Field Experiment Effect on Citrus Spider Mite Panonychus citri of Venom from Jellyfish Nemopilema nomurai: The Potential Use of Jellyfish in Agriculture
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Venom Preparation
3.2. Field for Experiment
3.3. Efficacy Investigation
3.4. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, P.; Maliang, H.; Wang, C.; Ma, J. Bamboo charcoal by-products as sources of new insecticide and acaricide. Ind. Crop Prod. 2015, 77, 575–581. [Google Scholar] [CrossRef]
- Leeuwen, T.; Tirry, L.; Yamamoto, A.; Nauen, R.; Dermauw, W. The economic importance of acaricides in the control of phytophagous mites and an update on recent acaricide mode of action research. Pest. Biochem. Physiol. 2015, 121, 12–21. [Google Scholar] [CrossRef]
- Doker, I.; Kazak, C.; Ay, R. Resistance status and detoxification enzyme activity in ten populations of Panonychus ulmi (Acari: Tetranychidae) from Turkey. Crop Prot. 2021, 141, 105488. [Google Scholar] [CrossRef]
- Fadamiro, H.; Akotsen-Mensah, C.; Xiao, Y.; Anikwe, J. Field evaluation of predacious mites (Acari: Phytoseiidae) for biological control of citrus red mite, Panonychus ulmi (Trombidiformes: Tetranychidae). Fla. Entomol. 2013, 96, 80–91. [Google Scholar] [CrossRef]
- Gao, S.; Hong, H.; Zhang, S. Fauna Sinica, Invertebrata Vol.27, Phylum Cnidaria, Class Hydrozoa Subclass Siphonophorae, Class Scyphomedusae, 1st ed.; Science Press: Beijing, China, 2002; pp. 225–226. [Google Scholar]
- Liu, Y.; Zhao, L.; Liu, Q.; Cao, R.; Wei, Y. Aluminum change regularity in the salted jellyfish processing. J. Food Safety Qual. 2016, 7, 2042–2045. [Google Scholar]
- Yu, H.; Li, R.; Liu, S.; Xing, R.; Chen, X.; Li, P. Amino acid composition and nutritional quality of gonad from jellyfish Rhopilema esculentum. Biomed. Prev. Nutr. 2014, 4, 399–402. [Google Scholar] [CrossRef]
- Zhuang, Y.; Sun, L.; Zhang, Y.; Liu, G. Antihypertensive effect of long-term oral administration of jellyfish (Rhopilema esculentum) collagen peptides on renovascular hypertension. Mar. Drugs 2012, 10, 417–426. [Google Scholar] [CrossRef]
- Zhuang, Y.; Sun, L.; Zhao, X.; Wang, J.; Hou, H.; Li, B. Antioxidant and melanogenesis-inhibitory activities of collagen peptide from jellyfish (Rhopilema esculentum). J. Sci. Food Agric. 2009, 89, 1722–1727. [Google Scholar] [CrossRef]
- Morabito, R.; la Spada, G.; Crupi, R.; Esposito, E.; Marino, A. Crude venom from nematocysts of the jellyfish Pelagia noctiluca as a tool to study cell physiology. Cent. Nerv. Syst. Agents Med. Chem. 2015, 15, 68–73. [Google Scholar] [CrossRef]
- Daly, N.; Seymour, J.; Wilson, D. Exploring the therapeutic potential of jellyfish venom. Future Med. Chem. 2014, 6, 1715–1724. [Google Scholar] [CrossRef]
- Mariotiini, G.; Grice, I. Antimicrobials from Cnidarians. A new perspective for anti-infective therapy? Mar. Drugs 2016, 14, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, R.; Yu, H.; Xue, W.; Yue, Y.; Liu, S.; Xing, R.; Li, P. Jellyfish venomics and venom gland transcriptomics analysis of Stomolophus meleagris to reveal the toxins associated with sting. J. Proteom. 2014, 106, 17–29. [Google Scholar] [CrossRef]
- Li, R.; Yu, H.; Yue, Y.; Liu, S.; Xing, R.; Chen, X.; Li, P. Combined proteomics and transcriptomics identifies sting-related toxins of jellyfish Cyanea nozakii. J. Proteom. 2016, 148, 57–64. [Google Scholar] [CrossRef]
