Variability of Microcystin-LR Standards Available from Seven Commercial Vendors
Abstract
:1. Introduction
2. Results
2.1. Chemical Analysis of MCLR Standards
2.2. Toxicological Comparison of MCLR Standards
3. Discussion
4. Methods
4.1. Animals
4.2. Experimental Design
4.2.1. Microcystin-LR Standards Preparation
4.2.2. Animal Dosing, Observation and Necropsy
4.2.3. Clinical Chemistry
4.3. MCLR Analysis by UV-Vis at EPA, NC
4.4. MCLR Analysis by MS-TOF at EPA, NC
4.5. MCLR Analysis by LC-MS/MS at EPA NV
4.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bouaicha, N.; Miles, C.O.; Beach, D.G.; Labidi, Z.; Djabri, A.; Benayache, N.Y.; Nguyen-Quang, T. Structural Diversity, Characterization and Toxicology of Microcystins. Toxins 2019, 11, 714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salmaso, N.; Akçaalan, R.; Bernard, C.; Elersek, T.; Krstić, S.; Pilkaityte, R.; Quesada, A.; Santos, R.; Törökné, A.; Vasas, G.; et al. Appendix 1: Cyanobacterial Species and Recent Synonyms. In Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis; Meriluoto, J., Spoof, L., Codd, G., Eds.; John Wiley & Sons: Chichester, UK, 2017. [Google Scholar]
- Buratti, F.M.; Manganelli, M.; Vichi, S.; Stefanelli, M.; Scardala, S.; Testai, E.; Funari, E. Cyanotoxins: Producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch. Toxicol. 2017, 91, 1049–1130. [Google Scholar] [CrossRef] [PubMed]
- Merel, S.; Walker, D.; Chicana, R.; Snyder, S.; Baures, E.; Thomas, O. State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environ. Int. 2013, 59, 303–327. [Google Scholar] [CrossRef] [PubMed]
- Paerl, H.W.; Otten, T.G. Harmful cyanobacterial blooms: Causes, consequences, and controls. Microb. Ecol. 2013, 65, 995–1010. [Google Scholar] [CrossRef] [PubMed]
- Fawell, J.K.; Mitchell, R.E.; Everett, D.J.; Hill, R.E. The toxicity of cyanobacterial toxins in the mouse: I microcystin-LR. Hum. Exp. Toxicol. 1999, 18, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Kondo, F.; Matsumoto, H.; Yamada, S.; Ishikawa, N.; Ito, E.; Nagata, S.; Ueno, Y.; Suzuki, M.; Harada, K. Detection and identification of metabolites of microcystins formed in vivo in mouse and rat livers. Chem. Res. Toxicol. 1996, 9, 1355–1359. [Google Scholar] [CrossRef]
- Rao, P.V.L.; Gupta, N.; Jayaraj, R.; Bhaskar, A.S.B.; Jatav, P.C. Age-dependent effects on biochemical variables and toxicity induced by cyclic peptide toxin microcystin-LR in mice. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2005, 140, 11–19. [Google Scholar] [CrossRef]
- Yoshida, T.; Makita, Y.; Nagata, S.; Tsutsumi, T.; Yoshida, F.; Sekijima, M.; Tamura, S.; Ueno, Y. Acute oral toxicity of microcystin-LR, a cyanobacterial hepatotoxin, in mice. Nat. Toxins 1997, 5, 91–95. [Google Scholar] [CrossRef]
- Chernoff, N.; Hill, D.; Lang, J.; Schmid, J.; Farthing, A.; Huang, H. Dose-Response Study of Microcystin Congeners MCLA, MCLR, MCLY, MCRR, and MCYR Administered Orally to Mice. Toxins 2021, 13, 86. [Google Scholar] [CrossRef]
