Biomarkers of Deoxynivalenol Toxicity in Chickens with Special Emphasis on Metabolic and Welfare Parameters
Abstract
:1. Introduction
2. Biomarkers of Exposure
3. Biomarkers of Effect
3.1. Productive Parameters
3.2. Relative Weight of Organs
3.3. Intestinal Morphology
3.4. Biochemical and Hematological Parameters
3.5. Biomarkers Related to Immune System
3.5.1. Biomarkers Related to Humoral Immune Response
3.5.2. Biomarkers Related to Cellular Immune Response
3.5.3. Production of Proinflammatory Cytokines
3.6. Biomarkers Related to Welfare Parameters
3.6.1. Response to Oxidative Stress as Welfare Biomarker
3.6.2. Biomarkers Related to Physiological, Hormonal, and Behavioral Welfare
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- OECD/FAO. OECD-FAO Agricultural Outlook; OECD Agriculture Statistics (Database): Paris, France, 2020; Available online: https://www.oecd-ilibrary.org/agriculture-and-food/data/oecd-agriculture-statistics_agr-data-en (accessed on 5 March 2021).
- Fokunang, C.N.; Tembe-Fokunang, E.A.; Tomkins, P.; Barkwan, S. Global impact of mycotoxins on human and animal health management. Outlook Agric. 2006, 35, 247–253. [Google Scholar] [CrossRef]
- Sharma, R.; Asrani, R.K.; Station, R. Mycotoxicosis and its control in poultry: A review. J. Poult. Sci. Technol. 2014, 2, 01–10. [Google Scholar]
- Haque, M.A.; Wang, Y.; Shen, Z.; Li, X.; Saleemi, M.K.; He, C. Mycotoxin contamination and control strategy in human, domestic animal and poultry: A review. Microb. Pathog. 2020, 142, 104095. [Google Scholar] [CrossRef]
- Murugesan, G.R.; Ledoux, D.R.; Naehrer, K.; Berthiller, F.; Applegate, T.J.; Grenier, B.; Phillips, T.D.; Schatzmayr, G. Prevalence and effects of mycotoxins on poultry health and performance, and recent development in mycotoxin counteracting strategies. Poult. Sci. 2015, 94, 1298–1315. [Google Scholar] [CrossRef]
- Creppy, E.E. Update of survey, regulation and toxic effects of mycotoxins in Europe. Toxicol. Lett. 2002, 127, 19–28. [Google Scholar] [CrossRef]
- Gruber-Dorninger, C.; Jenkins, T.; Shatzmayr, G. Global mycotoxin occurrence in feed: A ten year survey. Toxins 2019, 11, 375. [Google Scholar] [CrossRef] [Green Version]
- Bertero, A.; Moretti, A.; Spicer, L.J.; Caloni, F. Fusarium molds and mycotoxins: Potential species-specific effects. Toxins 2018, 10, 244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.Y.; Guo, H.W. Mini-review of studies on the carcinogenicity of deoxynivalenol. Environ Toxico Pharmacol. 2008, 25, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Escrivá, L.; Font, G.; Manyes, L. In vivo toxicity studies of Fusarium mycotoxins in the last decade: A review. Food Chem. Toxicol. 2015, 78, 185–206. [Google Scholar] [CrossRef]
- Nagy, C.M.; Fejer, S.N.; Berek, L.; Molnar, J.; Viskolcz, B. Hydrogen bondings in deoxynivalenol (DON) conformations—A density functional study. J. Mol. Struct. 2005, 726, 55–59. [Google Scholar] [CrossRef]
- Wolf, C.E.; Bullerman, L.B. Heat and pH alter the concentration of deoxynivalenol in an aqueous enviroment. J. Food Prot. 1998, 61, 365–367. [Google Scholar] [CrossRef] [PubMed]
- Ostry, V.; Malir, F.; Toman, J.; Grosse, Y. Mycotoxins as human carcinogens—the IARC Monographs classification. Mycotoxin Res. 2017, 33, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Feinberg, B.; Mclaughlin, C.S. Biochemical Mechanism of Action of Trichothecene Mycotoxins. In Trichothecene Mycotoxicosis: Pathophysiologic Effects; Beasley, V.R., Ed.; CRC Press: Boca Raton, FL, USA, 1989; Volume I, pp. 27–35. [Google Scholar]
- Shifrin, V.I.; Anderson, P. Trichothecene mycotoxins trigger a ribotoxic stress response that activates c-Jun N-terminal kinase and p38 mitogen-activated protein kinase and induces apoptosis. J. Biol. Chem. 1999, 274, 13985–13992. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.; Dwivedi, P.D.; Pandey, H.P.; Das, M. Role of oxidative stress in Deoxynivalenol induced toxicity. Food Chem. Toxicol. 2014, 72, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Huff, W.E.; Doerr, J.A.; Hamilton, P.B.; Vesonder, R.F. Acute toxicity of vomitoxin (Deoxynivalenol) in broiler chickens. Poult. Sci. 1981, 60, 1412–1414. [Google Scholar] [CrossRef]
- Surai, P.F.; Dvorska, J.E.; Sparks, N.H.C.; Jacques, K.A. Impact of mycotoxins on the body’ s antioxidant defence. In Nutritional Biotechnology in the Feed and Food Industries; Nottingham University: Nottingham, UK, 1999; pp. 131–141. [Google Scholar]
- Riahi, I.; Marquis, V.; Ramos, A.J.; Brufau, J.; Esteve-Garcia, E.; Pérez-Vendrell, A.M. Effects of deoxynivalenol contaminated-diets on productive, morphological, and physiological indicators in broiler chickens. Animals 2020, 10, 1795. [Google Scholar] [CrossRef] [PubMed]
- Aguzey, H.A.; Gao, Z.; Haohao, W.; Guilan, C.; Zhengmin, W.; Junhong, C. The Effects of Deoxynivalenol (DON) on the Gut Microbiota, Morphology and Immune System of Chicken—A Review. Ann. Anim. Sci. 2019, 19, 305–318. [Google Scholar] [CrossRef] [Green Version]
- Pinton, P.; Oswald, I.P. Trichothecenes on the Intestine: A Review. Toxins 2014, 6, 1615–1643. [Google Scholar] [CrossRef] [PubMed]
- Broekaert, N.; Devreese, M.; De Mil, T.; Fraeyman, S.; Antonissen, G.; De Baere, S.; De Backer, P.; Vermeulen, A.; Croubels, S. Oral Bioavailability, Hydrolysis, and Comparative Toxicokinetics of 3-Acetyldeoxynivalenol and 15-Acetyldeoxynivalenol in Broiler Chickens and Pigs. J. Agric. Food Chem. 2015, 63, 8734–8742. [Google Scholar] [CrossRef] [PubMed]
- European Commission Commission Recommendation of 17 August 2006 on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT-2 and fumonisins inproducts intended for animal feeding. Off. J. Eur. Union 2006, L299, 7–9.
- Kolosova, A.; Stroka, J. Substances for reduction of the contamination of feed by mycotoxins: A review. World Mycotoxin J. 2011, 4, 225–256. [Google Scholar] [CrossRef]
- Research and Markets. Global Feed Mycotoxin Detoxifiers Market—Growth, Trends and Forecasts (2020–2025). Research and Markets: Dublin, Ireland. 2020. Available online: https://www.researchandmarkets.com/reports/4772013/global-feed-mycotoxin-detoxifiers-market (accessed on 5 March 2021).