- Liu, G.; Zhou, Y.; Liu, D.; Wang, Q.; Ruan, Z.; He, Q.; Zhang, L. Global transcriptome analysis of the tentacle of the jellyfish Cyanea capillata using deep sequencing and expressed sequence tags: Insight into the toxin- and degenerative disease-related transcripts. PLoS ONE 2015, 10, e0142680. [Google Scholar]
- Mariotiini, G. Hemolytic venoms from marine cnidarian jellyfish-an overview. J. Venom Res. 2014, 5, 22–32. [Google Scholar]
- Yue, Y.; Yu, H.; Li, R.; Xing, R.; Liu, S.; Li, K.; Wang, X.; Chen, X.; Li, P. Functional elucidation of Nemopilema nomurai and Cyanea nozakii nematocyst venoms’ lytic activity using mass spectrometry and zymography. Toxins 2017, 9, 47. [Google Scholar] [CrossRef] [Green Version]
- Bruschetta, G.; Impellizzeri, D.; Morabito, R.; Marino, A.; Ahmad, A.; Spanò, N.; Spada, G.; Cuzzocrea, S.; Esposito, E. Pelagia noctiluca (Scyphozoa) crude venom injection elicits oxidative stress and inflammatory response in rats. Mar. Drugs 2014, 12, 2182–2204. [Google Scholar] [CrossRef] [PubMed]
- Wilcox, C.; Headlam, J.; Doyle, T.; Yanagihara, A. Assessing the efficacy of first-aid measures in physalia sp. envenomation, using solution and blood agarose-based models. Toxins 2017, 9, 149. [Google Scholar] [CrossRef]
- Yanagihara, A.; Wilcox, C.; King, R.; Hurwitz, K.; Castelfranco, A. Experimental assays to assess the efficacy of vinegar and other topical first-aid approaches on cubozoan (Alatina alata) tentacle firing and venom toxicity. Toxins 2016, 8, 19. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Bae, S.; Kim, M.; Pyo, M.; Kim, M.; Yang, S.; Won, C.; Yoon, W.; Han, C.; Kang, C.; et al. Anticancer effect of Nemopilema nomurai jellyfish venom on hepg2 cells and a tumor xenograft animal model. Evid. Based Complement Altern. Med. 2017, 2017, 2752716. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.; Herzig, V.; King, G. The insecticidal potential of venom peptides. Cell. Mol. Life Sci. 2013, 70, 3665–3693. [Google Scholar] [CrossRef]
- Yu, H.; Yue, Y.; Dong, X.; Li, R.; Li, P. The acaricidal activity of venom from the jellyfish nemopilema nomurai against the carmine spider mite Tetranychus cinnabarinus. Toxins 2016, 8, 179. [Google Scholar] [CrossRef] [Green Version]
- Bloom, D.; Burnett, J.; Alderslade, P. Partial purification of box jellyfish (Chironex fleckeri) nematocyst venom isolated at the beachside. Toxicon 1998, 36, 1075–1085. [Google Scholar] [CrossRef]
- Feng, J.; Yu, H.; Li, C.; Xing, R.; Liu, S.; Wang, L.; Cai, S.; Li, P. Isolation and characterization of venom from nematocysts of jellyfish Rhopilema esculentum Kishinouye. Chin. J. Oceanol. Limnol. 2009, 27, 869–874. [Google Scholar] [CrossRef]
- Sztejnberg, A.; Paz, Z.; Boekhout, T.; Gafni, A.; Gerson, U. A new fungus with dual biocontrol capabilities: Reducing the numbers of phytophagous mites and powdery mildew disease damage. Crop Prot. 2004, 23, 1125–1129. [Google Scholar] [CrossRef]
- Rivera-de-Torre, E.; Palacios-Ortega, J.; Gavilanes, J.G.; Martínez-del-Pozo, Á.; García-Linares, S. Pore-forming proteins from cnidarians and arachnids as potential biotechnological tools. Toxins 2019, 11, 370. [Google Scholar] [CrossRef] [Green Version]
- Hardy, M.; Daly, N.; Mobli, M.; Morales, R.; Keng, G.F. Isolation of an orally active insecticidal toxin from the venom of an Australian Tarantula. PLoS ONE 2013, 8, e73136. [Google Scholar] [CrossRef] [PubMed]
