Investigating the Toxicity of Compounds Yielded by Staphylococci on Vero Cells
Abstract
:1. Introduction
2. Results
2.1. Laboratory Identification/Confirmation of Staphylococci Strains
2.2. Antibiotics Susceptibility Results
2.3. The GC-HRTOF-MS Screening Results
2.3.1. Prominent Metabolites
2.3.2. Statistical Analysis for Metabolites Yield
2.4. Identification of Compounds
2.4.1. S. saprophyticus-Derived Compounds
- 4-Methyl-pentylamine (C7H1).
- Veratramine (C27H39NO2)
- 1,2,6-hexanetriol (C6H14O3)
- Succinic acid (C4H6O4)
2.4.2. S. aureus-Derived Compounds
- Flouranthene (C16H10)
- Cyclo (leucyl-prolyl (C11H18).
- 3-Methyl-2-phenyl-1H-pyrrole (C11H11N)
2.4.3. S. epidermidis-Derived Compounds
- Oleamide (C18H35NO)
- Methyl palmitate (C17H34O2)
2.5. Cytotoxic Studies
Statistical Analysis for Cell Viability
3. Discussions
4. Conclusions
5. Methods
5.1. Staphylococci Strains
5.1.1. Identification and Confirmation of Staphylococci Strains and the Preservation of S. aureus Strain
5.1.2. Resuscitation of Staphylococci Strains
5.1.3. Susceptibility of Staphylococci Strains to Antibiotics
5.2. Minimum Broth Preparation and Secondary Metabolites Production
5.3. Metabolites Extraction and Analyses
5.3.1. Extraction
5.3.2. Screening and Analyses
5.3.3. Purification of Crude Secondary Metabolites and Identification of Compounds from Staphylococci
5.4. Preparation, Proliferation, and Harvesting of Vero Cells
5.5. Cytotoxicity Assay
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aslantürk, O.S. In Vitro Cytotoxicity and Cell Viability Assays: Principles, Advantages, and Disadvantages. 2017, pp. 1–18. Available online: https://cdn.intechopen.com/pdfs/57717.pdf (accessed on 7 November 2021).
- Silva, K.; Silva, L.; Silva, G.; Borges, C.L.; Novaes, E.; Paccez, J.D.; Fontes, W.; Giambiagi-deMarval, M.; Soares, C.; Parente-Rocha, J.A. Staphylococcus saprophyticus proteomic analyses elucidate differences in the protein repertories among clinical strains related to virulence and persistence. Pathogens 2020, 6, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, N.J.; Chiu, I.M. Bacterial signaling to the nervous system through toxins and metabolites. J. Mol. Biol. 2017, 429, 587–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monistero, V.; Graber, H.U.; Pollera, C.; Cremonesi, P.; Castiglioni, B.; Bottini, E.; Ceballos-Marquez, A.; Lasso-Rojas, L.; Kroemker, V.; Wente, N.; et al. Staphylococcus aureus isolates from bovine mastitis in eight countries: Genotypes, detection of genes encoding different toxins, and other virulence genes. Toxins 2018, 10, 247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Kakeya, H. Cryptic chemical communication: Secondary metabolic responses revealed by microbial co-culture. Chemistry 2020, 15, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, L.; Zhang, H. Utilizing cross-species co-cultures for discovery of novel natural products. Curr. Opin. Biotechnol. 2021, 69, 252–262. [Google Scholar] [CrossRef]
- Knight, M.J.; Webber, A.L.; Pell, A.J.; Guerry, P.; Barbet-Massin, E.; Bertini, I.; Felli, I.C.; Gonnelli, L.; Pierattelli, R.; Emsley, L.; et al. Fast resonance assignment and fold determination of human superoxide dismutase by high-resolution proton-detected solid-state MAS NMR spectroscopy. Angew. Chem. Int. Ed. 2011, 50, 11697–11701. [Google Scholar] [CrossRef]
- Ruiz, B.; Chávez, A.; Forero, A.; García-Huante, Y.; Romero, A.; Sánchez, M.; Rocha, D.; Sánchez, B.; Rodríguez-Sanoja, R.; Sánchez, S.; et al. Production of microbial secondary metabolites: Regulation by the carbon source. Crit. Rev. Microbiol. 2010, 36, 146–167. [Google Scholar] [CrossRef]
- Brakhage, A.A. Regulation of fungal secondary metabolism. Nat. Rev. Microbiol. 2013, 11, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Frisvad, J.C. Media and growth conditions for induction of secondary metabolite production. Methods Mol. Biol. 2012, 944, 47–58. [Google Scholar]