- Atkinson, A.J.; Colburn, W.A.; DeGruttola, V.G.; DeMets, D.L.; Downing, G.J.; Hoth, D.F.; Oates, J.A.; Peck, C.C.; Schooley, R.T.; Spilker, B.A.; et al. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 2001, 69, 89–95. [Google Scholar] [CrossRef]
- Ghareeb, K.; Awad, W.A.; Böhm, J. Ameliorative effect of a microbial feed additive on infectious bronchitis virus antibody titer and stress index in broiler chicks fed deoxynivalenol. Poult. Sci. 2012, 91, 800–807. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). EFSA Statement on the establishment of guidelines for the assessment of additives from the functional group ‘substances for reduction of the contamination of feed by mycotoxins’. EFSA J. 2010, 8, 1963. [Google Scholar]
- Vidal, A.; Mengelers, M.; Yang, S.; De Saeger, S.; De Boevre, M. Mycotoxin Biomarkers of Exposure: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1127–1155. [Google Scholar] [CrossRef] [Green Version]
- Devreese, M.; Antonissen, G.; Broekaert, N.; De Mil, T.; De Baere, S.; Vanhaecke, L.; De Backer, P.; Croubels, S. Toxicokinetic study and oral bioavailability of deoxynivalenol in Turkey poults, and comparative biotransformation between broilers and Turkeys. World Mycotoxin J. 2015, 8, 533–539. [Google Scholar] [CrossRef]
- Dänicke, S.; Valenta, H.; Ueberschär, K.H.; Matthes, S. On the interactions between Fusarium toxin-contaminated wheat and non-starch-polysaccharide hydrolyzing enzymes in diet of broilers on performance, intestinal viscosity and carry-over of deoxynivalenol. Poult. Sci. 2007, 85, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Yunus, A.W.; Valenta, H.; Abdel-Raheem, S.M.; Döll, S.; Dänicke, S.; Böhm, J. Blood plasma levels of deoxynivalenol and its de-epoxy metabolite in broilers after a single oral dose of the toxin. Mycotoxin Res. 2010, 26, 217–220. [Google Scholar] [CrossRef]
- Awad, W.A.; Hess, M.; Twaruzek, M.; Grajewski, J.; Kosicki, R.; Böhm, J.; Zentek, J. The impact of the Fusarium mycotoxin deoxynivalenol on the health and performance of broiler chickens. Int. J. Mol. Sci. 2011, 12, 7996–8012. [Google Scholar] [CrossRef]
- Osselaere, A.; Devreese, M.; Watteyn, A.; Vandenbroucke, V.; Goossens, J.; Hautekiet, V.; Eeckhout, M.; De Saeger, S.; De Baere, S.; De Backer, P.; et al. Efficacy and safety testing of mycotoxin-detoxifying agents in broilers following the European Food Safety Authority guidelines. Poult. Sci. 2012, 91, 2046–2054. [Google Scholar] [CrossRef] [PubMed]
- Wan, D.; Huang, L.; Pan, Y.; Wu, Q.; Chen, D.; Tao, Y.; Wang, X.; Liu, Z.; Li, J.; Wang, L.; et al. Metabolism, distribution, and excretion of deoxynivalenol with combined techniques of radiotracing, high-performance liquid chromatography ion trap time-of-flight mass spectrometry, and online radiometric detection. J. Agric. Food Chem. 2014, 62, 288–296. [Google Scholar] [CrossRef]
- Schwartz-Zimmermann, H.E.; Fruhmann, P.; Dänicke, S.; Wiesenberger, G.; Caha, S.; Weber, J.; Berthiller, F. Metabolism of deoxynivalenol and deepoxy-deoxynivalenol in broiler chickens, pullets, roosters and turkeys. Toxins 2015, 7, 4706–4729. [Google Scholar] [CrossRef]
- Lauwers, M.; Croubels, S.; Letor, B.; Gougoulias, C.; Devreese, M. Biomarkers for exposure as a tool for efficacy testing of a mycotoxin detoxifier in broiler chickens and pigs. Toxins 2019, 11, 187. [Google Scholar] [CrossRef] [Green Version]
- Osselaere, A.; Devreese, M.; Goossens, J.; Vandenbroucke, V.; De Baere, S.; De Backer, P.; Croubels, S. Toxicokinetic study and absolute oral bioavailability of deoxynivalenol, T-2 toxin and zearalenone in broiler chickens. Food Chem. Toxicol. 2013, 51, 350–355. [Google Scholar] [CrossRef] [PubMed]
- Broekaert, N.; Devreese, M.; De Mil, T.; Fraeyman, S.; De Baere, S.; De Saeger, S.; De Backer, P.; Croubels, S. Development and validation of an LC-MS/MS method for the toxicokinetic study of deoxynivalenol and its acetylated derivatives in chicken and pig plasma. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2014, 971, 43–51. [Google Scholar] [CrossRef]
- Broekaert, N.; Devreese, M.; van Bergen, T.; Schauvliege, S.; De Boevre, M.; De Saeger, S.; Vanhaecke, L.; Berthiller, F.; Michlmayr, H.; Malachová, A.; et al. In vivo contribution of deoxynivalenol-3-β-d-glucoside to deoxynivalenol exposure in broiler chickens and pigs: oral bioavailability, hydrolysis and toxicokinetics. Arch. Toxicol. 2017, 91, 699–712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boudergue, C.; Burel, C.; Dragacci, S.; Favrot, M.; Fremy, J.; Massimi, C.; Prigent, P.; Debongnie, P.; Pussemier, L.; Boudra, H.; et al. Review of mycotoxin-detoxifying agents used as feed additives: Mode of action, efficacy and feed/food safety. EFSA Support. Publ. 2017, 6. [Google Scholar] [CrossRef]
- Antonissen, G.; Haesendonck, R.; Devreese, M.; Broekaert, N.; Verbrugghe, E.; De Saeger, S.; Audenaert, K.; Haesebrouck, F.; Pasmans, F.; Ducatelle, R.; et al. The impact of deoxynivalenol on pigeon health: Occurrence in feed, toxicokinetics and interaction with salmonellosis. PLoS ONE 2016, 11, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Jurisic, N.; Schwartz-Zimmermann, H.E.; Kunz-Vekiru, E.; Reisinger, N.; Klein, S.; Caldwell, D.; Fruhmann, P.; Schatzmayr, D.; Berthiller, F. Deoxynivalenol-3-sulphate is the major metabolite of dietary deoxynivalenol in eggs of laying hens. World Mycotoxin J. 2019, 12, 245–255. [Google Scholar] [CrossRef]
- Yi, L.; Dratter, J.; Wang, C.; Tunge, J.A.; Desaire, H. Identification of sulfation sites of metabolites and prediction of the compounds’ biological effects. Anal. Bioanal. Chem. 2006, 386, 666–674. [Google Scholar] [CrossRef] [Green Version]
- Hulan, H.W.; Proudfoot, F.G. Effects of feeding vomitoxin contaminated wheat on the performance of broiler chickens. Poult. Sci. 1982, 61, 1653–1659. [Google Scholar] [CrossRef]
