Significant Long-Lasting Improvement after Switch to Incobotulinum Toxin in Cervical Dystonia Patients with Secondary Treatment Failure
Abstract
:1. Introduction
2. Results
2.1. The Staircase-like Improvement of CD with Repetitive Injections Every Three Months
2.2. Milestones of Treatment in the Entire Switch Group
2.3. Treatment of the XEO-Mono Group
2.4. Comparison of abo- and onaBoNT/A Pretreated Switchers with the XEO-Mono Group
2.5. Comparison of the NAB-pos and NAB-neg Switchers with the XEO-Mono Group
2.6. Temporal Development of the Outcome of the AK-pos and the AK-neg Groups before and after the Switch to incoBoNT/A
3. Discussion
3.1. Reasons for the Occurrence of STF during BoNT/A Therapy
3.2. Significant Long-Lasting Improvement after Switching to incoBoNT/A
3.3. Comparison of Switch to incoBoNT/A Treatment and DBS in Patients with PSTF
3.4. Comparison of incoBoNT/A and rimaBoNT/B Injection Therapy in Patients with PSTF
3.5. No significant Difference between Pretreatment with abo- or onaBoNT/A
3.6. Worse Outcome in Switchers Compared to the XEO-Mono Group
3.7. Tendency toward a Better Outcome in NAB-Negative Compared to NAB-Positive Patients
4. Conclusions
Limitations of the Present Study and Recommendation for Further Studies in the Future
5. Methods
5.1. Patients and Treatment-Related Data
5.2. Determination of Neutralizing Antibodies
5.3. Outcome Measures
5.4. Statistics
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Financial Disclosure
References
- Simpson, D.M.; Hallett, M.; Ashman, E.J.; Comella, C.L.; Green, M.W.; Gronseth, G.S.; Armstrong, M.J.; Potrebic, S.; Jankovic, J.; Yablon, S.A.; et al. Practice guideline update summary: Botulinum neurotoxin for the treatment of blepharospasm, cervical dystonia, adult spasticity, and headache: Report of the guideline development subcommittee of the American Academy of Neurology. Neurology 2016, 86, 1818–1826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kooyk, Y. C-type lectins on dendritic cells: Key modulators for the induction of immune responses. Biochem. Soc. Trans. 2008, 36, 1478–1481. [Google Scholar]
- Atassi, M.Z.; Dolimbek, B.Z.; Jankovic, J.; Steward, L.E.; Aoki, K.R. Regions of botulinum neurotoxin A light chain recognized by human anti-toxin antibodies from cervical dystonia patients immunoresistant to toxin treatment. The antigenic structure of the active toxin recognized by human antibodies. Immunobiology 2011, 216, 782–792. [Google Scholar] [CrossRef]
- Hefter, H.; Rosenthal, D.; Bigalke, H.; Moll, M. Clinical relevance of neutralizing antibodies in botulinum toxin long-term treated still-responding patients with cervical dystonia. Ther. Adv. Neurol. Disord. 2019, 12, 1756286419892078. [Google Scholar] [CrossRef]
- Dressler, D. Clinical presentation and management of antibody-induced failure of botulinum toxin therapy. Mov. Disord. 2004, 19, S92–S100. [Google Scholar] [CrossRef]
- Walter, U.; Mühlenhoff, C.; Benecke, R.; Dressler, D.; Mix, E.; Alt, J.; Wittstock, M.; Dudesek, A.; Storch, A.; Kamm, C. Frequency and risk factors of antibody-induced secondary failure of botulinum neurotoxin therapy. Neurology 2020, 94, e2109–e2120. [Google Scholar] [CrossRef] [PubMed]
- Bellows, S.; Jankovic, J. Immunogenicity associated with botulinum toxin treatment. Toxins 2019, 11, 491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hefter, H.; Rosenthal, D.; Moll, M. High botulinum toxin-neutralizing antibody prevalence under long-term cervical dystonia treatment. Mov. Disord. Clin. Pr. 2016, 3, 500–506. [Google Scholar] [CrossRef] [Green Version]
