopes and in Vivo Th1-Polarized T Cell Priming. J. Immunol. Baltim. 2004, 173, 6089–6097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khelef, N.; Gounon, P.; Guiso, N. Internalization of Bordetella Pertussis Adenylate Cyclase-Haemolysin into Endocytic Vesicles Contributes to Macrophage Cytotoxicity. Cell. Microbiol. 2001, 3, 721–730. [Google Scholar] [CrossRef]
- Fiser, R.; Masin, J.; Bumba, L.; Pospisilova, E.; Fayolle, C.; Basler, M.; Sadilkova, L.; Adkins, I.; Kamanova, J.; Cerny, J.; et al. Calcium Influx Rescues Adenylate Cyclase-Hemolysin from Rapid Cell Membrane Removal and Enables Phagocyte Permeabilization by Toxin Pores. PLoS Pathog. 2012, 8, e1002580. [Google Scholar] [CrossRef] [Green Version]
- Mascarell, L.; Fayolle, C.; Bauche, C.; Ladant, D.; Leclerc, C. Induction of Neutralizing Antibodies and Th1-Polarized and CD4-Independent CD8+. J. Virol. 2005, 79, 9872–9884. [Google Scholar] [CrossRef] [Green Version]
- Mascarell, L.; Bauche, C.; Fayolle, C.; Diop, O.M.; Dupuy, M.; Nougarede, N.; Perraut, R.; Ladant, D.; Leclerc, C. Delivery of the HIV-1 Tat Protein to Dendritic Cells by the CyaA Vector Induces Specific Th1 Responses and High Affinity Neutralizing Antibodies in Non Human Primates. Vaccine 2006, 24, 3490–3499. [Google Scholar] [CrossRef]
- Dadaglio, G.; Fayolle, C.; Zhang, X.; Ryffel, B.; Oberkampf, M.; Felix, T.; Hervas-Stubbs, S.; Osicka, R.; Sebo, P.; Ladant, D.; et al. Antigen Targeting to CD11b+ Dendritic Cells in Association with TLR4/TRIF Signaling Promotes Strong CD8+ T Cell Responses. J. Immunol. Baltim. 2014, 193, 1787–1798. [Google Scholar] [CrossRef] [Green Version]
- Saron, M.F.; Fayolle, C.; Sebo, P.; Ladant, D.; Ullmann, A.; Leclerc, C. Anti-Viral Protection Conferred by Recombinant Adenylate Cyclase Toxins from Bordetella Pertussis Carrying a CD8+ T Cell Epitope from Lymphocytic Choriomeningitis Virus. Proc. Natl. Acad. Sci. USA 1997, 94, 3314–3319. [Google Scholar] [CrossRef] [Green Version]
- Fayolle, C.; Ladant, D.; Karimova, G.; Ullmann, A.; Leclerc, C. Therapy of Murine Tumors with Recombinant Bordetella Pertussis Adenylate Cyclase Carrying a Cytotoxic T Cell Epitope. J. Immunol. Baltim. 1999, 162, 4157–4162. [Google Scholar]
- Dadaglio, G.; Morel, S.; Bauche, C.; Moukrim, Z.; Lemonnier, F.A.; Van Den Eynde, B.J.; Ladant, D.; Leclerc, C. Recombinant Adenylate Cyclase Toxin of Bordetella Pertussis Induces Cytotoxic T Lymphocyte Responses against HLA*0201-Restricted Melanoma Epitopes. Int. Immunol. 2003, 15, 1423–1430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Preville, X.; Ladant, D.; Timmerman, B.; Leclerc, C. Eradication of Established Tumors by Vaccination with Recombinant Bordetella Pertussis Adenylate Cyclase Carrying the Human Papillomavirus 16 E7 Oncoprotein. Cancer Res. 2005, 65, 641–649. [Google Scholar] [PubMed]
- Hervas-Stubbs, S.; Majlessi, L.; Simsova, M.; Morova, J.; Rojas, M.-J.; Nouze, C.; Brodin, P.; Sebo, P.; Leclerc, C. High Frequency of CD4+ T Cells Specific for the TB10.4 Protein Correlates with Protection against Mycobacterium Tuberculosis Infection. Infect. Immun. 2006, 74, 3396–3407. [Google Scholar] [CrossRef] [Green Version]