- Antonissen, G.; De Baere, S.; Devreese, M.; Van Immerseel, F.; Martel, A.; Croubels, S. Feed contamination with Fusarium mycotoxins induces a corticosterone stress response in broiler chickens. Poult. Sci. 2017, 96, 14–17. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, R.M.G.; Trenholm, H.L.; Thompson, B.K.; Greenhalgh, R. The tolerance of White Leghorn and broiler chicks, and turkey poults to diets that contained deoxynivalenol (vomitoxin)-contaminated wheat. Poult. Sci. 1985, 64, 273–286. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.D.; Doupovec, B.; Schatzmayr, D.; Murugesan, G.R.; Bortoluzzi, C.; Villegas, A.M.; Applegate, T.J. The impact of deoxynivalenol, fumonisins, and their combination on performance, nutrient, and energy digestibility in broiler chickens. Poult. Sci. 2020, 99, 272–279. [Google Scholar] [CrossRef]
- Awad, W.A.; Böhm, J.; Razzazi-Fazeli, E.; Zentek, J. Effects of feeding deoxynivalenol contaminated wheat on growth performance, organ weights and histological parameters of the intestine of broiler chickens. J. Anim. Physiol. Anim. Nutr. 2006, 90, 32–37. [Google Scholar] [CrossRef]
- Yu, Y.H.; Hsiao, F.S.H.; Proskura, W.S.; Dybus, A.; Siao, Y.H.; Cheng, Y.H. An impact of Deoxynivalenol produced by Fusarium graminearum on broiler chickens. J. Anim. Physiol. Anim. Nutr. 2018, 102, 1012–1019. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Hogan, N.S. Performance effects of feed-borne Fusarium mycotoxins on broiler chickens: Influences of timing and duration of exposure. Anim. Nutr. 2019, 5, 32–40. [Google Scholar] [CrossRef]
- Swamy, H.V.L.N.; Smith, T.K.; Cotter, P.F.; Boermans, H.J.; Sefton, A.E. Effects of feeding blends of grains naturally contaminated with Fusarium mycotoxins on production and metabolism in broilers. Poult. Sci. 2002, 81, 966–975. [Google Scholar] [CrossRef] [PubMed]
- Swamy, H.V.L.N.; Smith, T.K.; Karrow, N.A.; Boermans, H.J. Effects of feeding blends of grains naturally contaminated with Fusarium mycotoxins on growth and immunological parameters of broiler chickens. Poult. Sci. 2004, 83, 533–543. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.S.; Li, Y.H.; Lin, M.F. Chronic exposure to the Fusarium mycotoxin deoxynivalenol: Impact on performance, immune organ, and intestinal integrity of slow-growing chickens. Toxins 2017, 9, 334. [Google Scholar] [CrossRef] [Green Version]
- Lucke, A.; Doupovec, B.; Paulsen, P.; Zebeli, Q.; Böhm, J. Effects of low to moderate levels of deoxynivalenol on feed and water intake, weight gain, and slaughtering traits of broiler chickens. Mycotoxin Res. 2017, 33, 261–271. [Google Scholar] [CrossRef] [Green Version]
- Awad, W.A.; Ruhnau, D.; Hess, C.; Doupovec, B.; Schatzmayr, D.; Hess, M. Feeding of deoxynivalenol increases the intestinal paracellular permeability of broiler chickens. Arch. Toxicol. 2019, 93, 2057–2064. [Google Scholar] [CrossRef] [Green Version]
- Ghareeb, K.; Awad, W.A.; Sid-Ahmed, O.E.; Böhm, J. Insights on the host stress, fear and growth responses to the deoxynivalenol feed contaminant in broiler chickens. PLoS ONE 2014, 9. [Google Scholar] [CrossRef]
- Ghareeb, K.; Awad, W.A.; Zebeli, Q.; Böhm, J. Deoxynivalenol in chicken feed alters the vaccinal immune response and clinical biochemical serum parameters but not the intestinal and carcass characteristics. J. Anim. Physiol. Anim. Nutr. 2016, 100, 53–60. [Google Scholar] [CrossRef]
- Awad, W.A.; Böhm, J.; Razzazi-Fazeli, E.; Hulan, H.W.; Zentek, J. Effects of deoxynivalenol on general performance and electrophysiological properties of intestinal mucosa of broiler chickens. Poult. Sci. 2004, 83, 1964–1972. [Google Scholar] [CrossRef]
- Awad, W.A.; Böhm, J.; Razzazi-Fazeli, E.; Ghareeb, K.; Zentek, J. Effect of addition of a probiotic microorganism to broiler diets contaminated with deoxynivalenol on performance and histological alterations of intestinal villi of broiler chickens. Poult. Sci. 2006, 85, 974–979. [Google Scholar] [CrossRef]
- Yunus, A.W.; Ghareeb, K.; Twaruzek, M.; Grajewski, J.; Böhm, J. Deoxynivalenol as a contaminant of broiler feed: Effects on bird performance and response to common vaccines. Poult. Sci. 2012, 91, 844–851. [Google Scholar] [CrossRef]
- Dänicke, S.; Matthes, S.; Halle, I.; Ueberschär, K.H.; Döll, S.; Valenta, H. Effects of graded levels of Fusarium toxin-contaminated wheat and of a detoxifying agent in broiler diets on performance, nutrient digestibility and blood chemical parameters. Br. Poult. Sci. 2003, 44, 113–126. [Google Scholar] [CrossRef] [PubMed]
- Kubena, L.F.; Edrington, T.S.; Harvey, R.B.; Buckley, S.A.; Phillips, T.D.; Rottinghaus, G.E.; Casper, H.H. Individual and Combined Effects of Fumonisin B1 Present in Fusarium moniliforme Culture Material and T-2 Toxin or Deoxynivalenol in Broiler Chicks. Poult. Sci. 1997, 76, 1239–1247. [Google Scholar] [CrossRef]
- Huff, W.E.; Kubena, L.F.; Harvey, R.B.; Halger, W.M.; Swanson, S.P.; Philips, T.C.; Greger, C. Individual and combined effects of aflatoxin and deoxynivalenol (DON), vomitoxin in broiler chickens. Poult. Sci. 1986, 65, 1291–1298. [Google Scholar] [CrossRef]
- Kubena, L.F.; Huff, W.E.; Harvey, R.B.; Corrier, D.E.; Phillips, T.D.; Creger, C.R. Influence of ochratoxin A and deoxynivalenol on growing broiler chicks. Poult. Sci. 1988, 67, 253–260. [Google Scholar] [CrossRef]
- Kubena, L.F.; Huff, W.E.; Harvey, R.B.; Phillips, T.D.; Rottinghaus, G.E. Individual and combined toxicity of deoxynivalenol and T-2 toxin in broiler chicks. Poult. Sci. 1989, 68, 622–626. [Google Scholar] [CrossRef]
- Harvey, R.B.; Kubena, L.F.; Rottinghaus, G.E.; Turk, J.R.; Casper, H.H.; Buckley, S.A. Moniliformin from Fusarium fujikuroi Culture Material and Deoxynivalenol from Naturally Contaminated Wheat Incorporated into Diets of Broiler Chicks. Avian Dis. 1997, 41, 957. [Google Scholar] [CrossRef]
- Kubena, L.F.; Swanson, S.P.; Harvey, R.B.; Rowe, L.D.; Phillips, T.D. Effects of Feeding Deoxynivalenol (Vomitoxin)-Contaminated Wheat to growing chicks. Poult.Sci. 1985, 64, 1649–1655. [Google Scholar] [CrossRef]
- Xu, L.; Eicher, S.D.; Applegate, T.J. Effects of increasing dietary concentrations of corn naturally contaminated with deoxynivalenol on broiler and Turkey poult performance and response to lipopolysaccharide. Poult. Sci. 2011, 90, 2766–2774. [Google Scholar] [CrossRef] [PubMed]