- Albrecht, P.; Jansen, A.; Lee, J.I.; Moll, M.; Ringelstein, M.; Rosenthal, D.; Bigalke, H.; Aktas, O.; Hartung, H.-P.; Hefter, H. High prevalence of neutralizing antibodies after long-term botulinum neurotoxin therapy. Neurology 2019, 92, e48–e54. [Google Scholar] [CrossRef]
- Kranz, G.S.; Sycha, T.; Voller, B.; Schnider, P.; Auff, E. Neutralizing antibodies in dystonic patients who still respond well to botulinum toxin type A. Neurology 2008, 70, 133–136. [Google Scholar] [CrossRef]
- Hefter, H.; Spiess, C.; Rosenthal, D. Very early reduction in efficacy of botulinum toxin therapy for cervical dystonia in patients with subsequent secondary treatment failure: A retrospective analysis. J. Neural Transm. 2014, 121, 513–519. [Google Scholar] [CrossRef] [Green Version]
- Dressler, D.; Bigalke, H.; Benecke, R. Botulinum toxin type B in antibody-induced botulinum toxin type A therapy failure. J. Neurol. 2003, 250, 967–969. [Google Scholar] [CrossRef]
- Volkmann, J.; Mueller, J.; Deuschl, G.; Kühn, A.A.; Krauss, J.K.; Poewe, W.; Timmermann, L.; Falk, D.; Kupsch, A.; Kivi, A.; et al. Pallidal neurostimulation in patients with medication-refractory cervical dystonia: A randomised, sham-controlled trial. Lancet Neurol. 2014, 13, 875–884. [Google Scholar] [CrossRef]
- Benecke, R.; Jost, W.H.; Kanovsky, P.; Růžička, E.; Comes, G.; Grafe, S. A new botulinum toxin type A free of complexing proteins for treatment of cervical dystonia. Neurology 2005, 64, 1949–1951. [Google Scholar] [CrossRef] [PubMed]
- Frevert, J. Content of botulinum neurotoxin in Botox®/Vistabel®, Dysport®/Azzalure®, and Xeomin®/Bocouture®. Drugs R. D. 2010, 10, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Hefter, H.; Kupsch, A.; Müngersdorf, M.; Paus, S.; Stenner, A.; Jost, W.; On behalf of the Dysport Cervical Dystonia Study Group. A botulinum toxin A treatment algorithm for de novo management of torticollis and laterocollis. BMJ Open 2011, 1, e000196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsui, J.; Stoessl, A.J.; Eisen, A.; Calne, S.; Calne, D. Double-blind study of Botulinum toxin in Spasmodic Torticollis. Lancet 1986, 328, 245–247. [Google Scholar] [CrossRef]
- Hefter, H.; Brauns, R.; Ürer, B.; Rosenthal, D.; Albrecht, P. Effective long-term treatment with incobotulinumtoxin (Xeomin®) without neutralizing antibody induction: A monocentric, cross-sectional study. J. Neurol. 2020, 267, 1340–1347. [Google Scholar] [CrossRef] [Green Version]
- Samadzadeh, S.; Ürer, B.; Brauns, R.; Rosenthal, D.; Lee, J.-I.; Albrecht, P.; Hefter, H. Clinical implications of difference in antigenicity of different botulinum neurotoxin type A preparations: Clinical take-home messages from our research pool and literature. Toxins 2020, 12, 499. [Google Scholar] [CrossRef]
- Contarino, M.F.; Van Den Dool, J.; Balash, Y.; Bhatia, K.; Giladi, N.; Koelman, J.H.; Lokkegaard, A.; Marti, M.J.; Postma, M.; Relja, M.; et al. Clinical practice: Evidence-based recommendations for the treatment of Cervical Dystonia with Botulinum Toxin. Front. Neurol. 2017, 8, 35. [Google Scholar] [CrossRef] [Green Version]
- Jost, W.H.; Friedman, A.; Michel, O.; Oehlwein, C.; Slawek, J.; Bogucki, A.; Ochudlo, S.; Banach, M.; Pagan, F.; Blitzer, A.; et al. SIAXI: Placebo-controlled, randomized, double-blind study of incobotulinumtoxinA for sialorrhea. Neurology 2019, 92, e1982–e1991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romanov, A.; Pokushalov, E.; Ponomarev, D.; Bayramova, S.; Shabanov, V.; Losik, D.; Stenin, I.; Elesin, D.; Mikheenko, I.; Strelnikov, A.; et al. Long-term suppression of atrial fibrillation by botulinum toxin injection into epicardial fat pads in patients undergoing cardiac surgery: Three-year follow-up of a randomized study. Hear. Rhythm. 2019, 16, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Berweck, S.; Schroeder, A.S.; Lee, S.-H.; Bigalke, H.; Heinen, F. Secondary non-response due to antibody formation in a child after three injections of botulinum toxin B into the salivary glands. Dev. Med. Child Neurol. 2006, 49, 62–64. [Google Scholar] [CrossRef]
