An Optical Planar Waveguide-Based Immunosensors for Determination of Fusarium Mycotoxin Zearalenone
Abstract
:1. Introduction
2. Results and Discussion
2.1. Planar Waveguide Biosensor Design and Testing
2.2. Testing the Waveguide Sensor
2.3. Detection of Zearalenone by Planar Waveguide Immunoosensor
2.4. Comparison of ZON Detection with PW and ELISA Methods
3. Conclusions
4. Materials and Methods
4.1. Reagents and Instrumentation
4.2. Planar Waveguide Immunosensor Design
4.3. Functionalisation of the Sensor Surface
4.4. Planar Waveguide Immunosensor Assay
4.5. Enzyme-Linked Immunosorbent Assay
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adányi, N.; Majer-Baranyi, K.; Székács, A. Evanescent field effect based nanobiosensors for agro-environmental and food safety. In Nanobiosensors: Nanotechnology in the Agri-Food Industry; Grumezescu, A.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 8, pp. 429–474. [Google Scholar] [CrossRef]
- Horváth, R.; Lindvold, L.R.; Larsen, N.B. Reverse-symmetry waveguides: Theory and fabrication. Appl. Phys. B 2002, 74, 383–393. [Google Scholar] [CrossRef]
- Nabok, A.; Tsargorodskaya, A.; Mustafa, M.K.; Székács, I.; Starodub, N.F.; Székács, A. Detection of low molecular weight toxins using an optical phase method of ellipsometry. Sens. Actuators B 2011, 154, 232–237. [Google Scholar] [CrossRef]
- Székács, I.; Adányi, N.; Szendrő, I.; Székács, A. Direct and competitive optical grating immunosensors for determination of Fusarium mycotoxin zearalenone. Toxins 2021, 13, 43. [Google Scholar] [CrossRef] [PubMed]
- Al-Rubaye, A.; Nabok, A.; Abu-Ali, H.; Szekacs, A.; Takacs, E. LSPR/TIRE bio-sensing platform for detection of low molecular weight toxins. In Proceedings of the IEEE Sensors, Glasgow, UK, 29 October–1 November 2017. [Google Scholar] [CrossRef]
- Al Rubaye, A.G.; Nabok, A.; Catanante, G.; Marty, J.-L.; Takacs, E.; Szekacs, A. Label-free optical detection of mycotoxins using specific aptamers immobilized on gold nanostructures. Toxins 2018, 10, 291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nabok, A. Comparative studies on optical biosensors for detection of bio-toxins. In Advanced Sciences and Technologies in Security Applications, Biosensors for Security and Bioterrorism Applications; Nikolelis, D.P., Nikoleli, G.P., Eds.; Springer: Cham, Switzerland, 2016; pp. 491–508. [Google Scholar] [CrossRef]
- Lechuga, L.M. Optical biosensors. Comp. Anal. Chem. 2005, 44, 209–250. [Google Scholar] [CrossRef]
- Berney, H.; Oliver, K. Dual polarization interferometry size and density characterization of DNA immobilisation and hybridisation. Biosens. Bioelectron. 2005, 21, 618–626. [Google Scholar] [CrossRef] [PubMed]
- Escorihuela, J.; González-Martínez, M.Á.; López-Paz, J.L.; Puchades, R.; Maquieira, Á.; Gimenez-Romero, D. Dual-polarization interferometry: A novel technique to light up the nanomolecular world. Chem. Rev. 2015, 115, 265–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Fan, X. Optical ring resonators for biochemical and chemical sensing. Anal. Bioanal. Chem. 2011, 399, 205–211. [Google Scholar] [CrossRef]
- Kozma, P.; Kehl, F.; Ehrentreich-Foerster, E.; Stamm, C.; Bier, F.F. Integrated planar optical waveguide interferometer biosensors: A comparative review. Biosens. Bioelectron. 2014, 58, 287–307. [Google Scholar] [CrossRef]
- Tittlemier, S.A.; Roscoe, M.; Drul, D.; Blagden, R.; Kobialka, C.; Chan, J.; Gaba, D. Single laboratory evaluation of a planar waveguide-based system for a simple simultaneous analysis of four mycotoxins in wheat. Mycotoxin Res. 2013, 29, 55–62. [Google Scholar] [CrossRef]
- Nabok, A.; Al-Jawdah, A.M.; Tsargorodska, A. Development of planar waveguide-based immunosensor for detection of low molecular weight molecules such as mycotoxins. Sens. Actuat. B 2017, 247, 975–980. [Google Scholar] [CrossRef]
- Al-Jawdah, A.; Nabok, A.; Jarrah, R.; Holloway, A.; Tsargorodska, A.; Takacs, E.; Szekacs, A. Mycotoxin biosensor based on optical planar waveguide. Toxins 2018, 10, 272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Jawdah, A.; Nabok, A.; Abu-Ali, H.; Catanante, G.; Marty, J.-L.; Szekacs, A. Highly sensitive label-free in vitro detection of aflatoxin B1 in an aptamer assay using optical planar waveguide operating as a polarization interferometer. Anal. Bioanal. Chem. 2019, 411, 7717–7724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nabok, A.; Al-Rubaye, A.G.; Al-Jawdah, A.M.; Tsargorodska, A.; Marty, J.-L.; Catanante, G.; Szekacs, A.; Takacs, E. Novel optical biosensing technologies for detection of mycotoxins. Optics Laser Technol. 2019, 109, 212–221. [Google Scholar] [CrossRef]