- Yaya, S.; Kota, K.; Buh, A.; Bishwajit, G. Prevalence and predictors of taking tetanus toxoid vaccine in pregnancy: A cross-sectional study of 8,722 women in Sierra Leone. BMC Public Health 2020, 20, 1–9. [Google Scholar] [CrossRef]
- Dalhoff, A. Is the selective toxicity of antibacterial agents still a valid concept or do we miss chances and ignore risks? Infection 2021, 49, 29–56. [Google Scholar] [CrossRef]
- de Lima Procopio, R.E.; da Silvaa, I.R.; Martins, M.K.; de Azevedo, J.L.; de Araújo, J.M. Antibiotics produced by Streptomyces. Braz. J. Infect. Dis. 2012, 16, 466–471. [Google Scholar] [CrossRef] [Green Version]
- Demain, A.L.; Fang, A. The natural functions of secondary metabolites. Adv. Biochem. Eng./Biotechnol. 2000, 69, 1–39. [Google Scholar] [CrossRef]
- Fey, P.D.; Olson, M.E. Current concepts in biofilm formation of Staphylococcus epidermidis. Future Microbiol. 2010, 5, 917–933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiwari, V.; Meena, K.; Tiwari, M. Differential anti-microbial secondary metabolites in different ESKAPE pathogens explain their adaptation in the hospital setup. Infect. Genet. Evol. 2018, 66, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Cary, J.W.; Gilbert, M.K.; Lebar, M.D.; Majumdar, R.; Calvo, A.M. Aspergillus flavus secondary metabolites: More than just aflatoxins. Food Safety 2018, 6, 7–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hrouzek, P.; Tomek, P.; Lukešová, A.; Urban, J.; Voloshko, L.; Pushparaj, B.; Ventura, S.; Lukavský, J.; Stys, D.; Kopecký, J. Cytotoxicity and secondary metabolites production in terrestrial Nostoc strains, originating from different climatic/geographic regions and habitats: Is their cytotoxicity environmentally dependent? Environ. Toxicol. 2011, 26, 345–358. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Cai, H.; Yang, J.; Qiu, H.; Cheng, Y.; Liu, M. Pharmacokinetics and cardiotoxicity of doxorubicin and its secondary alcohol metabolite in rats. Biomed. Pharmacother. 2019, 116, 108964. Available online: https://www.sciencedirect.com/science/article/pii/S0753332219300204 (accessed on 1 December 2021). [CrossRef]
- Lemke, T.L.; Williams, D.A. (Eds.) Foye’s Principles of Medicinal Chemistry; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013; Available online: https://creighton.pure.elsevier.com/en/publications/foyes-principles-of-medicinal-chemistry-seventh-edition (accessed on 15 July 2020).
- Bacskay, I.; Nemes, D.; Fenyvesi, F.; Varadi, J.; Vasvári, G.; Feher, P.; Vecsernyes, M.; Ujhelyi, Z. Role of cytotoxicity experiments in pharmaceutical development. In Cytotoxicity; IntechOpen: Rijeka, Croatia, 2017; Available online: https://https://www.intechopen.com/chapters/58235 (accessed on 12 November 2021). [CrossRef] [Green Version]
- Kocherova, I.; Kempisty, B.; Hutchings, G.; Moncrieff, L.; Dompe, C.; Janowicz, K.; Petitte, J.; Shibli, J.A.; Mozdziak, P. Cell-based approaches in drug development—A concise review. Med. J. Cell Biol. 2020, 8, 44–49. [Google Scholar] [CrossRef]
- Jethva, K.; Bhatt Dhara Zaveri, M. In-vitro cytotoxicity activity of some selected ethnomedicinal plants against Vero cell line. Int. J. Pharm. Sci. Rev. Res. 2016, 37, 130–133. [Google Scholar]
- Freire, P.F.; Peropadre, A.; Pérez, J.M.; Herrero, M.O.; Hazen, M.J. An integrated cellular model to evaluate cytotoxic effects in mammalian cell lines. Toxicol. Vitr. 2009, 23, 1553–1558. [Google Scholar] [CrossRef] [PubMed]
- Torralba, D.; Baixauli, F.; Sánchez-Madrid, F. Mitochondria know no boundaries: Mechanisms and functions of intercellular mitochondrial transfer. Front. Cell Dev. Biol. 2016, 4, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, J.; Hannoodee, M.; Wittler, M. Amoxicillin Clavulanate. Available online: https://www.ncbi.nlm.nih.gov/books/NBK538164/ (accessed on 12 July 2020).