- Chernoff, N.; Hill, D.; Lang, J.; Schmid, J.; Le, T.; Farthing, A.; Huang, H. The Comparative Toxicity of 10 Microcystin Congeners Administered Orally to Mice: Clinical Effects and Organ Toxicity. Toxins 2020, 12, 403. [Google Scholar] [CrossRef]
- Bengis, R.; Govender, D.; Lane, E.; Myburgh, J.; Oberholster, P.; Buss, P.; Prozesky, L.; Keet, D. Eco-epidemiological and pathological features of wildlife mortality events related to cyanobacterial bio-intoxication in the Kruger National Park, South Africa. J. S. Afr. Vet. Assoc. 2016, 87, e1–e9. [Google Scholar] [CrossRef] [Green Version]
- Foss, A.J.; Miles, C.O.; Samdal, I.A.; Lovberg, K.E.; Wilkins, A.L.; Rise, F.; Jaabaek, J.A.H.; McGowan, P.C.; Aubel, M.T. Analysis of free and metabolized microcystins in samples following a bird mortality event. Harmful Algae 2018, 80, 117–129. [Google Scholar] [CrossRef]
- Backer, L.C.; Landsberg, J.H.; Miller, M.; Keel, K.; Taylor, T.K. Canine cyanotoxin poisonings in the United States (1920s-2012): Review of suspected and confirmed cases from three data sources. Toxins 2013, 5, 1597–1628. [Google Scholar] [CrossRef]
- Foss, A.J.; Aubel, M.T.; Gallagher, B.; Mettee, N.; Miller, A.; Fogelson, S.B. Diagnosing Microcystin Intoxication of Canines: Clinicopathological Indications, Pathological Characteristics, and Analytical Detection in Postmortem and Antemortem Samples. Toxins 2019, 11, 456. [Google Scholar] [CrossRef] [Green Version]
- Roberts, V.A.; Vigar, M.; Backer, L.; Veytsel, G.E.; Hilborn, E.D.; Hamelin, E.I.; Vanden Esschert, K.L.; Lively, J.Y.; Cope, J.R.; Hlavsa, M.C.; et al. Surveillance for Harmful Algal Bloom Events and Associated Human and Animal Illnesses—One Health Harmful Algal Bloom System, United States, 2016–2018. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 1889–1894. [Google Scholar] [CrossRef]
- Fitzgerald, S.D.; Poppenga, R.H. Toxicosis due to microcystin hepatotoxins in three Holstein heifers. J. Vet. Diagn. Investig. 1993, 5, 651–653. [Google Scholar] [CrossRef] [Green Version]
- Puschner, B.; Galey, F.D.; Johnson, B.; Dickie, C.W.; Vondy, M.; Francis, T.; Holstege, D.M. Blue-green algae toxicosis in cattle. J. Am. Vet. Med. Assoc. 1998, 213, 1605–1607, 1571. [Google Scholar]
- Campos, A.; Vasconcelos, V. Molecular Mechanisms of Microcystin Toxicity in Animal Cells. Int. J. Mol. Sci. 2010, 11, 268–287. [Google Scholar] [CrossRef] [Green Version]
- Cantor, G.H.; Beckonert, O.; Bollard, M.E.; Keun, H.C.; Ebbels, T.M.; Antti, H.; Wijsman, J.A.; Bible, R.H.; Breau, A.P.; Cockerell, G.L.; et al. Integrated histopathological and urinary metabonomic investigation of the pathogenesis of microcystin-LR toxicosis. Vet. Pathol. 2013, 50, 159–171. [Google Scholar] [CrossRef]
