Reduction of the Adverse Impacts of Fungal Mycotoxin on Proximate Composition of Feed and Growth Performance in Broilers by Combined Adsorbents
Abstract
:1. Introduction
2. Results
2.1. Mycotoxin Concentrations in the Feed
2.2. Proximate Composition of the Feed Samples
2.3. Feed Consumption and Growth Rates
2.4. Nutrient Digestibility
3. Discussion
4. Materials and Methods
4.1. Study Site
4.2. Feed Contamination
4.3. Experimental Design
4.4. Mycotoxins Extraction
4.5. Proximate Analysis of Samples
4.6. Feed Intake, Growth Rate and Nutrient Digestibility
4.7. Data Analyses
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Da Silva, J.L.; Aparecido, C.C.; Hansen, D.; Pereira, T.A.M.; D’arc-Felicio, J.; Gonçalez, E. Identification of toxigenic Aspergillus species from diet dairy goat using a polyphasic approach. Ciênc. Rural 2015, 45, 1466–1471. [Google Scholar] [CrossRef]
- Mgbeahuruike, A.C.; Ejioffor, T.E.; Obasi, C.C.; Shoyinka, V.O.; Karlsson, M.; Nordkvist, E. Detoxification of aflatoxin-contaminated poultry feeds by 3 adsorbents, bentonite, activated charcoal, and fuller’s earth. J. Appl. Poult. Res. 2018, 27, 461–471. [Google Scholar] [CrossRef]
- Saeger, S. The status of Fusarium mycotoxins in Sub-Saharan Africa: A review of emerging trends and post-harvest mitigation strategies towards food control. Toxins 2017, 9, 19. [Google Scholar] [CrossRef] [Green Version]
- Bertero, A.; Moretti, A.; Spicer, L.J.; Caloni, F. Fusarium Molds and Mycotoxins: Potential Species-Specific Effects. Toxins 2018, 10, 244. [Google Scholar] [CrossRef] [Green Version]
- Prabakaran, J.J.; Dhanapal, S. Analysis of proximate composition and aflatoxins of some poultry feeds. Asian J. Biotechnol. 2009, 1, 104–110. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Sun, L.; Zhang, N.; Zhang, J.; Guo, J.; Li, C.; Rajput, S.A.; Qi, D. Effects of nutrients in substrates of different grains on aflatoxin B1 production by Aspergillus flavus. BioMed Res. Int. 2016, 2016, 7232858. [Google Scholar] [PubMed] [Green Version]
- Herzallah, S.M. Aflatoxin B1 residues in eggs and flesh of laying hens fed aflatoxin B1 contaminated diet. Am. J. Agric. Biol. Sci. 2013, 8, 156–161. [Google Scholar] [CrossRef] [Green Version]
- Liew, W.P.P.; Mohd-Redzwan, S. Mycotoxin: Its impact on gut health and microbiota. Front. Cell. Infect. Microbiol. 2018, 8, 60. [Google Scholar] [CrossRef] [Green Version]
- Grenier, B.; Applegate, T.J. Modulation of intestinal functions upon mycotoxins ingestion: Meta-analysis of published experiments in animals. Toxins 2013, 5, 396–430. [Google Scholar] [CrossRef] [Green Version]
- Alassane-Kpembi, I.; Kolf-Clauw, M.; Gauthier, T.; Abrami, R.; Abiola, F.A.; Oswald, I.P.; Puel, O. New insights into mycotoxin mixtures: The toxicity of low doses of Type B trichothecenes on intestinal epithelial cells is synergistic. Toxicol. Appl. Pharmacol. 2013, 272, 191–198. [Google Scholar] [CrossRef]
- Ouethrani, M.V.; De-Wiele, T.; Verbeke, E.; Bruneau, A.; Carvalho, M.; Rabot, S. Metabolic fate of ochratoxin A as a coffee contaminant in a dynamic simulator of the human colon. Food Chem. 2013, 141, 3291–3300. [Google Scholar] [CrossRef]
- Maresca, M. From the gut to the brain: Journey and pathophysiological effects of the food associated trichothecene mycotoxin deoxynivalenol. Toxins 2013, 5, 784–820. [Google Scholar] [CrossRef]
- Wache, Y.J.; Valat, C.; Postollec, G.; Bougeard, S.; Burel, C.; Oswald, I.P. Impact of deoxynivalenol on the intestinal microflora of pigs. Int. J. Mol. Sci. 2009, 10, 1–17. [Google Scholar] [CrossRef]
