Effectiveness of Training and Use of Novasil Binder in Mitigating Aflatoxins in Cow Milk Produced in Smallholder Farms in Urban and Periurban Areas of Kenya
Abstract
:1. Introduction
2. Results
2.1. Characteristics of Study Farms
2.2. Milk Production
2.3. Farmers’ Perception on Use of Binder
2.4. Aflatoxin M1 Levels in Milk from the Study Farms
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Study Areas
5.2. Trial Design
5.3. Collection of Milk Samples and Laboratory Analysis for Aflatoxin M1 (AFM1) in Milk
5.4. Data Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McGuire, S. FAO, IFAD, and WFP. The State of Food Insecurity in the World 2015: Meeting the 2015 International Hunger Targets: Taking Stock of Uneven Progress. Rome: FAO, 2015. Adv. Nutr. 2015, 6, 623–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oloo, J. Food safety and quality management in Kenya: An overview of the roles played by various stakeholders. Afr. J. food Agric. Nutr. Dev. 2010, 10, 4379–4397. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Groopman, J.D.; Pestka, J.J. Public health impacts of foodborne mycotoxins. Annu. Rev. Food Sci. Technol. 2014, 5, 351–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reddy, K.; Salleh, B.; Saad, B.; Abbas, H.; Abel, C.; Shier, W. An overview of mycotoxin contamination in foods and its implications for human health. Toxin Rev. 2010, 29, 3–26. [Google Scholar] [CrossRef]
- Stronider, H.; Azziz-Baumgatner, E.; Banziger, M.; Bhat, R.V.R.; Breiman, R.; Brune, M.-N.M.; Strosnider, H.; Azziz-Baumgartner, E.; Banziger, M.; Bhat, R.V.R.; et al. Public Health Strategies for Reducing Aflatoxin Exposure in Developing Countries: A Workgroup Report. Environ. Health Perspect. 2006, 114, 1898–1903. [Google Scholar] [CrossRef] [PubMed]
- Atherstone, C.; Grace, D.; Lindahl, J.F.; Kang’ethe, E.K.; Nelson, F.; Kang’ethe, E.K.; Nelson, F. Assessing the impact of aflatoxin consumption on animal health and productivity. Afr. J. Food Agric. Nutr. Dev. 2016, 16, 10949–10966. [Google Scholar] [CrossRef]
- IARC. A review of human carcinogens: Chemical agents and related occupations. Lancet Oncol. 2009, 10, 1143–1144. [Google Scholar] [CrossRef]
- Kang’ethe, E.K.; Lang’a, K.A. Aflatoxin B1 and M1 contamination of animal feeds and milk from urban centers in Kenya. Afr. Health Sci. 2009, 9, 218–226. [Google Scholar]
- Makau, C.M.; Matofari, J.W.; Muliro, P.S.; Bebe, B.O. Aflatoxin B1 and Deoxynivalenol contamination of dairy feeds and presence of Aflatoxin M1 contamination in milk from smallholder dairy systems in Nakuru, Kenya. Int. J. Food Contam. 2016, 3, 6. [Google Scholar] [CrossRef] [Green Version]
