Uremic Toxins and Blood Purification: A Review of Current Evidence and Future Perspectives
Abstract
:1. Introduction
2. Extracorporeal Blood Purification
2.1. Conventional Dialysis
2.2. The Evolution towards Adsorption-Based Techniques
2.3. Future Perspectives
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vanholder, R.; Van Laecke, S. What is new in uremic toxicity? Pediatric Nephrol. 2008, 23, 1211–1221. [Google Scholar] [CrossRef] [Green Version]
- Vanholder, R.; Glorieux, G.; De Smet, R. Lameire N for the European Uremic Toxin Work Group (EUTox). New insights in uremic toxins. Kidney Int. 2003, 63 (Suppl. 84), S6–S10. [Google Scholar] [CrossRef] [Green Version]
- Clark, W.R.; Dehghani, N.L.; Narsimhan, V.; Ronco, C. Uremic toxins and their relation to dialysis efficacy. Blood Purif. 2019, 48, 299–314. [Google Scholar] [CrossRef]
- Chmielewski, M.; Cohen, G.; Wiecek, A.; Jesús Carrero, J. The peptidic middle molecules: Is molecular weight doing the trick? Semin Nephrol. 2014, 34, 118–134. [Google Scholar] [CrossRef]
- Meijers, B.; Evenepoel, P. The gut-kidney axis: Indoxil sulfate, p-cresyl sulphate and CKD progression. Nephrol. Dial. Transplant. 2011, 26, 759–761. [Google Scholar] [CrossRef] [PubMed]
- Viane, L.; Annaert, P.; de Loor, H.; Poesen, R.; Evenepoel, P.; Meijers, B. Albumin is the main plasma binding protein for indoxyl sulphate and p-cresylsulfate. Biopharm. Drugs Dispos. 2013, 34, 165–175. [Google Scholar] [CrossRef]
- Itoh, Y.; Ezawa, A.; Kikuchi, K.; Tsuruta, Y.; Niwa, T. Protein-bound uremic toxins in hemodialysis patients measured by liquid chromatography/tandem mass spectrometry and their effects on endothelial ROS production. Anal. Bional. Chem. 2012, 403, 1841–1850. [Google Scholar] [CrossRef]
- Wu, I.; Hsu, K.H.; Lee, C.C.; Sun Cy Hsu, H.J.; Tsai, C.J.; Tzen, C.Y.; Wang, Y.C.; Lin, C.Y.; Wu, M.S. p-Cresil sulphate and indoxyl sulphate predict progression of chronic kidney disease. Nephrol. Dial. Transplant. 2011, 26, 938–947. [Google Scholar] [CrossRef] [Green Version]
- Liabeuf, S.; Barreto, D.V.; Barreto, F.C.; Meert, N.; Glorieux, G.; Schepers, E.; Temmar, M.; Choukroun, G.; Vanholder, R.; Massy, Z.A.; et al. Free p-cresylsulphate is a predictor of mortality in patients at different stages of chronic kidney disease. Nephrol. Dial. Transplant. 2010, 25, 1183–1191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.J.; Chuang, C.K.; Jayakumar, T.; Liu, H.L.; Pan, C.F.; Wang, T.J.; Chen, H.H.; Wu, C.J. Serum p-cresyl sulfate predicts cardiovascular disease and mortality in elderly hemodialysis patients. Arch. Med. Sci. 2013, 9, 662–668. [Google Scholar] [CrossRef]
- Barreto, F.C.; Barreto, D.V.; Liabeuf, S.; Meert, N.; Glorieux, G.; Temmar, M.; Choukroun, G.; Vanholder, R.; Massy, Z.A. Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients. Clin. J. Am. Nephrol. 2009, 4, 1551–1558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, S.; Kazama, J.J.; Wakamatsu, T.; Takahashi, Y.; Kaneko, Y.; Goto, S.; Narita, I. Removal of uremic toxins by renal replacement therapies: A review of current progress and future perspectives. Renal Replace. Therapy 2016, 2, 43. [Google Scholar] [CrossRef] [Green Version]
- Lesaffer, G.; De Smet, R.; Lameire, N.; Dhondt, A.; Duym, P.; Vanholder, R. Intradialytic removal of protein-bound uraemic toxins: Role of solute characteristics and of dialyser membrane. Nephrol. Dial. Transplant. 2000, 15, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Ronco, C.; Ghezzi, P.M.; Bowry, S.K. Membranes for hemodialysis. In Replacement of Renal Function by Dialysis; Hörl, W.H., Koch, K.M., Lindsay, R.M., Ronco, C., Winchester, J.F., Eds.; Springer: Dordrecht, The Netherlands, 2004. [Google Scholar] [CrossRef]
- Krieter, D.H.; Canaud, B. High permeability of dialysis membranes: What is the limit of albumin loss? Nephrol. Dial. Transplant. 2003, 18, 651–654. [Google Scholar] [CrossRef] [Green Version]