- Kolf-Clauw, M.; Sassahara, M.; Lucioli, J.; Rubira-Gerez, J.; Alassane-Kpembi, I.; Lyazhri, F. The emerging mycotoxin, enniatin B1, down modulates the gastrointestinal toxicity of T-2 toxin in vitro on intestinal epithelial cells and ex vivo on intestinal explants. Arch. Toxicol. 2013, 87, 2233–2241. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, A.; Braber, S.; Akbari, P.; Garssen, J.; Fink-Gremmels, J. Deoxynivalenol impairs weight gain and affects markers of gut health after low-dose, short-term exposure of growing pigs. Toxins 2015, 7, 2071–2095. [Google Scholar] [CrossRef] [PubMed]
- Osselaere, A.; Santos, R.; Hautekiet, V.; De Backer, P.; Chiers, K.; Ducatelle, R. Deoxynivalenol impairs hepatic and intestinal gene expression of selected oxidative stress, tight junction and inflammation proteins in broiler chickens, but addition of an adsorbing agent shifts the effects to the distal parts of the small intestine. PLoS ONE 2013, 8, e69014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinton, P.; Oswald, I.P. Effect of deoxynivalenol and other Type B trichotheceneson the intestine: A review. Toxins 2014, 6, 1615–1643. [Google Scholar] [CrossRef]
- Lessard, M.; Savard, C.; Deschene, K.; Lauzon, K.; Pinilla, V.A.; Gagnon, C.A. Impact of deoxynivalenol (DON) contaminated feed on intestinal integrity and immune response in swine. Food Chem. Toxicol. 2015, 80, 7–16. [Google Scholar] [CrossRef]
- Kadota, T.; Furusawa, H.; Hirano, S.; Tajima, O.; Kamata, Y.; Sugita-Konishi, Y. Comparative study of deoxynivalenol, 3-acetyldeoxynivalenol, and 15acetyldeoxynivalenol on intestinal transport and IL-8 secretion in the human cell line Caco-2. Toxicol. In Vitro 2013, 27, 1888–1895. [Google Scholar] [CrossRef]
- Marin, D.E.; Motiu, M.; Taranu, I. Food contaminant zearalenone and its metabolites affect cytokine synthesis and intestinal epithelial integrity of porcine cells. Toxins 2015, 7, 1979–1988. [Google Scholar] [CrossRef]
- Marin, D.E.; Pistol, G.C.; Gras, M.A.; Palade, M.L.; Taranu, I. Comparativeeffect of ochratoxin A on inflammation and oxidative stress parameters in gut and kidney of piglets. Regul. Toxicol. Pharmacol. 2017, 89, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Abassi, H.; Ayed-Boussema, I.; Shirley, S.; Abid, S.; Bacha, H.; Micheau, O. The mycotoxin zearalenone enhances cell proliferation, colony formation and promotes cell migration in the human colon carcinoma cell line HCT116. Toxicol. Lett. 2016, 254, 1–7. [Google Scholar] [CrossRef]
- Minervini, F.; Garbetta, A.; D’Antuono, I.; Cardinali, A.; Martino, N.A.; Debellis, L. Toxic mechanisms induced by fumonisin B1 mycotoxin on human intestinal cell line. Arch. Environ. Contam. Toxicol. 2014, 67, 115–123. [Google Scholar] [CrossRef]
- Brazil, J.C.; Louis, N.A.; Parkos, C.A. The role of polymorphonuclear leukocyte trafficking in the perpetuation of inflammation during inflammatory bowel disease. Inflamm. Bowel. Dis. 2013, 19, 1556–1565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johansson, M.E.; Hansson, G.C. Immunological aspects of intestinal mucus and mucins. Nat. Rev. Immunol. 2016, 16, 639–649. [Google Scholar] [CrossRef] [PubMed]