- Al-Zoubi, M.S.; Al-Tayyar, I.A.; Hussein, E.; Jabali, A.A.; Khudairat, S. Antimicrobial susceptibility pattern of Staphylococcus aureus isolated from clinical specimens in northern area of Jordan. Iran. J. Microbiol. 2015, 7, 265–272. [Google Scholar]
- Katzung, B.; Masters, S.; Trevor, A. Basic and Clinical Pharmacology; McGraw-Hill: New York, NY, USA, 2012; pp. 797–801. Available online: https://www.academia.edu/35509985/Basic_and_Clinical_Pharmacology_Katzung_Masters_and_Trevor_.pdf (accessed on 15 July 2020).
- Lowe, R.A.; Barber, K.E.; Wagner, J.L.; Bell-Harlan, A.M.; Stover, K.R. Ceftriaxone for the treatment of methicillin-susceptible Staphylococcus aureus bacteremia: A case series. J. Pharmacol. Pharmacother. 2017, 8, 140–144. [Google Scholar]
- Dilnessa, T. Antimicrobial Susceptibility Pattern of Staphylococcus aureus. 2019. Available online: https://www.intechopen.com/books/-i-staphylococcus-aureus-i-/antimicrobial-susceptibility-pattern-of-staphylococcus-aureus (accessed on 21 July 2020).
- Meers, P.D.; Whyt, W.; Sandys, G. Coagulase-negative staphylococci and micrococci in urinary tract infections. J. Clin. Pathol. 1975, 28, 270–273. [Google Scholar] [CrossRef] [Green Version]
- Filipiak, W.; Sponring, A.; Baur MMFilipiak, A.; Ager, C.; Wiesenhofer, H.; Nagl, M.; Troppmair, J.; Amann, A. Molecular analysis of volatile metabolites released specifically by Staphylococcus aureus and Pseudomonas aeruginosa. BMC Microbiol. 2012, 12, 113. [Google Scholar] [CrossRef] [Green Version]
- Fitzgerald, S.; Dufy, E.; Holland, L.; Morrin, A. Multi-strain volatile profiling of pathogenic and commensal cutaneous bacteria. Sci. Rep. 2020, 10, 17971. [Google Scholar] [CrossRef]
- Nkadimeng, S.M.; Nabatanzi, A.; Steinmann, C.M.L.; Eloff, J.N. Phytochemical, cytotoxicity, antioxidant and anti-inflammatory effects of Psilocybe Natalensis magic mushroom. Plants 2020, 9, 1127. [Google Scholar] [CrossRef]
- Ntungwe, E.; Domínguez-Martín, E.M.; Teodósio, C.; Teixidó-Trujillo, S.; Armas Capote, N.; Saraiva, L.; Díaz-Lanza, A.M.; Duarte, N.; Rijo, P. Preliminary biological activity screening of Plectranthus spp. extracts for the search of anticancer lead molecules. Pharmaceuticals 2021, 14, 402. [Google Scholar] [CrossRef]
- Nemudzivhadi, V.; Masoko, P. In vitro assessment of cytotoxicity, antioxidant, and anti-inflammatory activities of Ricinus communis (Euphorbiaceae) leaf extracts. Evid.-Based Complementary Altern. Med. eCAM 2014, 2014, 625961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdel-Shafy, H.I.; Mansour, M.S.M. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef] [Green Version]
- Mojiri, A.; Zhou, J.L.; Ohashi, A.; Ozaki, N.; Kindaichi, T. A comprehensive review of polycyclic aromatic hydrocarbons in water sources, their effects, and treatments. Sci. Total Environ. 2019, 696. [Google Scholar] [CrossRef] [PubMed]
- Duedahl-Olesen, L.; Navaratnam, M.A.; Jewula, J.; Jensen, A. PAH in some brands of tea and coffee. Polycycl. Aromat. Compd. 2015, 35, 74–90. [Google Scholar] [CrossRef]