- Martinez, A.W.; Recht, N.S.; Hostetter, T.H.; Meyer, T.W. Removal of p-cresol sulfate by hemodialysis. J. Am. Soc. Nephrol. 2005, 16, 3430–3436. [Google Scholar] [CrossRef] [Green Version]
- Basile, C.; Libutti, P.; Di Turo, A.L.; Casino, F.G.; Vernaglione, L.; Tundo, S.; Maselli, P.; De Nicolo, E.V.; Ceci, E.; Teutonico, A.; et al. Removal of uraemic retention solutes in standard bicarbonate haemodialysis and long-hour slow-flow bicarbonate haemodialysis. Nephrol. Dial. Transplant. 2011, 26, 1296–1303. [Google Scholar] [CrossRef] [Green Version]
- Krieter, D.H.; Hackl, A.; Rodriguez, A.; Chenine, L.; Moragues, H.L.; Lemke, H.D.; Wanner, C.; Canaud, B. Protein-bound uraemic toxin removal in haemodialysis and post-dilution haemodiafiltration. Nephrol. Dial. Transplant. 2010, 25, 212–218. [Google Scholar] [CrossRef]
- Palmer, S.C.; Rabindranath, K.S.; Craig, J.C.; Roderick, P.J.; Locatelli, F.; Strippoli, G.F.M. High-flux versus low-flux membranes for end-stage kidney disease. Cochrane Database Syst. Rev. 2012. [Google Scholar] [CrossRef] [PubMed]
- van Gelder, M.K.; Middel, I.R.; Vernooij, R.W.M.; Bots, M.L.; Verhaar, M.C.; Masereeuw, R.; Grooteman, M.P.; Nubé, M.J.; van den Dorpel, M.A.; Blankestijn, P.J.; et al. Protein-Bound Uremic Toxins in Hemodialysis Patients Relate to Residual Kidney Function, Are Not Influenced by Convective Transport, and Do Not Relate to Outcome. Toxins 2020, 12, 234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Smet, R.; Dhondt, A.; Eloot, S.; Galli, F.; Waterloos, M.A.; Vanholder, R. Effect of the super-flux cellulose triacetate dialyser membrane on the removal of non-protein-bound and protein-bound uraemic solutes. Nephrol. Dial. Transplant. 2007, 22, 2006–2012. [Google Scholar] [CrossRef] [Green Version]
- Winchester, F.; Ronco, C. Sorbent Augmented Hemodialysis Systems: Are We There Yet? J. Am. Soc. Nephrol. 2010, 21, 209–211. [Google Scholar] [CrossRef] [Green Version]
- Botella, J.; Ghezzi, P.M.; Sanz-Moreno, C. Sorbents in hemodialysis. Kidney Int. 2000, 58, S-60–S-65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mikhalovsky, S.V. Emerging technologies in extracorporeal treatment: Focus on adsorption. Perfusion 2003, 18, 47–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ronco, C. Sorbents: From bench to bedside. Can we Combine Membrane Separation Processes and Adsorbent Based Solute Removal? IJAO 2006, 29, 819–822. [Google Scholar] [CrossRef] [PubMed]
- Winchester, J.F.; Silberzweig, J.; Ronco, C.; Kuntsevich, V.; Levine, D.; Parker, T.; Kellum, J.; Salsberg, J.A.; Quartarato, P.; Levin, N.W. Sorbents in acute renal failure and end stage renal disease: Middle molecule and cytokine removal. Blood Purif. 2002, 22, 73–77. [Google Scholar] [CrossRef]
- Ghezzi, P.M.; Dutto, A.; Gervasio, R.; Botella, J. Hemodiafiltration with separate convection and diffusion: Paired filtration dialysis. Clin. Nephrol. 1989, 69, 141–161. [Google Scholar]
- Wratten, M.L.; Ghezzi, P.M. Hemodiafiltration with endogenous reinfusion. Hemodiafiltration 2007, 158, 94–102. [Google Scholar]
- Aucella, F. Hemodiafiltration with endogenous reinfusion. Hemodiafiltration 2012, 29 (Suppl. 55), S72–S82. (In Italian) [Google Scholar]
- Grandi, F.; Bolasco, P.; Palladino, G.; Sereni, L.; Caiazzo, M.; Atti, M.; Ghezzi, P.M. Adsorption in Extracorporeal Blood Purification: How to Enhance Solutes Removal Beyond Diffusion and Convection. Hemodialysis 2012. [Google Scholar] [CrossRef] [Green Version]
- Cuoghi, A.; Caiazzo, M.; Monari, E.; Bellei, E.; Bergamini, S.; Sereni, L.; Aucella, F.; Loschiavo, C.; Atti, M.; Tomasi, A. New horizon in dialysis depuration: Characterization of a polysulfone membrane able to break the ‘albumin wall’. J. Biomater. Appl. 2015, 29, 1363–1371. [Google Scholar] [CrossRef]