- Backer, L.C.; Carmichael, W.; Kirkpatrick, B.; Williams, C.; Irvin, M.; Zhou, Y.; Johnson, T.B.; Nierenberg, K.; Hill, V.R.; Kieszak, S.M.; et al. Recreational exposure to low concentrations of microcystins during an algal bloom in a small lake. Mar. Drugs 2008, 6, 389–406. [Google Scholar] [CrossRef]
- Backer, L.C.; McNeel, S.V.; Barber, T.; Kirkpatrick, B.; Williams, C.; Irvin, M.; Zhou, Y.; Johnson, T.B.; Nierenberg, K.; Aubel, M.; et al. Recreational exposure to microcystins during algal blooms in two California lakes. Toxicon 2010, 55, 909–921. [Google Scholar] [CrossRef]
- Giannuzzi, L.; Sedan, D.; Echenique, R.; Andrinolo, D. An acute case of intoxication with cyanobacteria and cyanotoxins in recreational water in Salto Grande Dam, Argentina. Mar. Drugs 2011, 9, 2164–2175. [Google Scholar] [CrossRef] [Green Version]
- Vidal, F.; Sedan, D.; D’Agostino, D.; Cavalieri, M.L.; Mullen, E.; Parot Varela, M.M.; Flores, C.; Caixach, J.; Andrinolo, D. Recreational Exposure during Algal Bloom in Carrasco Beach, Uruguay: A Liver Failure Case Report. Toxins 2017, 9, 267. [Google Scholar] [CrossRef] [Green Version]
- Falconer, I.R. Cyanobacterial Toxins of Drinking Water Supplies, 1st ed.; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar] [CrossRef]
- McCarty, C.L.; Nelson, L.; Eitniear, S.; Zgodzinski, E.; Zabala, A.; Billing, L.; DiOrio, M. Community Needs Assessment After Microcystin Toxin Contamination of a Municipal Water Supply—Lucas County, Ohio, September 2014. MMWR Morb. Mortal. Wkly. Rep. 2016, 65, 925–929. [Google Scholar] [CrossRef] [Green Version]
- Greer, B.; Maul, R.; Campbell, K.; Elliott, C.T. Detection of freshwater cyanotoxins and measurement of masked microcystins in tilapia from Southeast Asian aquaculture farms. Anal. Bioanal. Chem. 2017, 409, 4057–4069. [Google Scholar] [CrossRef] [Green Version]
- Poste, A.E.; Hecky, R.E.; Guildford, S.J. Evaluating microcystin exposure risk through fish consumption. Environ. Sci. Technol. 2011, 45, 5806–5811. [Google Scholar] [CrossRef] [Green Version]
- Rios, V.; Moreno, I.; Prieto, A.I.; Puerto, M.; Gutierrez-Praena, D.; Soria-Diaz, M.E.; Camean, A.M. Analysis fo MC-LR and MC-RR in tissue from freshwater fish (Tinca tinca) and crayfish (Procambarus clarkii) in tenchponds (Caceres, Spain) by liquid chromatography-mass spectrometry (LC-MS). Food Chem. Toxicol. 2013, 57, 170–178. [Google Scholar] [CrossRef]
- Xiang, L.; Li, Y.W.; Liu, B.L.; Zhao, H.M.; Li, H.; Cai, Q.Y.; Mo, C.H.; Wong, M.H.; Li, Q.X. High ecological and human health risks from microcystins in vegetable fields in southern China. Environ. Int. 2019, 133, 105142. [Google Scholar] [CrossRef]