- Majlessi, L.; Simsova, M.; Jarvis, Z.; Brodin, P.; Rojas, M.-J.; Bauche, C.; Nouze, C.; Ladant, D.; Cole, S.T.; Sebo, P.; et al. An Increase in Antimycobacterial Th1-Cell Responses by Prime-Boost Protocols of Immunization Does Not Enhance Protection against Tuberculosis. Infect. Immun. 2006, 74, 2128–2137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pal, A.; Kundu, R. Human Papillomavirus E6 and E7: The Cervical Cancer Hallmarks and Targets for Therapy. Front. Microbiol. 2019, 10, 3116. [Google Scholar] [CrossRef] [Green Version]
- Chabeda, A.; Yanez, R.J.R.; Lamprecht, R.; Meyers, A.E.; Rybicki, E.P.; Hitzeroth, I.I. Therapeutic Vaccines for High-Risk HPV-Associated Diseases. Papillomavirus Res. Amst. Neth. 2018, 5, 46–58. [Google Scholar] [CrossRef]
- Berraondo, P.; Nouze, C.; Preville, X.; Ladant, D.; Leclerc, C. Eradication of Large Tumors in Mice by a Tritherapy Targeting the Innate, Adaptive, and Regulatory Components of the Immune System. Cancer Res. 2007, 67, 8847–8855. [Google Scholar] [CrossRef] [Green Version]
- Esquerre, M.; Bouillette-Marussig, M.; Goubier, A.; Momot, M.; Gonindard, C.; Keller, H.; Navarro, A.; Bissery, M.-C. GTL001, a Bivalent Therapeutic Vaccine against Human Papillomavirus 16 and 18, Induces Antigen-Specific CD8+ T Cell Responses Leading to Tumor Regression. PLoS ONE 2017, 12, e0174038. [Google Scholar] [CrossRef] [Green Version]
- Esquerre, M.; Momot, M.; Goubier, A.; Gonindard, C.; Leung-Theung-Long, S.; Misseri, Y.; Bissery, M.-C. GTL001 and Biva- lent CyaA-Based Therapeutic Vaccine Strategies against Human Papillomavirus and Other Tumor-Associated Antigens Induce Effector and Memory. Vaccine 2017, 35, 1509–1516. [Google Scholar] [CrossRef]
- Chaoul, N.; Fayolle, C.; Desrues, B.; Oberkampf, M.; Tang, A.; Ladant, D.; Leclerc, C. Rapamycin Impairs Antitumor CD8+ T-Cell Responses and Vaccine-Induced Tumor Eradication. Cancer Res. 2015, 75, 3279–3291. [Google Scholar] [CrossRef] [Green Version]
- Chaoul, N.; Tang, A.; Desrues, B.; Oberkampf, M.; Fayolle, C.; Ladant, D.; Sainz-Perez, A.; Leclerc, C. Lack of MHC Class II Molecules Favors CD8(+) T-Cell Infiltration into Tumors Associated with an Increased Control of Tumor Growth. Oncoimmunology 2018, 7, e1404213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Q.; Shen, Y.; Lee, Y.-S.; Gibbs, C.S.; Mrksich, M.; Tang, W.-J. Structural Basis for the Interaction of Bordetella Pertussis Adenylyl Cyclase Toxin with Calmodulin. EMBO J. 2005, 24, 3190–3201. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, D.P.; Durand, D.; Voegele, A.; Hourdel, V.; Davi, M.; Chamot-Rooke, J.; Vachette, P.; Brier, S.; Ladant, D.; Chenal, A. Calmodulin Fishing with a Structurally Disordered Bait Triggers CyaA Catalysis. PLoS Biol. 2017, 15, e2004486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ladant, D. Interaction of Bordetella Pertussis Adenylate Cyclase with Calmodulin. Identification of Two Separated Calmodulin-Binding Domains. J. Biol. Chem. 1988, 263, 2612–2618. [Google Scholar] [CrossRef]
- Karimova, G.; Pidoux, J.; Ullmann, A.; Ladant, D. A Bacterial Two-Hybrid System Based on a Reconstituted Signal Transduction Pathway. Proc. Natl. Acad. Sci. USA 1998, 95, 5752–5756. [Google Scholar] [CrossRef] [Green Version]