- Ejiofor, T.; Mgbeahuruike, A.C.; Ojiako, C.; Ushie, A.M.; Nwoko, E.I.; Onoja, I.R.; Dada, T.; Mwanza, M.; Karlsson, M. Saccharomyces cerevisiae, bentonite, and kaolin as adsorbents for reducing the adverse impacts of mycotoxin contaminated feed on broiler histopathology and hemato-biochemical changes. Vet. World 2021, 14, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Mgbeahuruike, A.C. Aflatoxin contamination of poultry feeds in Nigerian feed mills and the effect on the performance of Abor Acre broilers. Anim. Res. Int. 2016, 13, 2436–2445. [Google Scholar]
- Awad, W.A.; Ghareeb, K.; Zentek, J. Mechanisms underlying the inhibitory effect of the feed contaminant deoxynivalenol on glucose absorption in broiler chickens. Vet. J. 2014, 202, 188–190. [Google Scholar] [CrossRef]
- Adebo, O.A.; Njobeh, P.B.; Gbashi, S.; Nwinyi, O.C.; Mavumengwana, V. Review on microbial degradation of aflatoxins. Crit. Rev. Food Sci. Nutr. 2017, 57, 3208–3217. [Google Scholar] [CrossRef]
- El-Shall, N.A.; Awad, A.M.; Abd El-Hack, M.E.; Naiel, M.E.A.; Othman, S.I.; Allam, A.A.; Sedeik, M.E. The simultaneous administration of a probiotic or prebiotic with live Salmonella vaccine improves growth performance and reduces fecal shedding of the bacterium in Salmonella-challenged broilers. Animals 2019, 10, 70. [Google Scholar] [CrossRef] [Green Version]
- Chlebicz, A.; Śliżewska, K. In vitro detoxification of aflatoxin B1, deoxynivalenol, fumonisins, T-2 toxin and zearalenone by probiotic bacteria from genus Lactobacillus and Saccharomyces cerevisiae yeast. Probiotics Antimicrob. Proteins 2020, 12, 289–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nadziakiewicza, M.; Kehoe, S.; Micek, P. Physico-chemical properties of clay minerals and their use as a health-promoting feed additive. Animals 2019, 9, 714. [Google Scholar] [CrossRef] [Green Version]
- Saiful, I.; Moinul, H.; Shakhawat, H. Effect of corn moisture on the quality of poultry feed. J. Poult. Sci. Technol. 2015, 3, 24–31. [Google Scholar]
- Velmurugu, R. Poultry Feed Availability and Nutrition in Developing Countries. Food and Agriculture Organization of the United Nations Poultry Development Review. 2012. Available online: http://www.fao.org/3/al703e/al703e.pdf (accessed on 22 February 2021).
- Elaroussi, M.A.; Mohamed, F.R.; El Barkouky, E.M.; Atta, A.M.; Abdou, A.M.; Hatab, M.H. Experimental ochratoxicosis in broiler chickens. Avian Pathol. 2006, 35, 263–269. [Google Scholar] [CrossRef]
- Sakhare, P.S.; Harne, S.D.; Kalorey, D.; Warke, S.R.; Bhandarkar, A.G.; Kurkure, N.V. Effect of Toxiroak® polyherbal feed supplement during induced aflatoxicosis, ochratoxicosis and combined mycotoxicoses in broilers. Vet. Arch. 2007, 77, 129–146. [Google Scholar]
- Politis, I.; Fegeros, K.; Nitsch, S.; Schatzmayr, G.; Kantas, D. Use of Trichosporon mycotoxinivorans to suppress the effects of ochratoxicosis on the immune system of broiler chicks. Br. Poult. Sci. 2005, 46, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Andretta, I.; Kipper, M.; Lehnen, C.R.; Hauschild, L.; Vale, M.M.; Lovatto, P.A. Meta-analytical study of productive and nutritional interactions of mycotoxins in broilers. Poult. Sci. 2011, 90, 1934–1940. [Google Scholar] [CrossRef]
- Wang, A.; Hogan, N.S. Performance effects of feed-borne Fusarium mycotoxins on broiler chickens: Influences of timing and duration of exposure. Anim. Nutr. 2019, 5, 32–40. [Google Scholar] [CrossRef]
- Merrill, A.H.; Van Echten, G.; Wang, E.; Sandhoff, K. Fumonisin B1inhibits sphingosine (sphinganine) N-acetyltransferase and de novosphingolipid biosynthesis in cultured neurons in situ. J. Biol. Chem. 1993, 268, 27299–27306. [Google Scholar] [CrossRef]