- Patel, A.B.; Shaikh, S.; Jain, K.R.; Desai, C.; Madamwar, D. Polycyclic aromatic hydrocarbons: Sources, toxicity, and remediation approaches. Front. Microbiol. 2020, 11, 562813. [Google Scholar] [CrossRef]
- Harris, K.L.; Banks, L.D.; Mantey, J.A.; Huderson, A.C.; Ramesh, A. Bioaccessibility of polycyclic aromatic hydrocarbons: Relevance to toxicity and carcinogenesis. Expert Opin. Drug Metab. Toxicol. 2013, 9, 1465–1480. [Google Scholar] [CrossRef] [Green Version]
- van Meteren, N. Extracellular Vesicles Released by Polycyclic Aromatic Hydrocarbons-Treated Hepatocytes Trigger Oxidative Stress in Recipient Hepatocytes by Delivering Iron. 2020. Available online: https://www.sciencedirect.com/science/article/am/pii/S0891584920311862 (accessed on 10 March 2022).
- Rodger, K.; Mc-Lellan, I.; Peshkur, T. Can the legacy of industrial pollution influence antimicrobial resistance in Estuarine sediments? Environ. Chem. Lett. 2019, 17, 595–607. [Google Scholar] [CrossRef] [Green Version]
- Nghiem, N.P.; Kleff, S.; Schwegmann, S. Succinic acid technology development and commercialization. Fermentation 2017, 3, 26. [Google Scholar] [CrossRef]
- Murphy, M.P.; O’Neill, L.A.J. Krebs cycle reimagined: The emerging roles of succinate and itaconate as signal transducers. Cell 2018, 174, 780–784. [Google Scholar] [CrossRef] [Green Version]
- Tretter, L.; Patocs, A.; Chinopoulos, C. Succinate is an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis. Biochim. Biophys. Acta (BBA) Bioenerg. 2016, 1857, 1086–1101. [Google Scholar] [CrossRef]
- Davoodbasha, M.; Edachery, B.; Nooruddin, T.; Lee, S.Y.; Kim, J.W. Evidence of C16 fatty acid methyl esters extracted from microalga for the effective antimicrobial and antioxidant properties. Microbial. Pathog. 2018, 115, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.S.; Pradeep, T.; Jani, G.; Silpa, D.; Kumar, B.V. Design, synthesis, and antimicrobial screening of novel pyridyl-2-amidrazone incorporated isatin mannich bases. J. Adv. Pharm. Technol. Res. 2012, 3, 57–61. [Google Scholar] [PubMed]
- Kumar, R.; Chandar, B.; Parani, M. Use of succinic & oxalic acid in reducing the dosage of colistin against New Delhi metallo-β-lactamase-1 bacteria. Indian J. Med. Res. 2018, 147, 97–101. [Google Scholar]
- Gowrishankar, S.; Poornima, B.; Pandian, S.K. Inhibitory efficacy of cyclo(L-leucyl-L-prolyl) from mangrove rhizosphere bacterium-Bacillus amyloliquefaciens (MMS-50) toward cariogenic properties of Streptococcus mutants. Res. Microbiol. 2014, 165, 278–289. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Hameed, R.H.; Sayed, A.I.; Mahmoud Ali, S.; Mosa, M.A.; Khoder, Z.M.; Fatahala, S.S. Synthesis of novel pyrroles and fused pyrroles as antifungal and antibacterial agents. J. Enzym. Inhib. Med. Chem. 2021, 36, 2183–2198. [Google Scholar] [CrossRef]