- Karimova, G.; Ullmann, A.; Ladant, D. A Bacterial Two-Hybrid System That Exploits a cAMP Signaling Cascade in Escherichia Coli. Methods Enzymol. 2000, 328, 59–73. [Google Scholar]
- Fields, S.; Song, O. A Novel Genetic System to Detect Protein-Protein Interactions. Nature 1989, 340, 245–246. [Google Scholar] [CrossRef]
- Stynen, B.; Tournu, H.; Tavernier, J.; Van Dijck, P. Diversity in Genetic in Vivo Methods for Protein-Protein Interaction Studies: From the Yeast Two-Hybrid System to the Mammalian Split-Luciferase System. Microbiol. Mol. Biol. Rev. 2012, 76, 331–382. [Google Scholar] [CrossRef] [Green Version]
- Battesti, A.; Bouveret, E. The Bacterial Two-Hybrid System Based on Adenylate Cyclase Reconstitution in Escherichia Coli. Methods 2012, 58, 325–334. [Google Scholar] [CrossRef] [Green Version]
- Karimova, G.; Gauliard, E.; Davi, M.; Ouellette, S.P.; Ladant, D. Protein-Protein Interaction: Bacterial Two-Hybrid. Methods Mol. Biol. 2017, 1615, 159–176. [Google Scholar] [CrossRef]
- Ouellette, S.P.; Karimova, G.; Davi, M.; Ladant, D. Analysis of Membrane Protein Interactions with a Bacterial Adenylate Cyclase-Based Two-Hybrid (BACTH) Technique. Curr. Protoc. Mol. Biol. 2017, 118, 20.12.1–20.12.24. [Google Scholar] [CrossRef] [PubMed]
- Volkwein, W.; Krafczyk, R.; Jagtap, P.K.A.; Parr, M.; Mankina, E.; Macošek, J.; Guo, Z.; Fürst, M.J.L.J.; Pfab, M.; Frishman, D.; et al. Switching the Post-Translational Modification of Translation Elongation Factor EF-P. Front. Microbiol. 2019, 10, 1148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouellette, S.P.; Gauliard, E.; Antosova, Z.; Ladant, D. A Gateway((R)) -Compatible Bacterial Adenylate Cyclase-Based Two-Hybrid System. Environ. Microbiol. Rep. 2014, 6, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Wille, T.; Barlag, B.; Jakovljevic, V.; Hensel, M.; Sourjik, V.; Gerlach, R.G. A Gateway-Based System for Fast Evaluation of Protein-Protein Interactions in Bacteria. PLoS ONE 2015, 10, e0123646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olson, M.G.; Goldammer, M.; Gauliard, E.; Ladant, D.; Ouellette, S.P. A Bacterial Adenylate Cyclase-Based Two-Hybrid System Compatible with Gateway((R)) Cloning. Methods Mol. Biol. Clifton NJ 2018, 1794, 75–96. [Google Scholar] [CrossRef]
- Houot, L.; Navarro, R.; Nouailler, M.; Duché, D.; Guerlesquin, F.; Lloubes, R. Electrostatic Interactions between the CTX Phage Minor Coat Protein and the Bacterial Host Receptor TolA Drive the Pathogenic Conversion of Vibrio Cholerae. J. Biol. Chem. 2017, 292, 13584–13598. [Google Scholar] [CrossRef] [Green Version]
- Karimova, G.; Dautin, N.; Ladant, D. Interaction Network among Escherichia Coli Membrane Proteins Involved in Cell Division as Revealed by Bacterial Two-Hybrid Analysis. J. Bacteriol. 2005, 187, 2233–2243. [Google Scholar] [CrossRef] [Green Version]
- Georgiadou, M.; Castagnini, M.; Karimova, G.; Ladant, D.; Pelicic, V. Large-Scale Study of the Interactions between Proteins Involved in Type IV Pilus Biology in Neisseria Meningitidis: Characterization of a Subcomplex Involved in Pilus Assembly. Mol. Microbiol. 2012, 84, 857–873. [Google Scholar] [CrossRef] [Green Version]