- Devlin, S.; Meneely, J.P.; Greer, B.; Greef, C.; Lochhead, M.J.; Elliott, C.T. Next generation planar waveguide detection of microcystins in freshwater and cyanobacterial extracts, utilising a novel lysis method for portable sample preparation and analysis. Anal Chim. Acta 2013, 769, 108–113. [Google Scholar] [CrossRef] [Green Version]
- McNamee, S.E.; Elliott, C.T.; Greer, B.; Lochhead, B.; Campbell, K. Development of a planar waveguide microarray for the monitoring and early detection of five harmful algal toxins in water and cultures. Environ. Sci. Technol. 2014, 48, 13340–13349. [Google Scholar] [CrossRef]
- Murphy, C.; Stack, E.; Krivelo, S.; McPartlin, D.A.; Byrne, B.; Greef, C.; Lochhead, M.J.; Husar, G.; Devlin, S.; Elliott, C.T.; et al. Detection of the cyanobacterial toxin, microcystin-LR, using a novel recombinant antibody-based optical-planar waveguide platform. Biosens. Bioelectron. 2015, 67, 708–714. [Google Scholar] [CrossRef]
- Bickman, S.R.; Campbell, K.; Elliott, C.; Murphy, C.; O’Kennedy, R.; Papst, P.; Lochhead, M.J. An innovative portable biosensor system for the rapid detection of freshwater cyanobacterial algal bloom toxins. Environ. Sci. Technol. 2018, 52, 11691–11698. [Google Scholar] [CrossRef] [Green Version]
- Meneely, J.P.; Campbell, K.; Greef, C.; Lochhead, M.; Elliott, C.T. Development and validation of an ultrasensitive fluorescence planar waveguide biosensor for the detection of paralytic shellfish toxins in marine algae. Biosens. Bioelectron. 2013, 41, 691–697. [Google Scholar] [CrossRef] [Green Version]
- Reverté, L.; Campàs, M.; Yakes, B.J.; Deeds, J.R.; Katikou, P.; Kawatsu, K.; Lochhead, M.; Elliott, C.T.; Campbell, K. Tetrodotoxin detection in puffer fish by a sensitive planar waveguide immunosensor. Sens. Actuat. B 2002, 253, 967–976. [Google Scholar] [CrossRef] [Green Version]
- Nabok, A.V.; Hassan, A.K.; Ray, A.K. Optical and electrical characterisation of polyelectrolyte self-assebled thin films. Mater. Sci. Eng. C 1999, 8–9, 505–508. [Google Scholar] [CrossRef]
- Shirshov, Y.M.; Svechnikov, S.V.; Kiyanovskii, A.P.; Ushenin, Y.V.; Venger, E.F.; Samoylov, A.V.; Merker, R. A sensor based on the planar polarisation interferometer. Sens. Actuat. A 1998, 68, 384–387. [Google Scholar] [CrossRef]
- Shirshov, Y.M.; Snopok, B.A.; Samoylov, A.V.; Kiyanovskij, A.P.; Venger, E.F.; Nabok, A.V.; Ray, A.K. Analysis of the response of planar interferometer to molecular layer formation: Fibrinogen adsorption on silicon nitride surface. Biosens. Bioelectron. 2001, 16, 381–390. [Google Scholar] [CrossRef]
NaCl% | N | △n | No. of Periods | RIS (rad/RI unit) |
---|---|---|---|---|
2 | 1.3370 | 0.0050 | 3 | 3769.90 |
5 | 1.3395 | 0.0075 | 6 | 5026.55 |
8 | 1.3420 | 0.0100 | 10 | 6283.19 |
10 | 1.3460 | 0.0140 | 12.5 | 5610.00 |
15 | 1.3495 | 0.0175 | 16 | 5744.63 |
20 | 1.3610 | 0.0290 | 19 | 4166.57 |
Average RIS = 5091.8 ± 787.5 rad/RI unit |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nabok, A.; Al-Jawdah, A.M.; Gémes, B.; Takács, E.; Székács, A. An Optical Planar Waveguide-Based Immunosensors for Determination of Fusarium Mycotoxin Zearalenone. Toxins 2021, 13, 89. https://doi.org/10.3390/toxins13020089
Nabok A, Al-Jawdah AM, Gémes B, Takács E, Székács A. An Optical Planar Waveguide-Based Immunosensors for Determination of Fusarium Mycotoxin Zearalenone. Toxins. 2021; 13(2):89. https://doi.org/10.3390/toxins13020089
Chicago/Turabian StyleNabok, Alexei, Ali Madlool Al-Jawdah, Borbála Gémes, Eszter Takács, and András Székács. 2021. "An Optical Planar Waveguide-Based Immunosensors for Determination of Fusarium Mycotoxin Zearalenone" Toxins 13, no. 2: 89. https://doi.org/10.3390/toxins13020089
APA StyleNabok, A., Al-Jawdah, A. M., Gémes, B., Takács, E., & Székács, A. (2021). An Optical Planar Waveguide-Based Immunosensors for Determination of Fusarium Mycotoxin Zearalenone. Toxins, 13(2), 89. https://doi.org/10.3390/toxins13020089