- Ikonomopoulou, M.; Smith, J.; Herzig, V.; Pineda, S.; Dziemborowicz, S.; Er, S.; Durek, T.; Gilchrist, J.; Alewood, P.; Nicholson, G.; et al. Isolation of two insecticidal toxins from venom of the Australian theraphosid spider Coremiocnemis tropix. Toxicon 2016, 123, 62–70. [Google Scholar] [CrossRef] [Green Version]
- Orivel, J.; Redeker, V.; Le Caer, J.; Krier, F.; Revol-Junelles, A.; Longeon, A.; Chaffotte, A.; Dejean, A.; Rossier, J. Ponericins, new antibacterial and insecticidal peptides from the venom of the ant Pachycondyla goeldii. J. Biol. Chem. 2001, 276, 17823–17829. [Google Scholar] [CrossRef] [Green Version]
- Gao, B.; Peng, C.; Lin, B.; Chen, Q.; Zhang, J.; Shi, Q. Screening and validation of highly-efficient insecticidal conotoxins from a transcriptome-based dataset of chinese tubular cone snail. Toxins 2017, 9, 214. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Li, R.; Dong, X.; Xing, R.; Liu, S.; Li, P. Efficacy of venom from tentacle of jellyfish Stomolophus meleagris (Nemopilema nomurai) against the cotton bollworm Helicoverpa armigera. BioMed Res. Int. 2014, 2014, 315853. [Google Scholar] [CrossRef] [Green Version]
- Lazcano-Pérez, F.; Zavala-Moreno, A.; Rufino-González, Y.; Ponce-Macotela, M.; García-Arredondo, A.; Cuevas-Cruz, M.; Gomez-Manzo, S.; Marcial-Quino, J.; Arreguin-Lozano, B.; Arreguin-Espinosa, R. Hemolytic, anticancer and antigiardial activity of Palythoa caribaeorum venom. J. Venom. Anim. Toxins Trop. Dis. 2018, 24, 12. [Google Scholar] [CrossRef] [PubMed]
- Addad, S.; Exposito, J.; Faye, C.; Ricard-Blum, S.; Lethias, C. Isolation, Characterization and Biological Evaluation of Jellyfish Collagen for Use in Biomedical Applications. Mar. Drugs 2011, 9, 967–983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, F.; Li, C.; Sun, S.; Wei, H.; Wang, Y. Progress on studying jellyfish bloom, and the monitoring and control. Oceanol. Limnol. Sin. 2017, 48, 1187–1195. [Google Scholar]
- Arslan, Y.; Arslan, T.; Derkus, B.; Emregul, E.; Emregul, K. Fabrication of human hair keratin/jellyfish collagen/eggshell-derived hydroxyapatite osteoinductive biocomposite scaffolds for bone tissue engineering: From waste to regenerative medicine products. Colloid Surf. B Biointerfaces 2017, 154, 160–170. [Google Scholar] [CrossRef]
- Derkus, B.; Arslan, Y.; Bayrac, A.; Kantarcioglu, I.; Emregul, K.; Emregul, E. Development of a novel aptasensor using jellyfish collagen as matrix and thrombin detection in blood samples obtained from patients with various neurodisease. Sens. Actuator B Chem. 2016, 228, 725–736. [Google Scholar] [CrossRef]
- Ovchinnikova, T.; Balandin, S.; Aleshina, G.; Tagaev, A.; Leonova, Y.; Krasnodembsky, E.; Men’shenin, A.; Kokryakov, V. Aurelin, a novel antimicrobial peptide from jellyfish Aurelia aurita with structural features of defensins and channel-blocking toxins. Biochem. Biophys. Res. Commun. 2006, 348, 514–523. [Google Scholar] [CrossRef] [PubMed]
- Patwa, A.; Thiery, A.; Lombard, F.; Lilley, M.; Boisset, C.; Bramard, J.; Bottero, J.; Barthelemy, P. Accumulation of nanoparticles in “jellyfish” mucus: A bio-inspired route to decontamination of nano-waste. Sci. Rep. 2015, 5, 11387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradford, M. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