- Xiang, L.; Li, Y.W.; Wang, Z.R.; Liu, B.L.; Zhao, H.M.; Li, H.; Cai, Q.Y.; Mo, C.H.; Li, Q.X. Bioaccumulation and Phytotoxicity and Human Health Risk from Microcystin-LR under Various Treatments: A Pot Study. Toxins 2020, 12, 523. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.L.; Rodrigues, J.A.; Azevedo, J.; Vasconcelos, V.; Eiras, E.; Campos, M.G. Hepatotoxicity induced by paclitaxel interaction with turmeric in association with a microcystin from a contaminated dietary supplement. Toxicon 2018, 150, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, D.; Hoeger, S. Guidance values for microcystins in water and cyanobacterial supplement products (blue-green algal supplements): A reasonable or misguided approach? Toxicol. Appl. Pharmacol. 2005, 203, 273–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U.S. Environmental Protection Agency (USEPA). 2009. National Lakes Assessment: A Collaborative Survey of the Nation’s Lakes; EPA 841-R-09-001; U.S. Environmental Protection Agency, Office of Water and Office of Research and Development: Washington, DC, USA, 2009. [Google Scholar]
- Loftin, K.A.; Graham, J.L.; Hilborn, E.D.; Lehmann, S.C.; Meyer, M.T.; Dietze, J.E.; Griffith, C.B. Cyanotoxins in inland lakes of the United States: Occurrence and potential recreational health risks in the EPA National Lakes Assessment 2007. Harmful Algae 2016, 56, 77–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svircev, Z.; Lalic, D.; Bojadzija Savic, G.; Tokodi, N.; Drobac Backovic, D.; Chen, L.; Meriluoto, J.; Codd, G.A. Global geographical and historical overview of cyanotoxin distribution and cyanobacterial poisonings. Arch. Toxicol. 2019, 93, 2429–2481. [Google Scholar] [CrossRef]
- Shoemaker, J.; Tettenhorst, D.; Delacruz, A. USEPA Methodd 544 Determination of Microcystins and Nodularin in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS), 1st ed.; U.S. Environmental Protection Agency: Washington, DC, USA, 2015. [Google Scholar]
- US EPA Office of Water. The Fourth Unregulated Contaminant Monitoring Rule (UCMR 4); U.S. Environmental Protection Agency: Washington, DC, USA, 2016. [Google Scholar]
- Lovell, R.A.; Schaeffer, D.J.; Hooser, S.B.; Haschek, W.M.; Dahlem, A.M.; Carmichael, W.W.; Beasley, V.R. Toxicity of intraperitoneal doses of microcystin-LR in two strains of male mice. J. Environ. Pathol. Toxicol. Oncol. 1989, 9, 221–237. [Google Scholar]
- Fontanillo, M.; Kohn, M. Microcystins: Synthesis and structure-activity relationship studies toward PP1 and PP2A. Bioorg. Med. Chem. 2018, 26, 1118–1126. [Google Scholar] [CrossRef]
- Harada, K.-I.; Suzuki, M.; Dahlem, A.M.; Beasley, V.R.; Carmichael, W.W.; Rinehart, K.L. Improved method for purification of toxic peptides produced by cyanobacteria. Toxicon 1988, 26, 433–439. [Google Scholar] [CrossRef]
- Massey, I.Y.; Wu, P.; Wei, J.; Luo, J.; Ding, P.; Wei, H.; Yang, F. A Mini-Review on Detection Methods of Microcystins. Toxins 2020, 12, 641. [Google Scholar] [CrossRef]
- Guo, Y.; Giovanni, G.; Jia, A.; Vanderford, B.; Eaton, A. Refinement and Standardization of Cyanotoxin Analytical Techniques for Drinking Water; Project 4716; The Water Research Foundation: Alexandria, VA, USA, 2022. [Google Scholar]