- Mahfoud, R.; Maresca, M.; Garmy, N.; Fantini, J. The mycotoxin patulin alters the barrier function of the intestinal epithelium: Mechanism of action of the toxin and protective effects of glutathione. Toxicol. Appl. Pharmacol. 2002, 181, 209–218. [Google Scholar] [CrossRef]
- Han, X.Y.; Huang, Q.C.; Li, W.F.; Jiang, J.F.; Xu, Z.R. Changes in growth performance, digestive enzyme activities and nutrient digestibility of cherry valley ducks in response to aflatoxin B1 levels. Livest. Sci. 2008, 119, 216–220. [Google Scholar] [CrossRef]
- Kermanshahi, H.; Akbari, M.R.M.; Maleki, M.; Behgar, M. Effect of prolonged low level inclusion of aflatoxin B1 into diet on performance, nutrient digestibility, histopathology and blood enzymes of broiler chickens. J. Anim. Vet. Adv. 2007, 6, 686–692. [Google Scholar]
- Dänicke, S.; Gädeken, D.; Ueberschär, K.H.; Meyer, U.; Scholz, H. Effects of Fusarium toxin contaminated wheat and of a detoxifying agent on performance of growing bulls, on nutrient digestibility and on the carry-over of zearalenone. Arch. Anim. Nutr. 2002, 56, 245–261. [Google Scholar] [CrossRef] [PubMed]
- Dänicke, S.; Matthes, S.; Halle, I.; Ueberschar, K.H.; Doll, S.; Valenta, H. Effects of graded levels of Fusarium toxin-contaminated wheat and of a detoxifying agent in broiler diets on performance, nutrient digestibility and blood chemical parameters. Br. J. Poult. Sci. 2003, 44, 113–126. [Google Scholar] [CrossRef] [PubMed]
- Dänicke, S.; Valenta, H.; Matthes, S. On the interactions between fusarium toxin-contaminated wheat and nonstarch polysaccharide hydrolyzing enzymes in diets of broilers on performance, intestinal viscosity, and carryover of deoxynivalenol. Poult. Sci. 2007, 85, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Binder, E.M. Managing the risk of mycotoxins in modern feed production. Anim. Feed Sci. Technol. 2007, 133, 149–166. [Google Scholar] [CrossRef]
- Avantaggiato, G.; Havenaar, R.; Visconti, A. Assessment of the multi mycotoxin-binding efficacy of a carbon/aluminosilicate-based product in an in vitro gastrointestinal model. J. Agric. Food Chem. 2007, 55, 4810–4819. [Google Scholar] [CrossRef]
- Phillips, T.D.; Afriyie-Gyawu, E.; Williams, J.; Huebner, H.; Ankrah, N.A.; Ofori-Adjei, D.; Jolly, P.; Johnson, N.; Taylor, J.; Marroquin-Cardona, A.; et al. Reducing human exposure to aflatoxin through the use of clay: A review. Food Addit. Contam. 2008, 25, 134–145. [Google Scholar] [CrossRef]
- Jutamas, P.; Pareeya, U.; Wiratchanee, M.; Sasiprapa, C.; Natthasit, T. In vitro studies on gastrointestinal monogastric and avian models to evaluate the binding efficacy of mycotoxin adsorbents by liquid chromatography-tandem mass spectrometry. J. Adv. Vet. Anim. Res. 2019, 6, 125–132. [Google Scholar] [CrossRef]
- Angius, F.; Spolitu, S.; Uda, S.; Deligia, S.; Frau, A.; Banni, S. High-density lipoprotein contribute to G0-G1/S transition in Swiss NIH/3T3 fibroblasts. Sci. Rep. 2015, 5, 17812. [Google Scholar] [CrossRef] [Green Version]
- Awad, W.A.; Ruhnau, D.; Hess, C.; Doupovec, B.; Schatzmayr, D.; Hess, M. Feeding of deoxynivalenol increases the intestinal paracellular permeability of broiler chickens. Arch. Toxicol. 2019, 93, 2057–2064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Federation of Animal Science Societies (FASS). Guidelines for Care and Use of Animals in Research, 3rd ed.; FASS: Champaign, IL, USA, 2010; p. 235. [Google Scholar]
- Kilkenny, C.; Browne, W.J.; Cuthill, I.C.; Emerson, M.; Altman, D.G. Improving bioscience researchreporting: The ARRIVE guidelines for reporting animal research. PLoS Biol. 2010, 8, e1000412. [Google Scholar] [CrossRef] [PubMed]