- Tanvir, R.; Javeed, R.; Rehman, Y. Fatty acids and their amide derivatives from endophytes: New therapeutic possibilities from a hidden source. FEMS Microbiol. Lett. 2018, 365, fny114. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Xia, Y.; Xu, P.; Zheng, W.; Gao, Y.; Xie, F.; Ji, Z. Veratramine suppresses human hepG2 liver cancer cell growth in-vitro and in-vivo by inducing autophagic cell death. Oncol. Rep. 2020, 44, 477–486. [Google Scholar] [CrossRef]
- Bai, F.; Liu, K.; Li, H.; Wang, J.; Zhu, J.; Hao, P.; Zhu, L.; Zhang, S.; Shan, L.; Ma, W. Veratramine modulates AP-1-dependent gene transcription by directly binding to programmable DNA. Nucleic. Acids Res. 2018, 46, 546–557. [Google Scholar] [CrossRef] [Green Version]
- Szkudlarek, M.; Heine, E.; Keul, H.; Beginn, U.; Möller, M. Synthesis, characterization, and antimicrobial properties of peptides mimicking copolymers of maleic anhydride and 4-methyl-1-pentene. Int. J. Mol. Sci. 2018, 19, 2617. [Google Scholar] [CrossRef] [Green Version]
- Krishna, S.H.; Cao, J.; Tamura, T.; Nakagawa, Y.; De Bruyn, M.; Jacobson, G.S.; Weckhuysen, B.M.; Dumesic, J.A.; Tomishige, K.; Huber, G.W. Synthesis of hexane-tetrols and -triols with fixed hydroxyl group positions and stereochemistry from methyl glycosides over supported metal catalysts. Am. Chem. Soc. 2020, 8, 800–805. [Google Scholar] [CrossRef]
- Magro, G.; Biffani, S.; Minozzi, G.; Ehricht, R.; Monecke, S.; Luini, M.; Piccinini, R. Virulence genes of S. aureus from dairy cow mastitis and contagiousness risk. Toxins 2017, 9, 195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petzer, I.M.; Karzis, J.; Donkin, E.F.; Webb, E.C.; Etter, E.M.C. Somatic cell count thresholds in composite and quarter milk samples as indicator of bovine intramammary infection status. Onderstepoort J. Vet. Res. 2017, 84, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Zigo, F.; Vasil, M.; Ondrasovicova, S.; Vyrostkova, J.; Bujok, J.; Pecka-Kielb, E. Maintaining optimal mammary gland health and prevention of mastitis. Front. Vet. Sci. 2021, 8, 1–17. [Google Scholar] [CrossRef]
- Davis, J.; Farrah, S.; Wilkie, A. Selective growth of Staphylococcus aureus from flushed dairy manure wastewater using acriflavine-supplemented mannitol salt agar. Lett. Appl. Microbiol. 2006, 42, 606–611. [Google Scholar] [CrossRef] [PubMed]
- Rao, J.G.; Qamruddin, A.O.; Hassan, I.A.; Burnie, J.P.; Ganner, M. Cluster of clinical isolates of epidemic methicillin-resistant Staphylococcus aureus (EMRSA) with a negative deoxyribonuclease (DNase) test-implications for laboratory diagnosis and infection control. J. Hosp. Infect. 2002, 51, 238–239. [Google Scholar] [CrossRef] [PubMed]
- McAdow, M.; Missiakas, D.M.; Schneewind, O. Staphylococcus aureus secretes coagulase and von Willebrand factor binding protein to modify the coagulation cascade and establish host infections. J. Innate Immun. 2012, 4, 141–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayot, M.L.; Bragg, B.N. Antimicrobial Susceptibility Testing. 2020. Available online: https://pubmed.ncbi.nlm.nih.gov/30969536/ (accessed on 12 September 2021).