- Senerwa, D.M.; Sirma, A.J.; Mtimet, N.; Kang’ethe, E.K.; Grace, D.; Lindahl, J.F. Prevalence of aflatoxin in feeds and cow milk from five counties in Kenya. Afr. J. Food Agric. Nutr. Dev. 2016, 16, 11004–11021. [Google Scholar] [CrossRef]
- Kirino, Y.; Makita, K.; Grace, D.; Lindahl, J. Survey of informal milk retailers in Nairobi, Kenya and prevalence of aflatoxin M1 in marketed milk. Afr. J. Food Agric. Nutr. Dev. 2016, 16, 11022–11038. [Google Scholar] [CrossRef]
- Kiarie, G.; Dominguez-Salas, P.; Kang’ethe, S.; Grace, D.; Lindahl, J. Aflatoxin exposure among young children in urban low-income areas of Nairobi and association with child growth. Afr. J. Food Agric. Nutr. Dev. 2016, 16, 10967–10990. [Google Scholar] [CrossRef]
- Kagera, I.; Kahenya, P.; Mutua, F.; Anyango, G.; Kyallo, F.; Grace, D.; Lindahl, J. Status of aflatoxin contamination in cow milk produced in smallholder dairy farms in urban and peri-urban areas of Nairobi County: A case study of Kasarani sub county, Kenya. Infect. Ecol. Epidemiol. 2019, 9, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Kuboka, M.M.; Imungi, J.K.; Njue, L.; Mutua, F.; Grace, D.; Lindahl, J.F. Occurrence of aflatoxin M1 in raw milk traded in peri-urban Nairobi, and the effect of boiling and fermentation. Infect. Ecol. Epidemiol. 2019, 9, 1625703. [Google Scholar] [CrossRef] [Green Version]
- Anyango, G.; Mutua, F.; Kagera, I.; Andang’O, P.; Grace, D.; Lindahl, J.F. A survey of aflatoxin M1 contamination in raw milk produced in urban and peri-urban areas of Kisumu County, Kenya. Infect. Ecol. Epidemiol. 2018, 8, 1547094. [Google Scholar] [CrossRef] [Green Version]
- Obade, M.; Andang’o, P.; Obonyo, C.; Lusweti, F. Exposure of children 4 to 6 months of age to aflatoxin in Kisumu County, Kenya. Afr. J. Food Agric. Nutr. Dev. 2015, 15, 9949–9963. [Google Scholar]
- Karlovsky, P.; Suman, M.; Berthiller, F.; De Meester, J.; Eisenbrand, G.; Perrin, I.; Oswald, I.P.; Speijers, G.; Chiodini, A.; Recker, T.; et al. Impact of food processing and detoxification treatments on mycotoxin contamination. Mycotoxin Res. 2016, 32, 179–205. [Google Scholar] [CrossRef]
- Diaz, D.E.; Hagler, W.M.; Blackwelder, J.T.; Eve, J.A.; Hopkins, B.A.; Anderson, K.L.; Jones, F.T.; Whitlow, L.W. Aflatoxin Binders II: Reduction of aflatoxin M1 in milk by sequestering agents of cows consuming aflatoxin in feed. Mycopathologia 2004, 157, 233–241. [Google Scholar] [CrossRef]
- Whitlow, L.W. Evaluation of Mycotoxin Binders. In Proceedings of the 4th Mid-Atlantic Nutrition Conference, Timonium, MD, USA, 29–30 March 2006. [Google Scholar]
- Mutua, F.; Lindahl, J.; Grace, D. Availability and use of mycotoxin binders in selected urban and Peri-urban areas of Kenya. Food Secur. 2019, 11, 359–369. [Google Scholar] [CrossRef] [Green Version]