- Ouellette, S.P.; Karimova, G.; Subtil, A.; Ladant, D. Chlamydia Co-Opts the Rod Shape-Determining Proteins MreB and Pbp2 for Cell Division. Mol. Microbiol. 2012, 85, 164–178. [Google Scholar] [CrossRef]
- Gauliard, E.; Ouellette, S.P.; Rueden, K.J.; Ladant, D. Characterization of Interactions between Inclusion Membrane Proteinsfrom Chlamydia Trachomatis. Front. Cell. Infect. Microbiol. 2015, 5, 13. [Google Scholar] [CrossRef] [Green Version]
- Rowlett, V.W.; Margolin, W. The Bacterial Divisome: Ready for Its Close-Up. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015, 370. [Google Scholar] [CrossRef] [PubMed]
- Zoued, A.; Durand, E.; Brunet, Y.R.; Spinelli, S.; Douzi, B.; Guzzo, M.; Flaugnatti, N.; Legrand, P.; Journet, L.; Fronzes, R.; et al. Priming and Polymerization of a Bacterial Contractile Tail Structure. Nature 2016, 531, 59–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santin, Y.G.; Cascales, E. Domestication of a Housekeeping Transglycosylase for Assembly of a Type VI Secretion System. EMBO Rep. 2017, 18, 138–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krasteva, P.V.; Bernal-Bayard, J.; Travier, L.; Martin, F.A.; Kaminski, P.-A.; Karimova, G.; Fronzes, R.; Ghigo, J.-M. Insights into the Structure and Assembly of a Bacterial Cellulose Secretion System. Nat. Commun. 2017, 8, 2065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abedrabbo, S.; Castellon, J.; Collins, K.D.; Johnson, K.S.; Ottemann, K.M. Cooperation of Two Distinct Coupling Proteins Creates Chemosensory Network Connections. Proc. Natl. Acad. Sci. USA 2017, 114, 2970–2975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, L.; Peng, L.; Berntsson, R.P.-A.; Liu, S.M.; Park, S.; Yu, F.; Boone, C.; Palan, S.; Beard, M.; Chabrier, P.-E.; et al. Engineered Botulinum Neurotoxin B with Improved Efficacy for Targeting Human Receptors. Nat. Commun. 2017, 8, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nesper, J.; Hug, I.; Kato, S.; Hee, C.-S.; Habazettl, J.M.; Manfredi, P.; Grzesiek, S.; Schirmer, T.; Emonet, T.; Jenal, U. Cyclic Di-GMP Differentially Tunes a Bacterial Flagellar Motor through a Novel Class of CheY-like Regulators. eLife 2017, 6. [Google Scholar] [CrossRef]
- Lee, J.; Cox, J.V.; Ouellette, S.P. Critical Role for the Extended N Terminus of Chlamydial MreB in Directing Its Membrane Association and Potential Interaction with Divisome Proteins. J. Bacteriol. 2020, 202. [Google Scholar] [CrossRef]
- Gallagher, K.A.; Schumacher, M.A.; Bush, M.J.; Bibb, M.J.; Chandra, G.; Holmes, N.A.; Zeng, W.; Henderson, M.; Zhang, H.; Findlay, K.C.; et al. C-Di-GMP Arms an Anti-σ to Control Progression of Multicellular Differentiation in Streptomyces. Mol. Cell 2020, 77, 586–599.e6. [Google Scholar] [CrossRef] [Green Version]
- Caccamo, P.D.; Jacq, M.; VanNieuwenhze, M.S.; Brun, Y.V. A Division of Labor in the Recruitment and Topological Organization of a Bacterial Morphogenic Complex. Curr. Biol. CB 2020, 30, 3908–3922.e4. [Google Scholar] [CrossRef]