- Eduardo, L.G.; Ramirez, B.S.; Maribel, C.F.; Pescador, M.G.N.; Cruz, F.J.M. Low accuracy of the McFarland method for estimation of bacterial populations. Afr. J. Microbiol. Res. 2018, 12, 736–740. [Google Scholar]
- Szeto, W.; Yam, W.C.; Huang, H.; Leung, D.Y.C. The efficacy of vacuum-ultraviolet light disinfection of some common environmental pathogens. BMC Infect. Dis. 2020, 20, 127. [Google Scholar] [CrossRef] [Green Version]
- Gigliobianco, T.; Lakaye, B.; Wins, P.; El Moualij, B.; Zorzi, W.; Bettendorff, L. Adenosine thiamine triphosphate accumulates in Escherichia coli cells in response to specific conditions of metabolic stress. BMC Microbiol. 2010, 10, 148. [Google Scholar] [CrossRef] [Green Version]
- Balachandran, C.; Duraipandiyan, V.; Ignacimuthu, S. Cytotoxic (A549) and antimicrobial effects of Methylobacterium sp. isolate (ERI-135) from Nilgiris forest soil, India. Asian Pac. J. Trop. Biomed. 2012, 2, 712–716. [Google Scholar] [CrossRef] [Green Version]
- Adebo, O.A.; Kayitesi, E.; Tugizimana, F.; Njobeh, P.B. Differential metabolic signatures in naturally and lactic acid bacteria (LAB) fermented ting (a Southern African food) with different tannin content, as revealed by gas chromatography-mass spectrometry (GC–MS)-based metabolomics. Food Res. Int. 2019, 121, 326–335. [Google Scholar] [CrossRef] [PubMed]
- Coskun, O. Separation techniques: Chromatography. Northern Clin. Istanbul. 2016, 3, 156–160. [Google Scholar] [CrossRef] [Green Version]
- Zia, K.; Siddiqui, T.; Ali, S.; Farooq, I.; Zafar, M.S.; Khurshid, Z. Nuclear Magnetic Resonance Spectroscopy for Medical and Dental Applications: A comprehensive review. Eur. J. Dent. 2019, 13, 124–128. [Google Scholar] [CrossRef] [Green Version]
- Mwinga, J.L.; Asong, J.A.; Van Staden, J.; Nkadimeng, S.M.; McGaw, L.J.; Aremu, A.O.; Mbeng, W.O. In vitro antimicrobial effects of Hypoxis hemerocallidea against six pathogens with dermatological relevance and its phytochemical characterization and cytotoxicity evaluation. J. Ethnopharmacol. 2019, 242, 112048. [Google Scholar] [CrossRef]
- Mossman, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Benov, L. Effect of growth media on the MTT colorimetric assay in bacteria. PLoS ONE 2019, 14, e0219713. [Google Scholar] [CrossRef]
Bacterial Strain | Growth on MSA Plate | Growth on DNAse Plate | DNAse Production (Clearing Zone of Clearing) | Coagulase Production |
---|---|---|---|---|
S. aureus | yellow colonies | + | + | + |
S. epidermidis | pink colonies | + | − | − |
S. saprophyticus | pink colonies | + | − | − |
Bacterial Strain | Antibiotic Concentration | Res. | Int. | Sus. | Zone-Size (mm)/Results |
---|---|---|---|---|---|
S. aureus (Isolated from milk) | Augmentin (30 µg) | ≤13 | 14–17 | ≥18 | 25 = S |
Ceftriaxone (30 µg) | ≤13 | 14–20 | ≥21 | 20 = S | |
Oxacillin (5 µg) | ≤12 | 13–20 | ≥21 | 22 = S | |
Vancomycin (30 µg) | ≤10 | 10–11 | ≥12 | 20 = S | |
Cotrimoxazole (25 µg) | ≤10 | 11–15 | ≥16 | 20 = S | |