- Kubena, L.F.; Harvey, R.B. Response of growing Leghorn chicks to deoxynivalenol-contaminated wheat. Poult. Sci. 1988, 67, 1778–1780. [Google Scholar] [CrossRef]
- Moran, E.T.; Hunter, B.; Ferket, P.; Young, L.G.; McGirr, L.G. High tolerance of broilers to vomitoxin from corn infected with Fusarium graminearum. Poult. Sci. 1982, 61, 1828–1831. [Google Scholar] [CrossRef] [PubMed]
- Andretta, I.; Kipper, M.; Lehnen, C.R.; Hauschild, L.; Vale, M.M.; Lovatto, P.A. Meta-analytical study of productive and nutritional interactions of mycotoxins in broilers. Poult. Sci. 2011, 90, 1934–1940. [Google Scholar] [CrossRef]
- Cheema, M.A.; Qureshi, M.A.; Havenstein, G.B.; Ferket, P.R.; Nestor, K.E. A comparison of the immune response of 2003 commercial Turkeys and a 1966 randombred strain when fed representative 2003 and 1966 Turkey diets. Poult. Sci. 2007, 86, 241–248. [Google Scholar] [CrossRef]
- Grenier, B.; Oswald, I.P. Mycotoxin co-contamination of food and feed: Meta-analysis of publications describing toxicological interactions. World Mycotoxin J. 2011, 4, 285–313. [Google Scholar] [CrossRef]
- Knutsen, H.K.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Grasl-Kraupp, B.; Hogstrand, C.; et al. Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA J. 2017, 15. [Google Scholar] [CrossRef]
- Awad, W.A.; Ghareeb, K.; Dadak, A.; Hess, M.; Böhm, J. Single and combined effects of deoxynivalenol mycotoxin and a microbial feed additive on lymphocyte DNA damage and oxidative stress in broiler chickens. PLoS ONE 2014, 9, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Yunus, A.W.; Blajet-Kosicka, A.; Kosicki, R.; Khan, M.Z.; Rehman, H.; Böhm, J. Deoxynivalenol as a contaminant of broiler feed: Intestinal development, absorptive functionality, and metabolism of the mycotoxin. Poult. Sci. 2012, 91, 852–861. [Google Scholar] [CrossRef]
- Awad, W.A.; Ghareeb, K.; Böhm, J.; Razzazi, E.; Hellweg, P.; Zentek, J. The impact of the Fusarium toxin deoxynivalenol (DON) on poultry. Int. J. Poult. Sci. 2008, 7, 827–842. [Google Scholar] [CrossRef] [Green Version]
- Ghareeb, K.; Awad, W.A.; Böhm, J.; Zebeli, Q. Impacts of the feed contaminant deoxynivalenol on the intestine of monogastric animals: Poultry and swine. J. Appl. Toxicol. 2015, 35, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Antonissen, G.; Van Immerseel, F.; Pasmans, F.; Ducatelle, R.; Haesebrouck, F.; Timbermont, L.; Vertinden, M.; Janssens, G.P.J.; Eeckhaut, V.; Eeckhout, M.; et al. The mycotoxin deoxynivalenol predisposes for the development of Clostridium perfringens-induced necrotic enteritis in broiler chickens. PLoS ONE 2014, 9, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Osselaere, A.; Santos, R.; Hautekiet, V.; De Backer, P.; Chiers, K.; Ducatelle, R.; Croubels, S. Deoxynivalenol Impairs Hepatic and Intestinal Gene Expression of Selected Oxidative Stress, Tight Junction and Inflammation Proteins in Broiler Chickens, but Addition of an Adsorbing Agent Shifts the Effects to the Distal Parts of the Small Intestine. PLoS ONE 2013, 8, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Liu, Y.; Duan, Y.; Wang, F.; Guo, F.; Yan, F.; Yang, X.; Yang, X. Intestinal toxicity of deoxynivalenol is limited by supplementation with Lactobacillus plantarum JM113 and consequentially altered gut microbiota in broiler chickens. J. Anim. Sci. Biotechnol. 2018, 9, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Li, L.; Duan, Y.; Yang, X. Antioxidant activity of lactobacillus plantarum JM113 in vitro and its protective effect on broiler chickens challenged with deoxynivalenol. J. Anim. Sci. 2017, 95, 837–846. [Google Scholar] [CrossRef]
- Alizadeh, A.; Braber, S.; Akbari, P.; Garssen, J.; Fink-Gremmels, J. Deoxynivalenol impairs weight gain and affects markers of gut health after low-dose, short-term exposure of growing pigs. Toxins 2015, 7, 2071–2095. [Google Scholar] [CrossRef]
- Robert, H.; Payros, D.; Pinton, P.; Théodorou, V.; Mercier-Bonin, M.; Oswald, I.P. Impact of mycotoxins on the intestine: Are mucus and microbiota new targets? J. Toxicol. Environ. Heal. Part B Crit. Rev. 2017, 20, 249–275. [Google Scholar] [CrossRef] [PubMed]
- Grenier, B.; Bracarense, A.P.F.L.; Schwartz, H.E.; Lucioli, J.; Cossalter, A.M.; Moll, W.D.; Schatzmayr, G.; Oswald, I.P. Biotransformation approaches to alleviate the effects induced by Fusarium Mycotoxins in swine. J. Agric. Food Chem. 2013, 61, 6711–6719. [Google Scholar] [CrossRef] [PubMed]
- Metayer, J.P.; Travel, A.; Mika, A.; Bailly, J.D.; Cleva, D.; Boissieu, C.; Le Guennec, J.; Froment, P.; Albaric, O.; Labrut, S.; et al. Lack of toxic interaction between fusariotoxins in broiler chickens fed throughout their life at the highest level tolerated in the european union. Toxins 2019, 11, 455. [Google Scholar] [CrossRef] [Green Version]
- Katarína, K.; Zita, F.; L’Uba, G.; Faix, Š.; Lucia, M.; Leng, L. Effects of feeding wheat naturally contaminated with Fusarium mycotoxins on blood biochemistry and the effectiveness of dietary lignin treatment to alleviate mycotoxin adverse effects in broiler chickens. Acta Vet. Brno. 2011, 61, 227–237. [Google Scholar] [CrossRef] [Green Version]
- Zita, F.; Faix, Š.; Leng, L.; Váczi, P.; Renáta, S.; Zuzana, M. Effects of feeding diet contaminated with deoxynivalenol on plasma chemistry in growing broiler chickens and the efficacy of glucomannan mycotoxin adsorbent. Acta Vet. Brno. 2006, 56, 479–487. [Google Scholar] [CrossRef]
- Faixová, Z.; Faix, Š.; Bořutová, R.; Leng, L. Efficacy of dietary selenium to counteract toxicity of deoxynivalenol in growing broiler chickens. Acta Vet. Brno 2007, 76, 349–356. [Google Scholar] [CrossRef] [Green Version]
- Riahi, I.; Marquis, V.; Pérez-Vendrell, A.M.; Brufau, J.; Esteve-Garcia, E.; Ramos, A.J. Effects of Deoxynivalenol-Contaminated Diets on Metabolic and Immunological Parameters in Broiler Chickens. Animals 2021, 11, 147. [Google Scholar] [CrossRef]
- Harvey, R.B.; Kubena, L.F.; Huff, W.E.; Elissalde, M.H.; Phillips, T.D. Hematologic and immunologic toxicity of deoxynivalenol (DON)-contaminated diets to growing chickens. Bull. Environ. Contam. Toxicol. 1991, 46, 410–416. [Google Scholar] [CrossRef]