- Sundaram, T.K.; Natrajan, A.; Chandasekeran, D. Feed Analytical Techniques: Centre of Advance Studies in Poultry Science and Animal Feed Analytical and Quality Control Laboratory; Veterinary College and Research Institute: Namakkal, India, 2001; pp. 9–65. [Google Scholar]
- Association of American Feed Control Officials. Official Publication, 20th ed.; Association of American Feed Control Officials: Champaign, IL, USA, 2017; p. 325. [Google Scholar]
- Yang, Z.B.; Wan, X.L.; Yang, W.R.; Jiang, S.Z.; Zhang, G.G.; Johnston, S.L.; Chi, F. Effects of naturally mycotoxin-contaminated corn on nutrient and energy utilization of ducks fed diets with or without Calibrin-A. Poult. Sci. 2014, 93, 2199–2209. [Google Scholar] [CrossRef] [PubMed]
Feed Treatments | Mycotoxins (µg/kg) | ||||
---|---|---|---|---|---|
CPA | AFB1 | AFB2 | DON | OTB | |
Fresh Feed | 0.43 | 5.54 | 5.89 | 90.0 | 0.26 |
Contaminated + untreated | 4.20 | 34.0 | 6.91 | 387.0 | 0.70 |
Contaminated + S. cerevisiae + Kaolin | 0.59 | 15.4 | 2.57 | 286.0 | 0.41 |
Contaminated + S. cerevisiae + Bentonite | 0.11 | 21.4 | 5.88 | 324.0 | 0.70 |
Contaminated + Bentonite + Kaolin | 0.51 | 11.1 | ND | 92.0 | 0.47 |
Group | Moisture | Crude Ash | Crude Fat | Crude Fiber | Crude Protein | Carbohydrates |
---|---|---|---|---|---|---|
A | 8.09 d | 5.69 b | 5.78 a | 6.48 c | 11.7 a | 62.3 a |
B | 36.0 c | 5.76 b | 0.17 d | 6.01 c | 12.1 a | 40.1 c |
C | 43.0 b | 10.6 a | 3.31 b | 8.51 b | 9.55 b | 24.6 e |
D | 45.5 a | 4.26 c | 2.52 bc | 10.4 a | 8.52 c | 28.6 d |
E | 36.1 c | 4.39 c | 1.69 c | 6.56 c | 5.92 d | 46.3 b |
Group | Protein | Fat | CHO | Ash | Dry Matter |
---|---|---|---|---|---|
A | 80.7 a | 69.1 a | 86.3 a | 36.3 c | 66.4 a |
B | 49.0 d | 11.5 e | 69.9 b | 43.2 b | 46.9 c |
C | 43.2 e | 65.2 b | 41.3 d | 73.8 a | 48.7 c |
D | 53.8 c | 30.0 d | 60.7 c | 10.2 e | 40.7 d |
E | 59.2 b | 57.6 c | 84.0 a | 13.8 d | 55.4 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mgbeahuruike, A.C.; Ejiofor, T.E.; Ashang, M.U.; Ojiako, C.; Obasi, C.C.; Ezema, C.; Okoroafor, O.; Mwanza, M.; Karlsson, M.; Chah, K.F. Reduction of the Adverse Impacts of Fungal Mycotoxin on Proximate Composition of Feed and Growth Performance in Broilers by Combined Adsorbents. Toxins 2021, 13, 430. https://doi.org/10.3390/toxins13060430
Mgbeahuruike AC, Ejiofor TE, Ashang MU, Ojiako C, Obasi CC, Ezema C, Okoroafor O, Mwanza M, Karlsson M, Chah KF. Reduction of the Adverse Impacts of Fungal Mycotoxin on Proximate Composition of Feed and Growth Performance in Broilers by Combined Adsorbents. Toxins. 2021; 13(6):430. https://doi.org/10.3390/toxins13060430
Chicago/Turabian StyleMgbeahuruike, Anthony Christian, Toochukwu Eleazar Ejiofor, Michael Ushie Ashang, Chiamaka Ojiako, Christian C. Obasi, Chuka Ezema, Obianuju Okoroafor, Mulunda Mwanza, Magnus Karlsson, and Kennedy F. Chah. 2021. "Reduction of the Adverse Impacts of Fungal Mycotoxin on Proximate Composition of Feed and Growth Performance in Broilers by Combined Adsorbents" Toxins 13, no. 6: 430. https://doi.org/10.3390/toxins13060430
APA StyleMgbeahuruike, A. C., Ejiofor, T. E., Ashang, M. U., Ojiako, C., Obasi, C. C., Ezema, C., Okoroafor, O., Mwanza, M., Karlsson, M., & Chah, K. F. (2021). Reduction of the Adverse Impacts of Fungal Mycotoxin on Proximate Composition of Feed and Growth Performance in Broilers by Combined Adsorbents. Toxins, 13(6), 430. https://doi.org/10.3390/toxins13060430