- Monari, E.; Cuoghi, A.; Bellei, E.; Bergamini, S.; Caiazzo, M.; Aucella, F.; Loschiavo, C.; Corazza, L.; Palladino, G.; Sereni, L.; et al. Proteomic analysis of protein extraction during hemofiltration with on-line endogenous reinfusion (HFR) using different polysulphone membranes. J. Mater. Sci. Mater. Med. 2015, 26, 140. [Google Scholar] [CrossRef] [Green Version]
- Esquivias-Motta, E.; Martín-Malo, A.; Buendia, P.; Álvarez-Lara, M.A.; Soriano, S.; Crespo, R. Hemodiafiltration with endogenous reinfusion improved microinflammation and endothelial damage compared with online-hemodiafiltration: A hypothesis generating study. Artif. Organs 2017, 41, 88–98. [Google Scholar] [CrossRef]
- Riccio, E.; Cataldi, M.; Minco, M.; Argentino, G.; Russo, R.; Brancaccio, S.; Memoli, A.; Grumetto, L.; Postiglione, L.; Guida, B.; et al. Evidence that p-cresol and IL-6 are adsorbed by the HFR cartridge: Towards a new strategy to decrease systemic inflammation in dialyzed patients? PLoS ONE 2014, 9, e95811. [Google Scholar] [CrossRef] [Green Version]
- Meyer, T.W.; Peattie, J.W.; Miller, J.D.; Dinh, D.C.; Recht, N.S.; Walther, J.L.; Hostetter, T.H. Increasing the clearance of protein-bound solutes by addition of a sorbent to the dialysate. J. Am. Soc. Nephrol. 2007, 18, 868–874. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.; Ito, T.; Sato, M.; Goto, S.; Kazama, J.J.; Gejyo, F.; Narita, I. Adsorption of Protein-Bound Uremic Toxins Using Activated Carbon through Direct Hemoperfusion in vitro. Blood Purif. 2019, 48, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Pavlenko, D.; Giasafaki, D.; Charalambopoulou, G.; van Geffen, E.; Gerritsen, K.G.F.; Steriotis, T.; Stamatialis, D. Carbon Adsorbents with Dual Porosity for Efficient Removal of Uremic Toxins and Cytokines from Human Plasma. Sci. Rep. 2017, 7, 14914. [Google Scholar] [CrossRef]
- Winchester, J.F.; Salsberg, J.; Yousha, E. Removal of middle molecules with sorbents. Artif. Cells Blood Substit. Biotechnol. 2002, 30, 547–554. [Google Scholar] [CrossRef]
- Yamamoto, S.; Sato, M.; Sato, Y.; Wakamatsu, T.; Takahashi, Y.; Iguchi, A.; Omori, K.; Suzuki, Y.; Ei, I.; Kaneko, Y.; et al. Adsorption of Protein-Bound Uremic Toxins through Direct Hemoperfusion with Hexadecyl-Immobilized Cellulose Beads in Patients Undergoing Hemodialysis. Artif. Organs 2018, 42, 88–93. [Google Scholar] [CrossRef]
- Rocchetti, M.T.; Cosola, C.; di Bari, I.; Magnani, S.; Galleggiante, V.; Scandiffio, L.; Dalfino, G.; Netti, G.S.; Atti, M.; Corciulo, R.; et al. Efficacy of Divinylbenzenic Resin in Removing Indoxyl Sulfate and P-cresol Sulfate in Hemodialysis Patients: Results from an In Vitro Study and an In Vivo Pilot Trial (xuanro4-Nature 3.2). Toxins 2020, 12, 170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gemelli, C.; Cuoghi, A.; Magnani, S.; Atti, M.; Ricci, D.; Siniscalchi, A.; Mancini, E.; Faenza, S. Removal of Bilirubin with a New Adsorbent System: In Vitro Kinetics. Blood Purif. 2019, 47, 10–15. [Google Scholar] [CrossRef]
- Angheloiu, G.O.; Gugiu, G.; Ruse, C.; Pandey, R.; Dasari, R.R.; Whatling, C. Ticagrelor Removal From Human Blood. JACC Basic Transl. Sci. 2017, 2, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Deltombe, O.; Van Biesen, W.; Glorieux, G.; Massy, Z.; Dhondt, A.; Eloot, S. Exploring Protein Binding of Uremic Toxins in Patients with Different Stages of Chronic Kidney Disease and during Hemodialysis. Toxins 2015, 7, 3933–3946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeyachandran, Y.L.; Mielczarski, E.; Rai, B.; Mielczarski, J.A. Quantitative and qualitative evaluation of adsorption/desorption of bovine serum albumin on hydrophilic and hydrophobic surfaces. Langmuir 2009, 25, 11614–11620. [Google Scholar] [CrossRef] [PubMed]
- Harm, S.; Falkenhagen, D.; Hartmann, J. Pore size—A key property for selective toxin removal in blood purification. Int. J. Artif. Organs 2014, 37, 668–678. [Google Scholar] [CrossRef] [PubMed]