- Schulte-Baukloh, H.; Bigalke, H.; Miller, K.; Heine, G.; Pape, D.; Lehmann, J.; Knispel, H.H. Botulinum neurotoxin type A in urology: Antibodies as a cause of therapy failure. Int. J. Urol. 2008, 15, 407–415. [Google Scholar] [CrossRef]
- Greene, P.; Fahn, S.; Diamond, B. Development of resistance to botulinum toxin type A in patients with torticollis. Mov. Disord. 1994, 9, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.; Rumpel, S.; Zhou, J.; Strotmeier, J.; Bigalke, H.; Perry, K.; Shoemaker, C.B.; Rummel, A.; Jin, R. Botulinum neurotoxin is shielded by NTNHA in an interlocked complex. Science 2012, 335, 977–981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.; Zhong, X.; Gu, S.; Kruel, A.M.; Dorner, M.B.; Perry, K.; Rummel, A.; Dong, M.; Jin, R. Molecular basis for disruption of E-cadherin adhesion by botulinum neurotoxin A complex. Science 2014, 344, 1405–1410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisele, K.-H.; Fink, K.; Vey, M.; Taylor, H.V. Studies on the dissociation of botulinum neurotoxin type A complexes. Toxicon 2010, 57, 555–565. [Google Scholar] [CrossRef]
- Frevert, J.; Dressler, D. Complexing proteins in botulinum toxin type A drugs: A help or a hindrance? Biol. Targets Ther. 2010, 4, 325–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, S.K.; Singh, B.R. Immunological properties of Hn-33 purified from type A Clostridium botulinum. J. Nat. Toxins 2000, 9, 357–362. [Google Scholar] [PubMed]
- Bryant, A.-M.; Cai, S.; Singh, B.R. Comparative immunochemical characteristics of botulinum neurotoxin type A and its associated proteins. Toxicon 2013, 72, 126–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frevert, J. Pharmaceutical, biological, and clinical properties of botulinum neurotoxin type A products. Drugs R. D. 2015, 15, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blümel, J.; Frevert, J.; Schwaier, A. Comparative antigenicity of three preparations on botulinum neurotoxin A in the rabbit. Neurotox. Res. 2006, 9, 238. [Google Scholar]
- Lee, J.I.; Jansen, A.; Samadzadeh, S.; Kahlen, U.; Moll, M.; Ringelstein, M.; Soncin, G.; Bigalke, H.; Aktas, O.; Moldovan, A.S.; et al. Long-term adherence and response to botulinum toxin in different indications. Ann. Clin. Transl. Neurol. 2021, 8, 15–28. [Google Scholar] [CrossRef]
- Hefter, H.; Hartmann, C.J.; Kahlen, U.; Samadzadeh, S.; Rosenthal, D.; Moll, M. Clinical Improvement After Treatment With IncobotulinumtoxinA (XEOMIN®) in Patients With Cervical Dystonia Resistant to Botulinum Toxin Preparations Containing Complexing Proteins. Front Neurol. 2021, 12, 636590. [Google Scholar] [CrossRef] [PubMed]
- Hefter, H.; Samadzadeh, S.; Moll, M. Transient improvement after switch to low doses of rimabotulinum toxin B in patients re-sistant to abobotulinum toxin A. Toxins 2020, 12, 677. [Google Scholar] [CrossRef]
- Hefter, H.; Hartmann, C.; Kahlen, U.; Moll, M.; Bigalke, H. Prospective analysis of neutralising antibody titres in secondary non-responders under continuous treatment with a botulinumtoxin type A preparation free of complexing proteins—A single cohort 4-year follow-up study. BMJ Open 2012, 2, e000646. [Google Scholar] [CrossRef] [Green Version]