- Kutz, R.E.; Sampson, J.D.; Pompeu, L.B.; Ledoux, D.R.; Spain, J.N.; Vázquez-Añón, M.; Rottinghaus, G.E. Efficacy of Solis, NovasilPlus, and MTB-100 to reduce aflatoxin M1 levels in milk of early to mid lactation dairy cows fed aflatoxin Bl. J. Dairy Sci. 2009, 92, 3959–3963. [Google Scholar] [CrossRef] [Green Version]
- Afriyie-Gyawu, E.; Wang, Z.; Ankrah, N.-A.; Xu, L.; Johnson, N.M.; Tang, L.; Guan, H.; Huebner, H.J.; Jolly, P.E.; Ellis, W.O.; et al. NovaSil clay does not affect the concentrations of vitamins A and E and nutrient minerals in serum samples from Ghanaians at high risk for aflatoxicosis. Food Addit. Contam. Part A 2008, 25, 872–884. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Afriyie-gyawu, E.; Tang, Y.; Johnson, N.M.; Xu, L.; Tang, L.; Huebner, H.J.; Ankrah, N.-A.; Ofori-adjei, D.; Ellis, W.; et al. NovaSil clay intervention in Ghanaians at high risk for aflatoxicosis: II. Reduction in biomarkers of aflatoxin exposure in blood and urine. Food Addit. Contam. Part A 2008, 25, 622–634. [Google Scholar] [CrossRef] [PubMed]
- Marroquín-Cardona, A.; Deng, Y.; Taylor, J.F.; Hallmark, C.T.; Johnson, N.M.; Phillips, T.D. Food Additives and Contaminants In vitro and in vivo characterization of mycotoxin-binding additives used for animal feeds in Mexico. Food Addit. Contam. 2009, 26, 733–743. [Google Scholar] [CrossRef] [PubMed]
- Solcan, C.; Gogu, M.; Floristean, V.; Oprisan, B.; Solcan, G. The hepatoprotective effect of sea buckthorn (Hippophae rhamnoides) berries on induced aflatoxin B1 poisoning in chickens. Poult. Sci. 2013, 92, 966–974. [Google Scholar] [CrossRef]
- Weatherly, M.E.; Pate, R.T.; Rottinghaus, G.E.; Roberti Filho, F.O.; Cardoso, F.C. Physiological responses to a yeast and clay-based adsorbent during an aflatoxin challenge in Holstein cows. Anim. Feed Sci. Technol. 2018, 235, 147–157. [Google Scholar] [CrossRef]
- Applebaum, R.S.; Brackett, R.E.; Wiseman, D.W.; Marth, E.H. Responses of dairy cows to dietary aflatoxin: Feed intake and yield, toxin content, and quality of milk of cows treated with pure and impure aflatoxin. J. Dairy Sci. 1982, 65, 1503–1508. [Google Scholar] [CrossRef]
- Maki, C.R.; Thomas, A.D.; Elmore, S.E.; Romoser, A.A.; Harvey, R.B.; Ramirez-Ramirez, H.A.; Phillips, T.D. Effects of calcium montmorillonite clay and aflatoxin exposure on dry matter intake, milk production, and milk composition. J. Dairy Sci. 2016, 99, 1039–1046. [Google Scholar] [CrossRef] [Green Version]
- Langat, G.; Tetsuhiro, M.; Gonoi, T.; Matiru, V.; Bii, C. Aflatoxin M1 Contamination of Milk and Its Products in Bomet County, Kenya. Adv. Microbiol. Kenya. Adv. Microbiol. 2016, 6, 528–536. [Google Scholar] [CrossRef] [Green Version]