Sample | 1 Day after Treatment | 3 Days after Treatment | 7 Days after Treatment | 14 Days after Treatment | ||||
---|---|---|---|---|---|---|---|---|
Mites Reduced Rate (%) | Corrected Field Efficacy (%) | Mites Reduced Rate (%) | Corrected Field Efficacy (%) | Mites Reduced Rate (%) | Corrected Field Efficacy (%) | Mites Reduced Rate (%) | Corrected Field Efficacy (%) | |
NnFVPBS-1 | 92.95 ± 3.32 a | 92.51 ± 3.32 a | 93.51 ± 3.74 a | 91.76 ± 4.75 a | 95.51 ± 5.08 a | 95.21 ± 5.43 a | 83.83 ± 2.49 a | 85.89 ± 2.17 a |
PBS-1 | 54.82 ± 8.01 c | 54.82 ± 8.01 c | 61.42 ± 4.57 c | 50.98 ± 5.81 c | 65.36 ± 3.38 a | 62.96 ± 3.62 a | 51.19 ± 4.74 b | 57.28 ± 4.11 b |
NnFVPBS-2 | 74.16 ± 7.32 abc | 74.16 ± 7.32 abc | 80.97 ± 9.32 ab | 75.82 ± 11.85 ab | 65.06 ± 11.71 a | 62.64 ± 12.53 a | 46.76 ± 7.53 b | 53.56 ± 6.57 b |
PBS-2 | 64.51 ± 18.36 bc | 64.51 ± 18.35 bc | 72.03 ± 9.09 bc | 64.46 ± 11.55 bc | 60.95 ± 40.00 a | 58.24 ± 42.78 a | 20.89 ± 15.81 b | 30.98 ± 13.79 b |
NnFVTris-1 | 74.45 ± 2.63 abc | 74.45 ± 2.63 abc | 79.38 ± 9.04 ab | 73.79 ± 11.49 ab | 70.28 ± 25.14 a | 68.22 ± 26.88 a | 46.04 ± 7.86 b | 52.93 ± 6.07 b |
Tris-1 | 63.99 ± 11.26 bc | 63.98 ± 11.26 bc | 76.00 ± 10.99 bc | 69.51 ± 13.96 bc | 64.19 ± 4.98 a | 61.71 ± 5.33 a | 45.59 ± 9.98 b | 52.53 ± 6.86 b |
NnFVTris-2 | 79.64 ± 14.67 ab | 79.64 ± 14.67 ab | 70.01 ± 10.06 bc | 61.89 ± 12.78 bc | 69.16 ± 9.56 a | 67.03 ± 10.22 a | 44.83 ± 47.18 b | 51.87 ± 8.71 b |
Tris-2 | 68.55 ± 19.70 bc | 68.55 ± 19.70 bc | 61.50 ± 7.48 c | 51.07 ± 9.50 c | 63.73 ± 5.88 a | 61.22 ± 6.28 a | 36.26 ± 29.77 b | 44.39 ± 41.16 b |
Samples | Buffer |
---|---|
NnFVPBS-1 | PBS-1 (10 mM, pH 6) |
NnFVPBS-2 | PBS-2 (10 mM, pH 6, 1 mM GSH + 5mM NaCl) |
NnFVTris-1 | Tris-1 (50 mM, pH 7.8) |
NnFVTris-2 | Tris-2 (50 mM, pH 7.8, 1mM GSH + 5mM NaCl) |
Date (M/D) | Average Temperature (℃) | Relative Humidity (%) | Amount of Precipitatiom (mm) |
---|---|---|---|
6/18 | 28.6 | 72 | - |
6/19 | 29.2 | 96 | 6 |
6/20 | 29.4 | 74 | - |
6/21 | 28.9 | 100 | 10 |
6/22 | 30.8 | 72 | - |
6/23 | 31.4 | 69 | - |
6/24 | 30.4 | 56 | - |
6/25 | 29.4 | 69 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Li, R.; Wang, X.; Yue, Y.; Liu, S.; Xing, R.; Li, P. Field Experiment Effect on Citrus Spider Mite Panonychus citri of Venom from Jellyfish Nemopilema nomurai: The Potential Use of Jellyfish in Agriculture. Toxins 2021, 13, 411. https://doi.org/10.3390/toxins13060411
Yu H, Li R, Wang X, Yue Y, Liu S, Xing R, Li P. Field Experiment Effect on Citrus Spider Mite Panonychus citri of Venom from Jellyfish Nemopilema nomurai: The Potential Use of Jellyfish in Agriculture. Toxins. 2021; 13(6):411. https://doi.org/10.3390/toxins13060411
Chicago/Turabian StyleYu, Huahua, Rongfeng Li, Xueqin Wang, Yang Yue, Song Liu, Ronge Xing, and Pengcheng Li. 2021. "Field Experiment Effect on Citrus Spider Mite Panonychus citri of Venom from Jellyfish Nemopilema nomurai: The Potential Use of Jellyfish in Agriculture" Toxins 13, no. 6: 411. https://doi.org/10.3390/toxins13060411
APA StyleYu, H., Li, R., Wang, X., Yue, Y., Liu, S., Xing, R., & Li, P. (2021). Field Experiment Effect on Citrus Spider Mite Panonychus citri of Venom from Jellyfish Nemopilema nomurai: The Potential Use of Jellyfish in Agriculture. Toxins, 13(6), 411. https://doi.org/10.3390/toxins13060411