- Dressler, D.; Hallett, M. Immunological aspects of Botox®, Dysport® and MyoblocTM/NeuroBloc®. Eur. J. Neurol. 2006, 13, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Moll, M.; Rosenthal, D.; Hefter, H. Quality of life in long-term botulinum toxin treatment of cervical dystonia: Results of a cross sectional study. Park. Relat. Disord. 2018, 57, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Kessler, K.R.; Skutta, M.; Benecke, R.; For the German Dystonia Study Group. Long-term treatment of cervical dystonia with botulinum toxin A: Efficacy, safety, and antibody frequency. J. Neurol. 1999, 246, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Lange, O.; Bigalke, H.; Dengler, R.; Wegner, F.; Degroot, M.; Wohlfarth, K. Neutralizing antibodies and secondary therapy failure after treatment with botulinum toxin type A. Clin. Neuropharmacol. 2009, 32, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Schönecker, T.; Gruber, D.; Kivi, A.; Müller, B.; Lobsien, E.; Schneider, G.-H.; Kühn, A.A.; Hoffmann, K.-T.; Kupsch, A.R. Postoperative MRI localisation of electrodes and clinical efficacy of pallidal deep brain stimulation in cervical dystonia. J. Neurol. Neurosurg. Psychiatry 2015, 86, 833–839. [Google Scholar] [CrossRef]
- Zauber, S.E.; Watson, N.; Comella, C.L.; Bakay, R.A.E.; Metman, L.V. Stimulation-induced parkinsonism after posteroventral deep brain stimulation of the globus pallidus internus for craniocervical dystonia. J. Neurosurg. 2009, 110, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Reese, R.; Fasano, A.; Knudsen, K.; Herzog, J.; Falk, D.; Mehdorn, H.M.; Deuschl, G.; Volkmann, J. Full Parkinsonian triad induced by pallidal high-frequency stimulation in cervical dystonia. Mov. Disord. Clin. Pract. 2014, 2, 99–101. [Google Scholar] [CrossRef] [PubMed]
- Consky, E.S.; Basinski, A.L.B.; Ranawaya, R.; Lang, A.E. The Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS): As-sessment of validity and inter-rater reliability. Neurology 1990, 40, 445. [Google Scholar]
- Hefter, H.; Kahlen, U.; Menge, T.R.; Rosenthal, D.; Moll, M. Impact of posterior deep neck muscle treatment on cervical dystonia: Necessity to differentiate between abnormal positions of head and neck. Basal Ganglia 2012, 2, 103–107. [Google Scholar] [CrossRef]
- Brin, M.F.; Lew, M.F.; Adler, C.H.; Comella, C.L.; Factor, S.A.; Jankovic, J.; O’Brien, C.; Murray, J.J.; Wallace, J.D.; Willmer-Hulme, A.; et al. Safety and efficacy of NeuroBloc (botulinum toxin type B) in type A-resistant cervical dystonia. Neurology 1999, 53, 1431. [Google Scholar] [CrossRef] [PubMed]
- Aoki, K.R.; Guyer, B. Botulinum toxin type A and other botulinum toxin serotypes: A comparative review of biochemical and pharmacological actions. Eur. J. Neurol. 2001, 8, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Steeves, T.D.; Day, L.; Dykeman, J.; Jette, N.; Pringsheim, T. The prevalence of primary dystonia: A systematic review and me-ta-analysis. Mov. Disord. 2012, 27, 1789–1796. [Google Scholar] [CrossRef] [PubMed]
- Hefter, H.; Blondin, D.; Kahlen, U.; Moll, M.; Antoch, G.; Schek, J. CT-guided intramuscular botulinum toxin A injections into the deep anterior neck muscles in patients with pure antecaput or antecollis. Basal Ganglia 2012, 2, 97–101. [Google Scholar] [CrossRef]
- Göschel, H.; Wohlfarth, K.; Frevert, J.; Dengler, R.; Bigalke, H. Botulinum A toxin therapy: Neutralizing and nonneutralizing anti-bodies—Therapeutic consequences. Exp. Neurol. 1997, 147, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Fabbri, M.; Leodori, G.; Fernandes, R.M.; Bhidayasiri, R.; Martí, M.J.; Colosimo, C.; Ferreira, J.J. Neutralizing antibody and botulinum toxin therapy: A systematic review and meta-analysis. Neurotox. Res. 2015, 29, 105–117. [Google Scholar] [CrossRef] [PubMed]