- McCord, J.P.; Strynar, M.J.; Washington, J.W.; Bergman, E.L.; Goodrow, S.M. Emerging Chlorinated Polyfluorinated Polyether Compounds Impacting the Waters of Southwestern New Jersey Identified by Use of Nontargeted Analysis. Environ. Sci. Technol. Lett. 2020, 7, 903–908. [Google Scholar] [CrossRef]
- Fastner, J.; Codd, G.A.; Metcalf, J.S.; Woitke, P.; Wiedner, C.; Utkilen, H. An international intercomparison exercise for the determination of purified microcystin-LR and microcystins in cyanobacterial field material. Anal. Bioanal. Chem. 2002, 374, 437–444. [Google Scholar] [CrossRef]
- Hollingdale, C.; Thomas, K.; Lewis, N.; Bekri, K.; McCarron, P.; Quilliam, M.A. Feasibility study on production of a matrix reference material for cyanobacterial toxins. Anal. Bioanal. Chem. 2015, 407, 5353–5363. [Google Scholar] [CrossRef]
- Altaner, S.; Puddick, J.; Wood, S.A.; Dietrich, D.R. Adsorption of Ten Microcystin Congeners to Common Laboratory-Ware Is Solvent and Surface Dependent. Toxins 2017, 9, 129. [Google Scholar] [CrossRef]
- Hosten, A.O. BUN and Creatinine. In Clinical Methods: The History, Physical, and Laboratory Examinations, 3rd ed.; Walker, H.K., Hall, W.D., Hurst, J.W., Eds.; Butterworths: Boston, MA, USA, 1990; Chapter 193. [Google Scholar]
- Salazar, J. Overview of Urea and Creatinine. Lab. Med. 2014, 45, e19–e20. [Google Scholar] [CrossRef] [Green Version]
- Busher, J.T. Serum Albumin and Globulin. In Clinical Methods: The History, Physical, and Laboratory Examinations, 3rd ed.; Walker, H.K., Hall, W.D., Hurst, J.W., Eds.; Butterworths: Boston, MA, USA, 1990; Chapter 101. [Google Scholar]
- Raoufinia, R.; Mota, A.; Keyhanvar, N.; Safari, F.; Shamekhi, S.; Abdolalizadeh, J. Overview of Albumin and Its Purification Methods. Adv. Pharm. Bull. 2016, 6, 495–507. [Google Scholar] [CrossRef] [Green Version]
- Viswanathan, C.T.; Bansal, S.; Booth, B.; DeStefano, A.J.; Rose, M.J.; Sailstad, J.; Shah, V.P.; Skelly, J.P.; Swann, P.G.; Weiner, R. Quantitative bioanalytical methods validation and implementation: Best practices for chromatographic and ligand binding assays. Pharm. Res. 2007, 24, 1962–1973. [Google Scholar] [CrossRef]
- Tang, X.; Madronich, S.; Wallington, T.; Calamari, D. Changes in tropospheric composition and air quality. J. Photochem. Photobiol. B Biol. 1998, 46, 83–95. [Google Scholar] [CrossRef]
- Blake, D.A.; Cascorbi, H.F.; Rozman, R.S.; Meyer, F.J. Animal toxicity of 2,2,2-trifluoroethanol. Toxicol. Appl. Pharm. 1969, 15, 83–91. [Google Scholar] [CrossRef]
- Rosenberg, P.H.; Wahlstrom, T. Hepatotoxicity of halothane metabolites in vivo and inhibition of fibroblast growth in vitro. Acta Pharmacol. Toxicol. 1971, 29, 9–19. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Guide for the Care and Use of Laboratory Animals, 8th ed.; The National Academies Press: Washington, DC, USA, 2011. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services; National Institutes of Health Office of Laboratory Animal Welfare. Public Health Service (PHS) Policy on Humane Care and Use of Laboratory Animals (Policy). Lab. Anim. Sci. 2015, 41, 91. [Google Scholar]