S. epidermidis | Augmentin (30 µg) | ≤13 | 14–17 | ≥18 | 25 = S |
Ceftriaxone (30 µg) | ≤13 | 14–20 | ≥21 | 20 = S | |
Oxacillin (5 µg) | ≤12 | 13–20 | ≥21 | 11 = R | |
Vancomycin (30 µg) | ≤10 | 10–11 | ≥12 | 8 = R | |
Cotrimoxazole (25 µg | ≤10 | 11–15 | ≥16 | 20 = S | |
S. saprophyticus | Augmentin (30 µg) | ≤13 | 14–17 | ≥18 | 25 = S |
Ceftriaxone (30 µg) | ≤13 | 14–20 | ≥21 | 20 = S | |
Oxacillin (5 µg) | ≤12 | 13–20 | ≥21 | 22 = S | |
Vancomycin (30 µg) | ≤10 | 10–11 | ≥12 | 20 = S | |
Cotrimoxazole (25 µg) | ≤10 | 11–15 | ≥16 | 20 = S |
Metabolites Class | RT (min) | Observed Iron m/z | m/z | Metabolite Name | Molecular Formula | Peak Ave |
---|---|---|---|---|---|---|
Acids | 05:45 | 269.0349 | 111.0680; 131.1293 | 5-(2,6-dichlorophenyl)thiophene-2-carboxylic acid | C11H6Cl2O2S | 532,778 |
08:03 | 219.1047 | 109.0762; 70.0409 | (2-bromo-4-nitrophenyl)acetic acid | C10H7F3O2 | 584,679 | |
25:44 | 324.1662 | 66.5316; 69.1228 | Succinic acid | C4H6O4 | 1,152,910 | |
Alkaloids | 12:52 | 219.1377 | 57.0700; 70.0778 | 9-Eicosene, (E)- | C20H40 | 243,785 |
17:03 | 210,1256 | 124,0631; 180,0893 | 221U 5,6,8-Indolizidine | C15H27N | 2,313,600 | |
Alkenes | 23:09 | 265.1707 | 55.0545; 57.0701 | 1-Nonacosene | C29H58 | 779,656 |
Amides | 17:50 | 157.1420 | 59.0367; 72.0444 | Pelargonamide | C9H19NO | 2,852,295 |
19:38 | 264.1947 | 59.0367; 72.0444 | Oleamide | C18H35NO | 5,474,773 | |
03:57 | 101.1201 | 44.0497; 43.0179 | Methyl isopentyl amine | C6H15N | 1,176,352 | |
Amines | 04:40 | 260.2725 | 84.0808; 31.0181 | Cholestan-3-amine, N,N,4,4-tetramethyl-, (3ß,5a)- | C31H57N | 4,216,599 |
18:08 | 182.0842 | 182.0838; 310181 | 1-amino-4-azafluorene | C12H10N2 | 424,629 | |
18:28 | 227,2210 | 59.0367; 72.0445 | 2-Fluoroisoproterenol | C11H16FNO3 | 440,174 | |
05:28 | 85.0412 | 85.0522; 43.0180 | (Difluorophosphino)amine; Aminodifluorophosphine | F2H2NP | 8,467,743 | |
11:47 | 163.0993 | 104.0621; 191.1430 | Acetamide, N-phenethyl- | C10H13NO | 7,464,331 | |
21:23 | 268.1933 | 67.1005; 77.0230 | Flexzone 7L | C18H24N2 | 175,865 | |
Amino Acids | 15:45 | 154,0737 | 83,0729; 111,0678 | Cyclo-prolylglycine | C7H10N2O2 | 24,522,536 |
16:24 | 210,1360 | 70.0652; 72.0808 | Cyclo(leucyloprolyl) | C11H18N2O2 | 75,187,945 | |
Azoles/Thiazoles | 23:02 | 315.1136 | 39.0832; 76.0183 | Tinuvin 326 | C17H18ClN3O | 235,435 |
Azoles/Heterocyclic Compounds | 12:55 | 157.0888 | 128,0622; 156,0811 | 3-Me-4-Ph-pyrrole | C11H11N | 620,446 |
Biphenyl Compounds | 12:57 | 169.0889 | 72.0808; 169.0887 | 4-Biphenylamine | C12H11N | 282,773 |
Dicarboxylic Acids | 07:14 | 100.0222 | 56.0259; 82.0651 | Succinyloxide | C4H4O3 | 3,109,952 |
Ergot Amines/Ergot Alkaloids | 21:47 | 273.9903 | 125.0708; 70.0652 | Dihydroergotamine | C33H37N5O5 | 31,862,103 |
Esters | 20:13 | 256.1935 | 165,1026; 235,1317 | Methyl 2,2’,4-tri-O-methylanziate | C28H38O7 | 765,489 |
22:18 | 329.0346 | 66.5315; 79.0293 | C24H28BrNO4 | 1,654,714 | ||