- Maki, C.R.; Monteiro, A.P.A.; Elmore, S.E.; Tao, S.; Bernard, J.K.; Harvey, R.B.; Romoser, A.A.; Phillips, T.D. Calcium montmorillonite clay in dairy feed reduces aflatoxin concentrations in milk without interfering with milk quality, composition or yield. Anim. Feed Sci. Technol. 2016, 214, 130–135. [Google Scholar] [CrossRef]
- Imtiaz, N.; Yunus, A.W. Comparison of Some ELISA Kits for Aflatoxin M 1 Quantification. J. AOAC Int. 2019, 102, 677–679. [Google Scholar] [CrossRef]
Characteristics | Kisumu | Kasarani | Total |
---|---|---|---|
n (%) | n (%) | n (%) | |
n = 30 | n = 30 | n = 60 | |
Female | 8 (26.7%) * | 16 (53.3%) | 24 (40%) |
Male | 22 (73.3%) | 14 (46.7%) | 36 (60%) |
Mean age (years) | 47.7 | 46.0 | 46.9 |
Education level | |||
Primary | 8 (26.7%) | 6 (20%) | 14 (23.3%) |
Secondary | 13 (43.3%) | 12 (40%) | 25 (41.7%) |
College/University | 9 (30%) | 12 (40%) | 21 (35%) |
Training on dairy feeding | 11 (18.3%) | 11 (18.3%) | 22 (36.7%) |
Kasarani | Kisumu | |||
---|---|---|---|---|
Time Point | Control | Intervention | Control | Intervention |
Baseline | 12.6 ± 6.4 | 7.0 ± 3.4 | ||
1 | 9.5 ± 2.5 | 8.0 ± 4.9 | 5.5 ± 2.7 | 4.4 ± 1.9 |
2 | 8.5 ± 3.1 | 9.0 ± 4.5 | 4.9 ± 2.4 | 5.1 ± 2.6 |
3 | 8.1 ± 3.4 | 8.4 ± 4.8 | 5.1 ± 3.5 | 5.9 ± 2.6 |
4 | 9.0 ± 4.9 | 9.2 ± 5.6 | 5.7 ± 2.6 | 5.5 ± 2.8 |
5 | 8.6 ± 4.6 | 8.4 ± 4.1 | 5.7 ± 2.6 | 5.5 ± 2.8 |
6 | 8.7 ± 4.5 | 9.1 ± 4.1 | 5.7 ± 2.6 | 5.5 ± 2.8 |
Intervention n (%) | Control n (%) | ||
---|---|---|---|
Feeding of cows *** | Better | 185 (81.5%) | 43 (37.0%) |
Same | 36 (15.8%) | 63 (54.7%) | |
Worse | 6 (2.6%) | 9 (7.8%) | |
Health of the cows *** | Better | 186 (81.5%) | 47 (40.8%) |
Same | 37 (16.2%) | 62 (53.9%) | |
Worse | 5 (2.1%) | 6 (5.2%) | |
Milk yield *** | Better | 143 (63.5%) | 37 (32.1%) |
Same | 27 (12.0%) | 43 (37.3%) | |
Worse | 55 (24.4%) | 35 (30.4%) |
Control Farms | Intervention Farms | p-Value | |
---|---|---|---|
Mean AFM1 levels at baseline | 79.8 ± 50.2 | 93.2 ± 63.0 | 0.51 |
Mean AFM1 over the duration of the trial | 127.1 ± 119.0 | 54.4 ± 64.4 | <0.001 |
Mean milk production at baseline | 28.0 ± 22.9 | 39.1 ± 45.4 | 0.33 |
Mean milk production over the duration of the trial | 20.8 ± 19.2 | 25.2 ± 29.4 | 0.15 |
Kasarani | Kisumu | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | Intervention | Control | Intervention | |||||||||
Visit Number | N | Average Milk Yield (L) | AFM1 (ppt) | N | Average Milk Yield (L) | AFM1 (ppt) | N | Average Milk Yield (L) | AFM1 (ppt) | N | Average Milk Yield (L) | AFM1 (ppt) |
Baseline | 10 | 35.5 ± 30.8 | 0.87 ± 39.3 | 20 | 60.6 ± 55.6 | 132.2 ± 59.3 | 10 | 21.9 ± 12.6 | 68.6 ± 59.1 | 20 | 19.8 ± 20.4 | 54.1 ± 37.7 |
1 | 8 | 32.6 ± 26.5 | 98.3 ± 52.1 | 20 | 38.4 ± 42.2 | 82.1 ± 54.7 | 18 | 16.9 ± 16.2 | 164.2 ± 165.1 | 11 | 10.5 ± 4.9 | 37.7 ± 44.8 * |