Authors | Population | Extracorporeal Technique | Results | References |
---|---|---|---|---|
Martinez AW. et al. | 5 chronic HD patients | Conventional HD | PCS and Indican were poorly removed by HD. | [16] |
Itoh Y. et al. | 45 HD patients | Conventional HD | IS, PCS and CMPF could not be removed efficiently by HD due to their high protein-binding ratios. | [7] |
Basile C. et al. | 11 anuric HD patients | Conventional HD with an extended treatment time | Small and middle molecules were removed more adequately when performing a prolonged HD, whereas no statistically significant difference was observed for PBTUs. | [17] |
Krieter DH. et al. | 8 HD patients | Conventional HD vs HDF | The decreases of PBTUs were comparable between HD and HDF treatment forms. | [18] |
Lesaffer G. et al. | 10 chronic HD patients | High-Flux dialysis vs HD | High-Flux membranes did not appear to be superior in removing PBTUs compared to HD. | [13] |
Van Gelder MK. et al. | 80 HD patients | Online HDF vs LF HD | The treatment with HDF for 6 months did not consistently decrease total PBUTs plasma concentrations compared with HD. | [20] |
Monari E. et al. | 14 HD patients | HFR vs Supra-HFR | Results indicated that Supra-HFR showed higher efficiency in removal of middle molecules related to uremic syndrome. | [32] |
Esquivias-Motta E. et al. | 17 HD patients | HFR vs online-HDF | HFR was associated with greater IS removal and appeared to improve PBTUs removal, inflammatory and endothelial status, and oxidative stress. | [33] |
Riccio E. et al. | 12 inflamed chronic HD patients | Supra-HFR | HFR-Supra cartridge showed the ability to decrease total PCS and IL-6 in the ultrafiltrate while only the PCS levels were lowered in the plasma. | [34] |
Meyer TW. et al. | In-vitro experiment | Activated charcoal + HD | The addition of sorbents to HD could increase the clearance of PBTUs, obtaining twice the removal compared to HD alone. | [35] |
Yamamoto S. et al. | In-vitro experiment | Activated charcoal in direct HP | Activated charcoal effectively adsorbed blood PBTUs in vitro. | [36] |
Pavlenko D. et al. | In-vitro experiment | Manipulated carbon-based sorbents | The results showed a high adsorption capacity toward small toxins, such as creatinine, and PTBUs, in particular IS and hippuric acid, but the total PBTUs levels did not decrease after the 4-h experiment. | [37] |
Yamamoto S. et al. | In-vitro experiment + 17 HD patients | Hexadecyl-immobilized in porous cellulose beads + HD | The adsorption of IS in-vitro reached 54.9% in 4h while in-vivo the column decreased significantly the serum level of free IS by 34,4%, but the total IS levels did not change. | [39] |
Rocchetti MT. et al. | In-vitro experiment + 11 HD patients | Divinylbenzene vs cellulose sorbents + HD + symbiotic treatment | In-vitro data showed that divinylbenzene sorbent was more effective in adsorbing IS and PCS after 6h perfusion. The combination of symbiotic treatment with divinilbenzene sorbent HD showed the decrease of IS and PCS both at pre- and post-HD levels. | [40] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magnani, S.; Atti, M. Uremic Toxins and Blood Purification: A Review of Current Evidence and Future Perspectives. Toxins 2021, 13, 246. https://doi.org/10.3390/toxins13040246
Magnani S, Atti M. Uremic Toxins and Blood Purification: A Review of Current Evidence and Future Perspectives. Toxins. 2021; 13(4):246. https://doi.org/10.3390/toxins13040246
Chicago/Turabian StyleMagnani, Stefania, and Mauro Atti. 2021. "Uremic Toxins and Blood Purification: A Review of Current Evidence and Future Perspectives" Toxins 13, no. 4: 246. https://doi.org/10.3390/toxins13040246
APA StyleMagnani, S., & Atti, M. (2021). Uremic Toxins and Blood Purification: A Review of Current Evidence and Future Perspectives. Toxins, 13(4), 246. https://doi.org/10.3390/toxins13040246