- Meriluoto, J.; Codd, G.; Reilly, M.; Metcalf, J.S.; Spoof, L.; Sjövall, O.; Hall, T.; Hiskia, A.; Kaloudis, T.; Baptista Pereira, P.; et al. Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis; John Wiley & Sons: Chichester, UK, 2005. [Google Scholar]
- Meriluoto, J.A.; Spoof, L.E. Cyanotoxins: Sampling, sample processing and toxin uptake. Adv. Exp. Med. Biol. 2008, 619, 483–499. [Google Scholar] [CrossRef]
Suggested Formula | Monoisotopic Mass of Unknown (Da) | Ratio of Unknown Compound to MCLR Peak Area | ||||||
---|---|---|---|---|---|---|---|---|
Vendor | ||||||||
A | B | C | D | E | F | G | ||
C2HF3O2—TFA 1 | 113.993 | 11.3 | 17.8 | |||||
SO4 Sulfate Cluster | 195.936 | 0.83 | ||||||
C48H72N10O12- d-meth MCLR | 980.533 | 0.02 | ||||||
C50H76N10O12—MCLR-Methyl Ester | 1008.564 | 0.01 |
Number of Animals | Liver Wt (g) | Liver/Bwt % | Weight Change (g) | Liver Score | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Vendor (µg/kg MCLR) | Male | Female | Male | Female | Male | Female | Male | Female | Male | Female |
Control | 18 | 18 | 2.1 ± 0.1 | 1.4 ± 0.1 | 6.1 ± 0.15 | 5.4 ± 0.14 | −0.09 ± 0.08 | −0.19 ± 0.16 | 1.9 ± 0.35 | 1.2 ± 0.35 |
A (13.2) | 12 | 12 | 2.0 ± 0.1 | 1.4 ± 0.0 | 5.7 ± 0.19 | 5.5 ± 0.17 | −0.41 ± 0.13 | −0.20 ± 0.15 | 3.0 ± 0.51 | 2.8 ± 0.52 a |
B (25.6) | 12 | 12 | 2.1 ± 0.1 | 1.5 ± 0.1 | 6.0 ± 0.19 | 5.7 ± 0.17 | −0.20 ± 0.14 | −0.49 ± 0.11 | 4.3 ± 0.45 c | 2.9 ± 0.34 b |
C (34.0) | 12 | 12 | 2.0 ± 0.1 | 1.5 ± 0.1 | 6.0 ± 0.19 | 5.9 ± 0.17 a | −0.12 ± 0.17 | −0.41 ± 0.19 | 5.7 ± 0.53 c | 3.1 ± 0.67 a |
D (35.6) | 12 | 12 | 2.0 ± 0.1 | 1.5 ± 0.1 | 6.0 ± 0.20 | 5.9 ± 0.18 a | −0.44 ± 0.13 | −0.68 ± 0.34 a | 6.3 ± 0.57 c | 4.0 ± 0.62 c |
E (39.6) | 12 | 12 | 1.9 ± 0.1 | 1.7 ± 0.1 c | 5.9 ± 0.19 | 6.2 ± 0.17 c | −0.17 ± 0.34 | −0.65 ± 0.25 | 7.3 ± 0.66 c | 4.5 ± 1.12 b |
F (38.4) | 12 | 12 | 2.3 ± 0.1 a | 1.6 ± 0.1 | 7.0 ± 0.21 c | 6.2 ± 0.2 c | −0.18 ± 0.15 | −0.27 ± 0.27 | 5.6 ± 0.97 c | 6.6 ± 1.05 c |
G (44.8) | 12 | 12 | 2.2 ± 0.1 | 2.0 ± 0.1 c | 6.6 ± 0.19 | 7.8 ± 0.20 c | −0.53 ± 0.22 | −0.24 ± 0.13 | 7.6 ± 0.94 c | 9.4 ± 0.43 c |
ALT (IU/L) | AST (IU/L) | GLDH (IU/L) | BUN (mg/dL) | Creatinine (mg/dL) | ||||||
Vendor (µg/kg MCLR) | Male | Female | Male | Female | Male | Female | Male | Female | Male | Female |
Control | 33.4 ± 2.2 | 43.4 ± 6.7 | 69.0 ± 7.7 | 98.2 ± 10.9 | 13 ± 1.7 | 10.7 ± 1.2 | 11.1 ± 0.22 | 9.6 ± 0.27 | 0.48 ± 0.01 | 0.6 ± 0.06 |
A (13.2) | 42.9 ± 3.9 | 89.2 ± 40.3 | 72.5 ± 9.1 | 142.1 ± 43.7 | 22.7 ± 5.2 | 13 ± 2.2 | 9.6 ± 0.46 a | 8.1 ± 0.39 a | 0.5 ± 0.00 | 0.5 ± 0.03 a |
B (25.6) | 145.9 ± 22.3 b | 104.5 ± 27.8 b | 124 ± 2.5 | 140.8 ± 26.4 | 37.3 ± 8.1 a | 27.9 ± 5.0 b | 10.7 ± 0.87 | 9.2 ± 0.50 | 0.4 ± 0.01 a | 0.6 ± 0.05 |