- Maurya, G.K.; Modi, K.; Banerjee, M.; Chaudhary, R.; Rajpurohit, Y.S.; Misra, H.S. Phosphorylation of FtsZ and FtsA by a DNA Damage-Responsive Ser/Thr Protein Kinase Affects Their Functional Interactions in Deinococcus Radiodurans. mSphere 2018, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vega, D.E.; Margolin, W. Direct Interaction between the Two Z Ring Membrane Anchors FtsA and ZipA. J. Bacteriol. 2019, 201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nivaskumar, M.; Santos-Moreno, J.; Malosse, C.; Nadeau, N.; Chamot-Rooke, J.; Tran Van Nhieu, G.; Francetic, O. Pseudopilin Residue E5 Is Essential for Recruitment by the Type 2 Secretion System Assembly Platform. Mol. Microbiol. 2016, 101, 924–941. [Google Scholar] [CrossRef] [PubMed]
- Park, K.-T.; Du, S.; Lutkenhaus, J. Essential Role for FtsL in Activation of Septal Peptidoglycan Synthesis. mBio 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Cook, J.; Baverstock, T.C.; McAndrew, M.B.L.; Stansfeld, P.J.; Roper, D.I.; Crow, A. Insights into Bacterial Cell Division from a Structure of EnvC Bound to the FtsX Periplasmic Domain. Proc. Natl. Acad. Sci. USA 2020, 117, 28355–28365. [Google Scholar] [CrossRef]
- Bosc, N.; Muller, C.; Hoffer, L.; Lagorce, D.; Bourg, S.; Derviaux, C.; Gourdel, M.-E.; Rain, J.-C.; Miller, T.W.; Villoutreix, B.O.; et al. Fr-PPIChem: An Academic Compound Library Dedicated to Protein–Protein Interactions. ACS Chem. Biol. 2020, 15, 1566–1574. [Google Scholar] [CrossRef]
- Arkin, M.R.; Tang, Y.; Wells, J.A. Small-Molecule Inhibitors of Protein-Protein Interactions: Progressing toward the Reality. Chem. Biol. 2014, 21, 1102–1114. [Google Scholar] [CrossRef] [Green Version]
- Paschos, A.; den Hartigh, A.; Smith, M.A.; Atluri, V.L.; Sivanesan, D.; Tsolis, R.M.; Baron, C. An in Vivo High-Throughput Screening Approach Targeting the Type IV Secretion System Component VirB8 Identified Inhibitors of Brucella Abortus 2308 Proliferation. Infect. Immun. 2011, 79, 1033–1043. [Google Scholar] [CrossRef] [Green Version]
- Davi, M.; Ladant, D. In Vivo Detection of Protein Interaction Based on Adenylate Cyclase Hybrid System. US Patent 10,760,072, 2020. [Google Scholar]
- Gray, A.; Bradbury, A.R.M.; Knappik, A.; Plückthun, A.; Borrebaeck, C.A.K.; Dübel, S. Animal-Free Alternatives and the Antibody Iceberg. Nat. Biotechnol. 2020, 38, 1234–1239. [Google Scholar] [CrossRef]
- Muyldermans, S. A Guide to: Generation and Design of Nanobodies. FEBS J. 2020. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ladant, D. Bioengineering of Bordetella pertussis Adenylate Cyclase Toxin for Vaccine Development and Other Biotechnological Purposes. Toxins 2021, 13, 83. https://doi.org/10.3390/toxins13020083
Ladant D. Bioengineering of Bordetella pertussis Adenylate Cyclase Toxin for Vaccine Development and Other Biotechnological Purposes. Toxins. 2021; 13(2):83. https://doi.org/10.3390/toxins13020083
Chicago/Turabian StyleLadant, Daniel. 2021. "Bioengineering of Bordetella pertussis Adenylate Cyclase Toxin for Vaccine Development and Other Biotechnological Purposes" Toxins 13, no. 2: 83. https://doi.org/10.3390/toxins13020083
APA StyleLadant, D. (2021). Bioengineering of Bordetella pertussis Adenylate Cyclase Toxin for Vaccine Development and Other Biotechnological Purposes. Toxins, 13(2), 83. https://doi.org/10.3390/toxins13020083