- Husic, H.D.; Suelter, C.H. The levels of creatine kinase and adenylate kinase in the plasma of dystrophic chickens reflect the rates of loss of these enzymes from the circulation. Biochem. Med. 1983, 29, 318–336. [Google Scholar] [CrossRef]
- Andretta, I.; Kipper, M.; Lehnen, C.R.; Lovatto, P.A. Meta-analysis of the relationship of mycotoxins with biochemical and hematological parameters in broilers. Poult. Sci. 2012, 91, 376–382. [Google Scholar] [CrossRef]
- Kubena, L.F.; Harvey, R.B.; Corrier, D.E.; Huff, W.E. Effects of feeding deoxynivalenol (DON, vomitoxin)-contaminated wheat to female White Leghorn chickens from day old through egg production. Poult. Sci. 1987, 66, 1612–1618. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, S.R.; Smith, T.K.; Boermans, H.J.; Woodward, B. Effects of feed-borne Fusarium mycotoxins on hematology and immunology of laying hens. Poult. Sci. 2005, 84, 1841–1850. [Google Scholar] [CrossRef]
- Chattopadhyay, P.; Upadhyay, A.; Agnihotri, A.; Karmakar, S.; Ghoyary, D.; Veer, V. Original Article Comparative Hematoxicity of Fusirium Mycotoxin in Experimental Sprague—Dawley Rats. Toxicol. Int. 2013, 25–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Nedawi, A.M. Reference hematology for commercial Ross 308 broilers. Online Jounrnal Vet. Res. 2018, 22, 566–570. [Google Scholar] [CrossRef]
- Meluzzi, A.; Primiceri, G.; Giordani, R.; Fabris, G. Determination of blood constituents reference values in broilers. Poult. Sci. 1992, 71, 337–345. [Google Scholar] [CrossRef]
- Talebi, A.; Asri-Rezaei, S.; Rozeh-Chai, R.; Sahraei, R. Comparative studies on haematological values of broiler strains (ross, cobb, arbor-acres and arian). Int. J. Poult. Sci. 2005, 4, 573–579. [Google Scholar] [CrossRef] [Green Version]
- Pestka, J.J.; Zhou, H.R.; Moon, Y.; Chung, Y.J. Cellular and molecular mechanisms for immune modulation by deoxynivalenol and other trichothecenes: Unraveling a paradox. Toxicol. Lett. 2004, 153, 61–73. [Google Scholar] [CrossRef]
- Lucke, A.; Böhm, J.; Zebeli, Q.; Metzler-Zebeli, B.U. Dietary deoxynivalenol and oral lipopolysaccharide challenge differently affect intestinal innate immune response and barrier function in broiler chickens. J. Anim. Sci. 2018, 96, 5134–5143. [Google Scholar] [CrossRef] [PubMed]
- Grenier, B.; Dohnal, I.; Shanmugasundaram, R.; Eicher, S.D.; Selvaraj, R.K.; Schatzmayr, G.; Applegate, T.J. Susceptibility of broiler chickens to coccidiosis when fed subclinical doses of deoxynivalenol and fumonisins—special emphasis on the immunological response and themycotoxin interaction. Toxins 2016, 8, 231. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Yang, Z.B.; Yang, W.R.; Wang, S.J.; Jiang, S.Z.; Wu, Y.B. Effects of feed-borne Fusarium mycotoxins with or without yeast cell wall adsorbent on organ weight, serum biochemistry, and immunological parameters of broiler chickens. Poult. Sci. 2012, 91, 2487–2495. [Google Scholar] [CrossRef]
- Girgis, G.N.; Sharif, S.; Barta, J.R.; Boermans, H.J.; Smith, T.K. Immunomodulatory effects of feed-borne Fusarium mycotoxins in chickens infected with coccidia. Exp. Biol. Med. 2008, 233, 1411–1420. [Google Scholar] [CrossRef] [PubMed]
- Ghareeb, K.; Awad, W.A.; Soodoi, C.; Sasgary, S.; Strasser, A.; Böhm, J. Effects of Feed Contaminant Deoxynivalenol on Plasma Cytokines and mRNA Expression of Immune Genes in the Intestine of Broiler Chickens. PLoS ONE 2013, 8, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pestka, J.J. Deoxynivalenol-Induced Proinflammatory Gene Expression: Mechanisms and Pathological Sequelae. Toxins. 2010, 2, 1300–1317. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.R.; He, K.; Landgraf, J.; Pan, X.; Pestka, J.J. Direct activation of ribosome-associated double-stranded rna-dependent protein kinase (PKR) by deoxynivalenol, anisomycin and ricin: A new model for ribotoxic stress response induction. Toxins 2014, 6, 3406–3425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pestka, J.J. Deoxynivalenol: Toxicity, mechanisms and animal health risks. Anim. Feed Sci. Technol. 2007, 137, 283–298. [Google Scholar] [CrossRef]
- Bondy, G.S.; Pestka, J.J. Immunomodulation by fungal toxins. J. Toxicol. Environ. Heal. Part B Crit. Rev. 2000, 3, 109–143. [Google Scholar] [CrossRef]
- Pestka, J.J. Mechanisms of deoxynivalenol-induced gene expression and apoptosis. Food Additives and Contaminants. Food Addit. Contam. 2008, 25, 1128–1140. [Google Scholar] [CrossRef]
- Ueno, Y. Toxicological features of T-2 toxin and related trichothecenes. Fundam. Appl. Toxicol. 1984, 4, S124–S132. [Google Scholar] [CrossRef]
- Pestka, J.J.; Yan, D.; King, L.E. Flow cytometric analysis of the effects of in vitro exposure to vomitoxin (deoxynivalenol) on apoptosis in murine T, B and IgA+ cells. Food Chem Toxicol. 1994, 32, 1125–1136. [Google Scholar] [CrossRef]
- Sharma, R.P. Immunotoxicity of Mycotoxins. J. Dairy Sci. 1993, 76, 892–897. [Google Scholar] [CrossRef]
- Ren, Z.; Wang, Y.; Deng, H.; Deng, Y.; Deng, J.; Zuo, Z.; Wang, Y.; Peng, X.; Cui, H.; Shen, L. Deoxynivalenol induces apoptosis in chicken splenic lymphocytes via the reactive oxygen species-mediated mitochondrial pathway. Environ. Toxicol. Pharmacol. 2015, 39, 339–346. [Google Scholar] [CrossRef]
- Yan, D.; Zhou, H.R.; Brooks, K.H.; Pestka, J.J. Potential role of IL-5 and IL-6 in enhanced IgA secretion by Peyer’s patch cells isolated from mice acutely exposed to vomitoxin. Toxicology 1997, 122, 145–158. [Google Scholar] [CrossRef]