C (34.0) | 820.6 ± 395.1 c | 567.3 ± 431.2 b | 372.4 ± 218.0 a | 535.2 ± 407.7 | 108.2 ± 29.9 b | 28.6 ± 8.1 a | 9.9 ± 0.41 | 8.0 ± 0.40 b | 0.5 ± 0.01 | 0.7 ± 0.09 |
D (35.6) | 743.1 ± 224.5 c | 676.5 ± 423.8 c | 276 ± 83.5 | 479.8 ± 283.7 a | 152.1 ± 32.6 c | 64.3 ± 7.6 c | 9.8 ± 0.25 a | 9.1 ± 0.34 | 0.5 ± 00 | 0.8 ± 0.10 |
E (39.6) | 435.8 ± 166.4 c | 750.3 ± 403.7 c | 725.9 ± 553.2 b | 678.1 ± 441.2 b | 78.8 ± 23.8 b | 62.3 ± 16.0 c | 11.4 ± 1.08 | 9.1 ± 0.60 | 0.6 ± 0.08 | 0.6 ± 0.06 |
F (38.4) | 864.1 ± 314.9 c | 715.4 ± 153.5 c | 328.1 ± 105.4 c | 681.2 ± 341.8 c | No data | 198.8 ± 44.3 c | 11.7 ± 0.67 | 9.6 ± 0.42 | 0.5 ± 0.05 | 0.4 ± 0.03 a |
G (44.8) | 2467.2 ± 1089.4 c | 2997.4 ± 806.8 c | 962.6 ± 403.8 c | 2191.1 ± 1140.6 c | 81.1 ± 31.4 b | 72 ± 23.0 c | 10.3 ± 0.88 | 15.3 ± 1.76 c | 0.5 ± 0.02 | 0.8 ± 0.10 |
Albumin (g/dL) | Globulin (g/dL) | Total Protein (g/dL) | Early Deaths | |||||||
Vendor (µg/kg MCLR) | Male | Female | Male | Female | Male | Female | Male | Female | ||
Control | 3.1 ± 0.04 | 3.6 ± 0.10 | 2.1 ± 0.03 | 2.1 ± 0.06 | 5.2 ± 0.06 | 5.3 ± 0.13 | 0 | 0 | ||
A (13.2) | 3.1 ± 0.05 | 3.6 ± 0.14 | 2.2 ± 0.04 | 2.0 ± 0.05 | 5.2 ± 0.07 | 5.0 ± 0.18 | 0 | 0 | ||
B (25.6) | 3.1 ± 0.06 | 3.8 ± 0.12 | 2.2 ± 0.11 | 2.2 ± 0.04 a | 5.2 ± 0.11 | 5.4 ± 0.19 | 0 | 0 | ||
C (34.0) | 3.1 ± 0.05 | 3.7 ± 0.14 | 2.3 ± 0.03 b | 2.2 ± 0.07 | 5.4 ± 0.07 | 5.1 ± 0.19 | 0 | 0 | ||
D (35.6) | 3.1 ± 0.06 | 3.6 ± 0.11 | 2.3 ± 0.04 | 2.5 ± 0.10 b | 5.3 ± 0.05 | 5.8 ± 0.10 | 0 | 0 | ||
E (39.6) | 3.2 ± 0.05 a | 3.4 ± 0.12 | 2.3 ± 0.03 b | 1.9 ± 0.11 | 5.1 ± 0.17 | 5.0 ± 0.17 | 1 | 2 | ||
F (38.4) | 2.9 ± 0.06 a | 3.5 ± 0.11 | 2.2 ± 0.08 | 2.3 ± 0.12 | 5.4 ± 0.11 a | 5.5 ± 0.16 | 3 | 1 | ||
G (44.8) | 3.0 ± 0.06 | 3.1 ± 0.11 c | 2.2 ± 0.06 a | 1.7 ± 0.14 b | 5.0 ± 0.15 | 4.8 ± 0.33 | 2 | 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hill, D.; Lang, J.; McCord, J.; Strynar, M.; Rosal, C.; Schmid, J.; Le, T.-T.; Chernoff, N. Variability of Microcystin-LR Standards Available from Seven Commercial Vendors. Toxins 2022, 14, 705. https://doi.org/10.3390/toxins14100705
Hill D, Lang J, McCord J, Strynar M, Rosal C, Schmid J, Le T-T, Chernoff N. Variability of Microcystin-LR Standards Available from Seven Commercial Vendors. Toxins. 2022; 14(10):705. https://doi.org/10.3390/toxins14100705
Chicago/Turabian StyleHill, Donna, Johnsie Lang, James McCord, Mark Strynar, Charlita Rosal, Judith Schmid, Thanh-Thao Le, and Neil Chernoff. 2022. "Variability of Microcystin-LR Standards Available from Seven Commercial Vendors" Toxins 14, no. 10: 705. https://doi.org/10.3390/toxins14100705
APA StyleHill, D., Lang, J., McCord, J., Strynar, M., Rosal, C., Schmid, J., Le, T. -T., & Chernoff, N. (2022). Variability of Microcystin-LR Standards Available from Seven Commercial Vendors. Toxins, 14(10), 705. https://doi.org/10.3390/toxins14100705