2 | 10 | 26.3 ± 25.7 | 75.1 ± 46.7 | 20 | 39.4 ± 36.4 | 98 ± 73.1 | 11 | 13.1 ± 8.3 | 156.3 ± 141.4 | 19 | 12.8 ± 13.7 | 31.5 ± 48.4 ** |
3 | 10 | 24.6 ± 26.2 | 81.9 ± 51.9 | 20 | 38.5 ± 38.2 | 81.5 ± 66.7 | 10 | 12.5 ± 8.2 | 136.1 ± 78.5 | 20 | 13.2 ± 16.4 | 22.2 ± 22.6 *** |
4 | 9 | 26.6 ± 24.7 | 68.2 ± 81.2 | 20 | 39.4 ± 37.8 | 101.5 ± 83 | 10 | 15.7 ± 10.7 | 117.6 ± 89.7 | 20 | 13.9 ± 16.9 | 18.3 ± 21.0 *** |
5 | 8 | 27.6 ± 25.8 | 97.5 ± 94.7 | 20 | 32.5 ± 30 | 88.1 ± 92.6 | 10 | 15.7 ± 10.7 | 180.1 ± 192.6 | 20 | 13.9 ± 16.9 | 16.3 ± 18.9 ** |
6 | 8 | 28.4 ± 26.2 | 81.7 ± 70.1 | 20 | 32.1 ± 25 | 59.9 ± 56.8 | 10 | 15.7 ± 10.7 | 201.4 ± 115.7 | 20 | 13.9 ± 16.9 | 10.1 ± 12 *** |
Predictor | Linear Model | Logistic Model | |||
---|---|---|---|---|---|
Increase in log (AFM1) | p-Value | Odds Ratio | p-Value | ||
Control farm compared to intervention | 1.09 | < 0.001 | 6.52 | < 0.001 | |
Average yield L/cow | 0.08 | 0.002 | 1.05 | 0.3 | |
Kasarani compared to Kisumu | 0.59 | 0.02 | 3.29 | 0.007 | |
Visit compared to first visit | 2 | −0.21 | 0.3 | 0.6 | 0.3 |
3 | −0.19 | 0.4 | 0.78 | 0.6 | |
4 | −0.36 | 0.1 | 0.52 | 0.2 | |
5 | −57 | 0.01 | 0.47 | 0.1 | |
6 | −0.67 | 0.002 | 0.34 | 0.02 | |
Estimate | Standard deviation | Estimate | Standard deviation | ||
Random effect of farm | 0.66 | 0.17 | 1.32 | 0.55 | |
Residual AR (1) | Rho | 0.038 | 0.072 | ||
variance | 1.29 | 0.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anyango, G.; Kagera, I.; Mutua, F.; Kahenya, P.; Kyallo, F.; Andang’o, P.; Grace, D.; Lindahl, J.F. Effectiveness of Training and Use of Novasil Binder in Mitigating Aflatoxins in Cow Milk Produced in Smallholder Farms in Urban and Periurban Areas of Kenya. Toxins 2021, 13, 281. https://doi.org/10.3390/toxins13040281
Anyango G, Kagera I, Mutua F, Kahenya P, Kyallo F, Andang’o P, Grace D, Lindahl JF. Effectiveness of Training and Use of Novasil Binder in Mitigating Aflatoxins in Cow Milk Produced in Smallholder Farms in Urban and Periurban Areas of Kenya. Toxins. 2021; 13(4):281. https://doi.org/10.3390/toxins13040281
Chicago/Turabian StyleAnyango, Gladys, Irene Kagera, Florence Mutua, Peter Kahenya, Florence Kyallo, Pauline Andang’o, Delia Grace, and Johanna F. Lindahl. 2021. "Effectiveness of Training and Use of Novasil Binder in Mitigating Aflatoxins in Cow Milk Produced in Smallholder Farms in Urban and Periurban Areas of Kenya" Toxins 13, no. 4: 281. https://doi.org/10.3390/toxins13040281
APA StyleAnyango, G., Kagera, I., Mutua, F., Kahenya, P., Kyallo, F., Andang’o, P., Grace, D., & Lindahl, J. F. (2021). Effectiveness of Training and Use of Novasil Binder in Mitigating Aflatoxins in Cow Milk Produced in Smallholder Farms in Urban and Periurban Areas of Kenya. Toxins, 13(4), 281. https://doi.org/10.3390/toxins13040281