- Zhou, H.R.; Yan, D.; Pestka, J.J. Differential cytokine mRNA expression in mice after oval exposure to the trichothecene vomitoxin (Deoxynivalenol): Dose response and time course. Toxicol. Appl. Pharmacol. 1997, 144, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Tachibana, T.; Kodama, T.; Yamane, S.; Makino, R.; Khan, S.I.; Cline, M.A. Possible role of central interleukins on the anorexigenic effect of lipopolysaccharide in chicks. Br. Poult. Sci. 2017, 58, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Ye, Y.; Lin, S.; Deng, L.; Fan, X.; Zhang, Y.; Deng, X.; Li, Y.; Yan, H.; Ma, Y. Evaluation of deoxynivalenol-induced toxic effects on DF-1 cells in vitro: Cell-cycle arrest, oxidative stress, and apoptosis. Environ. Toxicol. Pharmacol. 2014, 37, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Borutova, R.; Faix, S.; Placha, I.; Gresakova, L.; Cobanova, K.; Leng, L. Effects of deoxynivalenol and zearalenone on oxidative stress and blood phagocytic activity in broilers. Arch. Anim. Nutr. 2008, 62, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Frankič, T.; Pajk, T.; Rezar, V.; Levart, A.; Salobir, J. The role of dietary nucleotides in reduction of DNA damage induced by T-2 toxin and deoxynivalenol in chicken leukocytes. Food Chem. Toxicol. 2006, 44, 1838–1844. [Google Scholar] [CrossRef]
- Awad, W.A.; Ghareeb, K.; Dadak, A.; Gille, L.; Staniek, K.; Hess, M.; Böhm, J. Genotoxic effects of deoxynivalenol in broiler chickens fed low-protein feeds. Poult. Sci. 2012, 91, 550–555. [Google Scholar] [CrossRef]
- de Souza, M.; Baptista, A.A.S.; Valdiviezo, M.J.J.; Justino, L.; Menck-Costa, M.F.; Ferraz, C.R.; da Gloria, E.M.; Verri, W.A.; Bracarense, A.P.F.R.L. Lactobacillus spp. reduces morphological changes and oxidative stress induced by deoxynivalenol on the intestine and liver of broilers. Toxicon 2020, 185, 203–212. [Google Scholar] [CrossRef]
- Swamy, H.V.L.N.; Smith, T.K.; Karrow, N.A.; Boermans, H.J. Effects of feeding blends of grains naturally contaminated with Fusarium mycotoxins on brain regional neurochemistry of starter pigs and broiler chickens. J. Anim. Sci. 2004, 82, 2131–2139. [Google Scholar] [CrossRef] [Green Version]
- Harwell, B. Biochemistry of oxidative stress. Biochem. Soc. Trans. 2007, 35, 1147–1150. [Google Scholar] [CrossRef]
- Payros, D.; Alassane-Kpembi, I.; Pierron, A.; Loiseau, N.; Pinton, P.; Oswald, I.P. Toxicology of deoxynivalenol and its acetylated and modified forms. Arch. Toxicol. 2016, 90, 2931–2957. [Google Scholar] [CrossRef] [PubMed]
- Onbaşilar, E.E.; Aksoy, F.T. Stress parameters and immune response of layers under different cage floor and density conditions. Livest. Prod. Sci. 2005, 95, 255–263. [Google Scholar] [CrossRef]
- Gross, W.B.; Siegel, H.S. Evaluation of the heterophil/lymphocyte ratio as a measure of stress in chickens. Avian Dis. 1983, 27, 972–979. [Google Scholar] [CrossRef] [PubMed]
- Islam, Z.; Pestka, J.J. Role of IL-1β in endotoxin potentiation of deoxynivalenol-induced corticosterone response and leukocyte apoptosis in mice. Toxicol. Sci. 2003, 74, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Campo, J.L.; Gil, M.G.; Dávila, S.G.; Muñoz, I. Influence of perches and footpad dermatitis on tonic immobility and heterophil to lymphocyte ratio of chickens. Poult. Sci. 2005, 84, 1004–1009. [Google Scholar] [CrossRef]
DON 1 Dose | Route | Matrix | Metabolites 2 Analyzed | Analysis 3 Method | LOQ (ng/mL or ng/g) 4 | Main Metabolite | Reference |
---|---|---|---|---|---|---|---|
Acute or chronic administration of DON (farm studies) | |||||||
1.5 mg/kg | Feed | Plasma, bile, liver and breast meat | DON DOM-1 | HPLC with diode array detection | 6.6 (plasma) 13.2 (bile, liver, and breast meat) | - | [31] |
9.5 mg/kg | Feed | Plasma | DON DOM-1 | LC–ESI-MS/MS | 0.1 for DON 0.2 for DOM-1 | DON DOM-1 | [32] |
1 or 5 mg/kg | Feed | Serum, bile, liver, digesta of (gizzard, cecum, rectum), and excreta | DON DOM-1 | HPLC-MS/MS | 23.3 | DON | [33] |
2.44 or 7.54 mg/kg | Feed | Plasma, liver, kidney, bile | DON DOM-1 | LC–MS/MS | 1.25 | DON (plasma and bile) DOM-1 (bile) | [34] |
2.5 mg/kg BW | Oral administration | Plasma and organs 5 | DON 10-DON-sulfonate 10-DOM-sulfonate DON-3S | Radiotracer method coupled (γ-ARC) (radio-HPLC-IT-TOF-MS/MS) | DON-3S | [35] | |
1.7 mg/kg | Feed | Excreta | DON-3S DOM-3S DON, DOM, DON sulfonates 1,2,3, and DOM sulfonate 2 | LC–HR-MS/MS | 1 for DON sulfonates 1,2,3, and DOM sulfonate 2 4.5 for DON-3S DOM-3S DON and DOM | DON-3S | [36] |
0.5 mg/kg BW | Single intra-crop bolus | Plasma and excreta | DON DON-3S | LC–MS/MS and HR-MS | 1 | DON-3S | [37] |
Toxicokinetics studies (laboratory studies) | |||||||
0.75 mg/kg BW | Intravenous injection or oral gavage | Plasma | DON DOM-1 | LC–MS/MS | 1–2.5 | DON | [38] |
0.5 mg/kg BW | Intravenous injection or oral gavage | Plasma | DON 3 ADON 15 ADON DOM-1 | LC–MS/MS | 0.1-2 | DON | [22,39] |
0.75 mg/kg BW | Intravenous injection or oral gavage | Plasma | DON DOM-1 DON-3S DON-3G 10-DON-sulfonate, DOM-1 and 10-DOM-1-sulfonate | LC–MS/MS | 0.1 | DON-3S | [30] |
0.77 DON-3G mg/kg BW 0.5 DON mg/kg BW | Intravenous injection or oral gavage | Plasma | DON DON-3G DOM-1 | LC–MS/MS and HR-MS | 1 | DON-3S | [40] |
Breed | DON 1 (mg/kg) Diet | Source of Contamination | Exposure Duration (day) | Reported Effects 2 | Percentage of Variation % | Reference |
---|---|---|---|---|---|---|
Lohmann Meat | 1.5 | Artificial | 35 | ↑ BWG ↓ feed conversion ratio | 8 10 | [31] |
Shaver | up to 1.87 | Artificial | 28 | None | - | [45] |
Ross 308 | 4.6 | Artificial | 15 | None | - | [46] |
Leghorn chicks (Ottawa strain 10) | 4.6 | Natural | 28 (from day 7 to 35) | ↑ BWG ↑ feed intake | 2 4 | [47] |
Ross 308 | 1 or 5 | Natural | 35 | ↓ feed intake (7 days) (1 mg/kg) ↓ BW (14 days) ↓ BWG (14 days) | 19 26 or 5 33 or 3 | [33] |
Cobb × Cobb 500 | 1.5 or 5 | Artificial | 21 | None | - | [48] |
Ross E032 | 5 | Natural | 21 | ↓ feed intake (14–21 days) | 20 | [49] |
Ross 308 | 5 | Artificial | 28 | None | - | [50] |
Ross 308 | 7.90 | Natural | 34 | ↓ BW ↓ BWG ↓ feed intake ↑ feed conversion ratio (21–34) | 10 14 4 2 | [51] |
Ross × Ross, Maple Leaf Poultry | 4.7 or 8.2 | Natural | 56 | ↑ feed intake ↑ BWG At 4.7 (42 to 56 days) | 4 2 | [52] |
Ross × Ross, Maple Leaf Poultry | 5.9 or 9.5 | Natural | 56 | ↓ BWG ↓ feed consumption (day 21 to 42) | 9 or 12 8 or 14 | [53] |
Black-feathered Taiwan country chickens | 2, 5 or 10 | Artificial | 112 | BWG at 2 mg/kg lower than BWG at 5 mg/kg | 8 | [54] |
Ross 308 | 2.5, 5 or 10 | Artificial | 35 | Overall the trial: ↓ BW at 2.5 and 5 mg/kg, ↓ BWG at 5 mg/kg ↓ feed intake at all doses. At week 5: ↓ BW at 5 mg/kg and ↓ feed intake at 5 and 10 mg/kg | 5 or 6 7 7–8 8 12 | [55] |