Parameter | ONA Group | ABO Group | XEO-Mono Group | p-Value ONA/ABO | p-Value ONA/XEO | p-Value ABO/XEO |
---|---|---|---|---|---|---|
n= | 11 | 48 | 34 | |||
NAB-pos | 1 (9.1%) | 14 (29.1%) | 0 (0%) | n.s. | n.s. | 0.05 |
female/male | 6/5 | 31/17 | 19/15 | n.s. | n.s. | n.s. |
age at onset (years) | 44.93/8.01 | 47.25/13.69 | 50.98/12.19 | n.s. | n.s. | n.s. |
ITSUI | 8.83/2.61 | 8.74/3.67 | 7.84/3.25 | n.s. | n.s. | n.s |
IDOS (U) | 210/113 (Botox®) | 620/150 (Dysport®) | 189/73 (Xeomin®) | n.s. | n.s. | n.s. |
BTSUI | 3.75/2.59 | 3.83/3.36 | 1.71/1.77 | n.s. | n.s. | 0.005 |
BDOS (U) | 321/229 (Botox®) | 843/697 (Dysport®) | 267/90 (Xeomin®) | n.s. | n.s. | n.s. |
TTB (days) | 1085/739 | 1354/1362 | 920/679 | n.s. | n.s. | n.s. |
STSUI | 8.36/3.60 | 7,82/3.09 | n.a. | n.s. | n.a. | n.a. |
SDOS (uDU) | 245/82 (Xeomin®) | 265/73 (Xeomin®) | n.a. | n.s. | n.a. | n.a. |
TTS (days) | 2639/1540 | 2849/2015 | n.a. | n.s. | n.a. | n.a. |
ATSUI | 6.82/4.20 | 5.32/2.46 | 3.27/2.35 | n.s. | 0.001 | 0.008 |
ADOS (uDU) | 370/87 (Xeomin®) | 349/92 (Xeomin®) | 305/91 (Xeomin®) | n.s. | n.s. | n.s. |
DUR (days) | 3150/984 | 2604/1113 | 2283/844 | n.s. | 0.005 | n.s. |
IMP (%) | 52.3/25.6 | 39.6/37.7 | 70.2/22 | n.s. | 0.05 | 0.001 |
Parameter | NAB-pos Group | NAB-neg Group | XEO-Mono Group | p-Value NAB-pos/ NAB-neg | p-Value NAB-Pos/ XEO | p-Value NAB-neg/ XEO |
---|---|---|---|---|---|---|
n= | 16 | 44 | 34 | |||
female/male | 11/5 | 26/18 | 19/15 | n.s. | n.s. | n.s. |
age at onset | 44.98/11.15 | 47.79/8.75 | 50.98/12.19 | n.s. | n.s. | n.s. |
ITSUI | 9.86/3.66 | 8.18/3.27 | 7.84/3.25 | n.s. | n.s. | n.s. |
IDOS (uDU) | 216/70 | 211/76 | 189/73 (Xeomin®) | n.s. | n.s. | n.s. |
BTSUI | 4.14/3.07 | 3.81/3.34 | 1.71/1.77 | n.s. | n.s. | n.s. |
BDOS (uDU) | 247/72 | 252/117 | 267/90 (Xeomin®) | n.s. | n.s. | n.s. |
TTB (days) | 1707/1410 | 1197/1211 | 920/679 | n.s. | 0.005 | n.s. |
STSUI | 8.19/2.63 | 8.00/3.57 | n.a. | n.s. | n.a. | n.a. |
SDOS (uDU) | 294/66 | 243/74 | n.a. | 0.023 | n.a. | n.a. |
TTS (days) | 3014/1762 | 2722/1960 | n.a. | n.a. | n.a. | |
ATSUI | 6.44/2.00 | 5.29/3.28 | 3.27/2.35 | n.s. | 0.001 | 0.012 |
ADOS (uDU) | 384/82 | 338/91 | 305/91 (Xeomin®) | n.s. | 0.013 | n.s. |
DUR (days) | 2633/1103 | 2822/1130 | 2283/844 | n.s. | n.s. | n.s. |
IMP (%) | 18/43 | 54/23 | 70.2/22 | 0.009 | 0.001 | 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hefter, H.; Ürer, B.; Brauns, R.; Rosenthal, D.; Meuth, S.G.; Lee, J.-I.; Albrecht, P.; Samadzadeh, S. Significant Long-Lasting Improvement after Switch to Incobotulinum Toxin in Cervical Dystonia Patients with Secondary Treatment Failure. Toxins 2022, 14, 44. https://doi.org/10.3390/toxins14010044
Hefter H, Ürer B, Brauns R, Rosenthal D, Meuth SG, Lee J-I, Albrecht P, Samadzadeh S. Significant Long-Lasting Improvement after Switch to Incobotulinum Toxin in Cervical Dystonia Patients with Secondary Treatment Failure. Toxins. 2022; 14(1):44. https://doi.org/10.3390/toxins14010044
Chicago/Turabian StyleHefter, Harald, Beyza Ürer, Raphaela Brauns, Dietmar Rosenthal, Sven G. Meuth, John-Ih Lee, Philipp Albrecht, and Sara Samadzadeh. 2022. "Significant Long-Lasting Improvement after Switch to Incobotulinum Toxin in Cervical Dystonia Patients with Secondary Treatment Failure" Toxins 14, no. 1: 44. https://doi.org/10.3390/toxins14010044
APA StyleHefter, H., Ürer, B., Brauns, R., Rosenthal, D., Meuth, S. G., Lee, J. -I., Albrecht, P., & Samadzadeh, S. (2022). Significant Long-Lasting Improvement after Switch to Incobotulinum Toxin in Cervical Dystonia Patients with Secondary Treatment Failure. Toxins, 14(1), 44. https://doi.org/10.3390/toxins14010044