Ross 308 | 5 or 10 | - | 35 | ↓ BW ↓ BWG (28 days) ↓ feed intake (28 days) ↑ feed conversion ratio (14 days) | 11 12 10 14 | [56] |
Ross 308 | 10 | Artificial | 35 | ↓ feed intake ↓ BW ↓ BWG ↑ feed conversion ratio | 25 17 37 35 | [27] |
Ross 308 | 10 | Artificial | 35 | None | - | [57] |
Ross 308 | 10 | Artificial | 35 | None | - | [58] |
Ross E032 | 10 | Artificial | 42 | None | - | [59] |
Ross E032 | 10 | Artificial | 42 | None | - | [60] |
Ross 308 | 1.68 or 12.20 | Artificial | 35 | ↓ feed intake ↓ BWG (21 days) | 8 or 13 12 or 17 | [61] |
Lohmann broilers | Up to 14 | Natural | 35 | ↓ feed intake ↓BW ↑ in feed to gain ratio | 8 4 6 | [62] |
Ross 308 | 5 or 15 | Artificial | 42 | ↓ BWG ↑ in feed conversion ratio at 15 mg/kg | 6 7 | [19] |
- | 15 | Natural | 21 | ↓ BWG ↑ in feed conversion ratio | 19 28 | [63] |
Hubbard × Hubbard | 16 | Natural | 21 | ↓BWG ↑ feed conversion | 10 23 | [64] |
Hubbard × Hubbard | 16 | Natural | 21 | ↓BWG ↑ feed conversion | 9 20 | [65] |
Hubbard × Hubbard | 16 | Natural | 21 | ↓BW ↑ feed conversion (day 8 to 14) | 2 24 | [66] |
- | 16 | Natural | 21 | None | - | [67] |
Leghorn chicks | 9 or 18 | Natural | 35 | ↑ BW (at 18 mg/kg day 21) ↑ BW (at 9 mg/kg day 35) | 7 8 | [68] |
Ross 708 | Up to 18 | Natural | 21 | ↓ feed intake ↓ BWG | 8 10 | [69] |
Leghorn chicks | 18 | Natural | 84 | ↑ BW at 28 and 56 days | 5 and 8 | [70] |
White Mountain 6" × Hubbard 9 | Up to 216 | Natural | From 6 to 11 | None | - | [71] |
DON 1 (mg/kg) Diet | Exposure Duration (d) | Reported Effects 2 | Reference |
---|---|---|---|
Up to 1.87 | 28 | No effect on crop, proventriculus, gizzard, intestines, heart, liver, pancreas, kidneys, testes, adrenals, and thyroids | [45] |
1 or 5 | 35 | No effect on RW of heart, proventriculus, gizzard, pancreas, liver, small intestine, cecum, colon, thymus, spleen and bursa of Fabricius | [33] |
5 | 21 | ↓ RW of small intestine, = RW of heart, gizzard, pancreas, caecum, colon, and spleen | [49] |
5.9 or 9.5 | 56 | No effect on RW of liver, kidney, spleen, and bursa of Fabricius | [53] |
2, 5 or 10 | 112 | ↑ RW of spleen (at 5 mg/kg) | [54] |
2.5, 5 or 10 | 35 | ↓ RW of liver | [55] |
10 | 35 | No effect on RW of bursa of Fabricius, spleen, and thymus | [27] |
10 | 35 | ↑ RW of gizzard, ↓ RW of kidneys, = RW of brain, heart, pancreas, liver, lung, thymus, spleen, and bursa of Fabricius | [76] |
1.68 or 12.20 | 35 | ↑ RW of liver and spleen, = RW of heart and thymus | [61] |
1.68 or 12.20 | 35 | ↓ RW of duodenum and jejunum, = RW of proventriculus and gizzard | [77] |
Up to 14 | 35 | ↑ RW of heart, ↓ RW of spleen, = RW of proventriculus, gizzard, liver, kidneys, small intestine, and bursa of Fabricius | [62] |
5 or 15 | 42 | ↑ RW of gizzard and thymus, ↓ RW of colon and small intestine, = RW of heart, proventriculus, pancreas, liver, kidneys, cecum, spleen and bursa of Fabricius | [19] |
15 | 21 | ↑ RW of gizzard, heart and bursa of Fabricius, = RW of proventriuclus, liver and kidney | [63] |
16 | 21 | ↑ RW of gizzard, = RW of proventriculus, spleen, liver, and kidney | [64] |
16 | 21 | ↑ RW of gizzard, = RW of proventriuclus, liver, kidneys, spleen, and bursa of Fabricius | [65] |
16 | 21 | ↑ RW of gizzard and bursa of Fabricius, = RW of proventriculus, pancreas, liver, kidneys, and spleen | [66] |
16 | 21 | No effect on RW of liver, left kidney, heart, spleen, pancreas, proventriculus, gizzard, and bursa of Fabricius | [67] |
9 or 18 | 35 | ↓ RW of liver, = RW kidney, heart, proventriculus, testes, spleen, bursa of Fabricius, and ↑ RW of gizzard | [68] |
18 | 84 | ↑ RW of gizzard, = RW liver, kidney, heart, proventriculus, spleen, bursa of Fabricius, and testes | [70] |
DON 1 (mg/kg) Diet | Exposure Duration (Days) | Reported Effects | Reference |
---|---|---|---|
1 or 5 | 35 | ↓ villus height of jejunum ↓ villus surface area | [33] |
2.88 to 4.38 | 23 | ↓ villus height of duodenum | [80] |
5 | 21 | ↓ height and width of villi in duodenum | [49] |
5 | 28 | ↓ villus height and villus height to crypt depth ratio in the duodenum | [50] |
7.54 | 21 | ↓ villus height and crypt depth in the duodenum and jejunum | [81] |
6.62 to 7.90 | 21 | ↓ density of small intestine, ↓ villus height in the jejunum, ↓ villus height, and crypt depth in the ileum | [51] |
2, 5, or 10 | 112 | = villus height of jejunum and ileum | [54] |
10 | 21 | ↓ villus height, ↑ crypt depth, ↓ villus height to crypt depth ratio in the duodenum | [82] |
10 | 35 | = length and density of different segments of gastrointestinal tract | [58] |
10 | 42 | ↓ villus height of jejunum, = crypt depth and villus height and crypt depth | [83] |
10 | 42 | ↓ villus height in the duodenum and jejunum | [60] |
1.68 or 12.20 | 35 | ↓ villus height, ↑ length of duodenum and jejunum | [77] |
5 or 15 | 42 | ↑ length and ↓ density of small intestine, = villus height and crypt depth | [19] |
Up to 18 | 21 | ↑ villus height in the mid-ileum No effects on crypt depth and goblet cells per villi counts | [69] |
DON 1 (mg/kg) Diet | Exposure Duration (Days) | Reported Effects 2 | Reference |
---|---|---|---|
2.95 | 28 | ↓ levels of Tot Prot, Alb ↑ALT, AST and ALP. | [88] |
3 | 42 | ↓ levels of Tot Prot, mg, Trig and free glycerol, ↑ ALT activity | [89] |
3 | 42 | ↓ Tot Prot, Trig and free glycerol, ↑ ALT activity | [90] |
4.7 or 8.2 | 56 | Quadratic responses in serum concentrations of Alb and γ-GT, ↓ lipase activity, ↑ UA, hemoglobinemia and erythrocytosis | [52] |
10 | 35 | ↓ of plasma Tot Prot and UA, ↓ plasma Trig level (tendency), | [27] |
10 | 35 | ↓ level of ALT, ↑ serum Chol and Trig | [58] |
Up to 14 | 35 | = Glu, Tot Prot, Hct and Hgb | [62] |
5 or 15 | 42 | ↓ CK (at 5 mg/kg) and ↓ level of Chol (at 15 mg/kg) | [19] |
5 or 15 | 42 | ↓ Hgb (dose-dependent), ↓ erythrocytes (at 15 mg/kg) | [91] |
15 | 21 | ↑ activities of AST, LDH and γ-GT. | [63] |
16 | 21 | ↓ Trig, alterations in blood erythrocyte count, Hgb and Hct | [64] |
16 | 21 | ↓ Glu level | [65] |
16 | 21 | No effect on Glu, ALT, AST, Creat and Hgb | [67] |
9 or 18 | 35 | ↓ Glu, Trig and LDH, ↑ Creat, ↓ in Hgb and Hct | [68] |
18 | 63 | ↓ Hgb concentration, erythrocyte count and Hct | [92] |
18 | 84 | ↓ in Hgb concentration at 28 days | [70] |
50 | 21 | No effect on hematological parameters | [92] |
DON 1 (mg/kg) Diet | Exposure Duration (Days) | Reported Effects 2 | Reference |
---|---|---|---|
1.6 | 34 | ↓ IL-6, = IFN- γ, IL-1β, IL-17, and IL-10 in cecal tonsils | [103] |
2 | 42 | ↓ NDV titers at 28 days and 42 days, ↑ mRNA expression of IL-lß and IL-6, ↓ mRNA expression of IFN-γ in spleen | [104] |
Up to 3.8 | 70 | ↑ IFN- γ gene expression in cecal tonsils | [105] |
Up to 5 | 35 | ↑ mRNA expression of IL-6 in the duodenum, ↓ mRNA expression of IL-8 and IL-10 in the jejunum (quadratic trend) | [102] |
5 | 28 | No effect on LITAF and IL-1β in spleen and bursa of Fabricius tissues | [50] |
4.7 or 8.2 | 56 | = IBV | [52] |
5.9 or 9.5 | 56 | ↓ B cells and T cells | [53] |
2, 5 or 10 | 112 | Apoptosis in chicken spleen lymphocytes | [54] |
10 | 35 | ↓ of lymphocytes and ↓ IBV | [27] |
10 | 35 | In plasma: ↓ LITAF, = IL-8, in jejunum: ↓ IL-1β, IFN-γ, TGFBR1, = LITAF, IL-8 and NF-kB1 | [106] |
10 | 35 | ↓ IBV titers | [58] |
12.2 | 35 | ↑ NDV (14 days/28 days), ↓ IBV (35 days) | [61] |
3.5 to 14 | 35 | ↓ NDV titers | [62] |
5 or 15 | 42 | = NDV and IBV, ↑ plasma IL-8, ↑ the mRNA of IL-6, IFN- γ and IL-1β in jejunum tissues (at 5 mg/kg) | [91] |
18 | 63 | No effect on NDV | [92] |
18 | 126 | ↓ NDV | [92] |
DON 1 (mg/kg) Diet | Exposure Duration (Days) | Reported Effects 2 | Reference |
---|---|---|---|
Response to oxidative stress as welfare biomarker | |||
100–2000 ng/mL | 24 h | ↑ ROS and MDA, ↓ GSH and SOD in embryo fibroblast DF-1 cells | [119] |
7.54 | 21 | ↑ HIF-1α and HMOX in jejunum ↑ xanthine oxidoreductase in liver | [81] |
3.4 or 8.2 | 14 | ↑ MDA in liver, kidney and serum, ↓ GPx activity in liver tissue | [120] |
10 | 35 | ↑ TBARS in jejunum DNA damage in blood lymphocytes | [76] |
10 | 42 | ↓ SOD activity in serum and ↑ MDA or TBARS in the jejunal mucosa | [83] |
10 | 17 | ↑ DNA fragmentation in spleen leukocytes No effect on plasma and liver MDA | [121] |
10 | 35 | ↑ blood lymphocyte DNA damage No effect on TBARS | [122] |
19.3 | 14 | ↑ TBARS in jejunum No effects on superoxide anion levels of jejunum and ileum ↓ GSH and ABTS in jejunum | [123] |
Biomarkers related to physiological, hormonal, and behavioral welfare | |||
Up to 14 | 35 | No significant effect on H/L ratio | [62] |
4.6 | 15 | ↑ plasma corticosterone | [46] |
5.9 or 9.5 | 56 | Alterations on brain neurochemistry ↑5-hydroxytryptamineand serotonin | [124] |
10 | 35 | ↑ H/L ratio | [27] |
10 | 35 | ↑ plasma corticosterone, H/L ratio, and duration of tonic immobility reaction. | [57] |
5 or 15 | 42 | ↓ plasma corticosterone No effect on H/L ratio ↑ duration of tonic immobility reaction | [91] |
Up to 18 | 21 | ↑ H/L ratio | [69] |
Biomarkers Frequently Determined 1 | No Effect | ↑, Increase | ↓, Decrease | |||
---|---|---|---|---|---|---|
Starter (at 21 Days) | Grower (from 21 Days) | Starter (at 21 Days) | Grower (from 21 Days) | Starter (at 21 Days) | Grower (from 21 Days) | |
Productive parameters | [46,48,67,71] | [45,50,57,58,59,60] | [68] | [31,47,52,54,68,70] | [33,49,61,63,64,65,66,69] | [19,27,51,53,55,56,62] |
RW of organs | ||||||
Liver | [63,64,65,66,67] | [19,33,45,53,62,70,76] | [61] | [55,68] | ||
Kidneys | [63,64,65,66,67] | [19,45,53,62,68,70] | [76] | |||
Gizzard | [49,67] | [33,45,62,77] | [63,64,65,66] | [19,68,70,76] | ||
Small intestine | [33,45,62] | [49] | [19,77] | |||
Bursa of Fabricius | [65,67] | [19,27,33,53,62,68,70,76] | [63,66] | |||
Spleen | [49,64,65,66] | [19,27,33,53,68,70,76] | [54,61] | [62] | ||
Thymus | [27,33,61,76] | [19] | ||||
Heart | [49,67] | [19,33,45,61,68,70,76] | [63] | [62] | ||
Intestinal morphology | ||||||
Villus height | [19,54] | [69] | [49,51,81,82] | [33,50,60,77,80,83] | ||
Crypt depth | [69] | [19,83] | [82] | [51,81] | ||
Blood biochemistry | ||||||
Total protein | [62] | [27,88,89,90] | ||||
Albumin | [52,88] | |||||
ALT | [67] | [88,89,90] | [58] | |||
ALP | [88] | |||||
AST | [67] | [63] | [88] | |||
Triglycerides | [58] | [64] | [27,68,89,90] | |||
Glucose | [67] | [62] | [65] | [68] | ||
Blood hematology | ||||||
Hematocrit | [92] | [62] | [64] | [68,92] | ||
Hemoglobin | [67,92] | [62] | [64] | [52,68,70,91,92] | ||
Erythrocytes | [92] | [64] | [52,91,92] | |||
Lymphocytes | [27,53,54] | |||||
Response to common vaccines | ||||||
NDV | [91,92] | [61] | [61] | [62,92,104] | ||
IBV | [52,91] | [27,58,61] | ||||
Cytokines | ||||||
IL-6 | [91,102,104] | [103] | ||||
IL-8 | [106] | [91] | [102] | |||
IL-1β | [50,103] | [91,104] | [106] | |||
IFN- γ | [103] | [91,105] | [104,106] | |||
Oxidative stress parameters | ||||||
MDA | [121] | [120] | [83] | |||
TBARS | [122] | [123] | [76,83] | |||
Physiological stress parameters | ||||||
Stress index (H/L ratio) | [62,91] | [27,57,69] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riahi, I.; Pérez-Vendrell, A.M.; Ramos, A.J.; Brufau, J.; Esteve-Garcia, E.; Schulthess, J.; Marquis, V. Biomarkers of Deoxynivalenol Toxicity in Chickens with Special Emphasis on Metabolic and Welfare Parameters. Toxins 2021, 13, 217. https://doi.org/10.3390/toxins13030217
Riahi I, Pérez-Vendrell AM, Ramos AJ, Brufau J, Esteve-Garcia E, Schulthess J, Marquis V. Biomarkers of Deoxynivalenol Toxicity in Chickens with Special Emphasis on Metabolic and Welfare Parameters. Toxins. 2021; 13(3):217. https://doi.org/10.3390/toxins13030217
Chicago/Turabian StyleRiahi, Insaf, Anna Maria Pérez-Vendrell, Antonio J. Ramos, Joaquim Brufau, Enric Esteve-Garcia, Julie Schulthess, and Virginie Marquis. 2021. "Biomarkers of Deoxynivalenol Toxicity in Chickens with Special Emphasis on Metabolic and Welfare Parameters" Toxins 13, no. 3: 217. https://doi.org/10.3390/toxins13030217
APA StyleRiahi, I., Pérez-Vendrell, A. M., Ramos, A. J., Brufau, J., Esteve-Garcia, E., Schulthess, J., & Marquis, V. (2021). Biomarkers of Deoxynivalenol Toxicity in Chickens with Special Emphasis on Metabolic and Welfare Parameters. Toxins, 13(3), 217. https://doi.org/10.3390/toxins13030217