09:38 | 344.0148 | 70.1217; 72.9902 | 3-Methylbutyl N-heptafluorobutyryltryptophanate | C20H21F7N2O3 | 506,683 | |
11:53 | 194.0939 | 121,0286; 149,0601 | Ethyl 4-ethoxybenzoate | C11H14O3 | 260,016 | |
Fatty Acid Esters | 17:11 | 228.2046 | 74,0363; 87,0442 | Methyl tridecanoate | C14H28O2 | 586,047 |
Fatty acids | 21:38 | 255.2509 | 59.0367; 72.0444 | Palmitic amide | C16H33NO | 2,419,744 |
Fatty Acids/Palmitic Acids | 18:13 | 258,2503 | 43.0545; 102.0676 | Hexadecanoic acid, isopropyl ester | C19H38O2 | 357,808 |
Fatty Amides | 18:33 | 171.1621 | 59.0367; 72.0445 | Capramide | C10H21NO | 435,229 |
19:49 | 199.1895 | 59.0366; 72.0444 | Lauramide | C12H25NO | 15,918,923 | |
Fluorenes/Aromatic Hydrocarbons | 19:24 | 202.0777 | 100.0306; 202.0777 | Fluoranthrene | C16H10 | 106,095 |
Furans | 15:40 | 128.0580 | 44.0496; 128,0580 | Methyl 5-methylfuryl sulfide | C6H8OS | 3,347,846 |
Heterocyclic compounds | 08:18 | 117.0574 | 90.0465; 117.0574 | Ketole | C8H7N | 3,834,426 |
08:25 | 267.9995 | 84.0808; 105.0700 | Pyridrol | C18H21NO | 25,271,632 | |
10:54 | 155,0730 | 155.0730; 127.0543 | 3-PhenyIpyridine | C11H9N | 1,187,944 | |
12:40 | 219.0385 | 70.0652; 97.0888 | Aprobarbital | C10H14N2O3 | 14,490,692 | |
19:40 | 254.2011 | 89.0391; 171.0919 | Fenoharman | C18H18N2 | 588,461 | |
Pyridones | 23:51 | 227.1449 | 67.0102; 75.5266 | 1-(2-Acetyl-3-methylphenyl)-2(1H)-pyridinon | C14H13NO2 | 503,418 |
Hydroxytryptophan/Hydroxy Amino Acid | 11:50 | 219.1475 | 146.0967; 130.9917 | 4-Hydroxy-DL-tryptophan | C11H12N2O3 | 143,938 |
Nitriles | 19:00 | 139.0868 | 139.0868; 198.1152 | 3,5-difluoro-benzonitrile | C7H3F2N | 191,900 |
Organosilicon compounds | 13:58 | 418.0349 | 73.0468; 73.0468 | Hexadecamethylcyclooctasiloxane | C16H48O8Si8 | 658,716 |
13:53 | 244.0919 | 137.0420; 167.0525 | Diphenyldimethoxysilane | C14H16O2Si | 957,364 | |
11:15 | 505.1063 | 73.0468; 147.0657 | CTK6B0391 | C18H52O7Si7 | 1,255,677 | |
Phenols | 23:41 | 209,1376 | 190.0977; 135.0554 | Cinnamolaurine | C18H19NO3 | 581,769 |
18:51 | 225.0899 | 93.0574; 225.0896 | 2-(benzotriazol-2-yl)-5-methylphenol | C13H11N3O | 299,376 | |
Phenols/Organic Hydroxy Compound | 12:36 | 206.1665 | 191.1430; 163.1119 | Phenol, 2,5-di-tert-butyl- | C14H22O | 148,266 |
Thiazole | 06:50 | 140.1421 | 125.0836; 91.0254 | 4-(Trimethylsilyl)pyrazole | C6H12N2Si | 3,059,569 |
13:15 | 181.0014 | 68.6765; 108.0031 | Benzothiazole, 2-(methylthio) | C8H7NS2 | 70,845 | |
07:20 | 135.0138 | 69.1227; 72.0686 | benzisothiazole | C7H5NS | 164,406 | |
Unsaturated Aliphatic hydrocarbons | 17:53 | 282.0523 | 57.0700; 69.0699 | (5E)-5-Icosene | C20H40 | 1,126,073 |
Metabolites Class | RT (min) | Observed Ion m/z | m/z | Metabolite Name | Molecular Formula | Peak Areas Average |
---|---|---|---|---|---|---|
Acids | 07:05 | 215.0860 | 70.0414; 99.0680 | Beta-ureidopropionic acid | C4H8N2O3 | 28,087 |
07:11 | 359.0380 | 204.1133; 289.1786 | propanoic acid | C₃H₆O₂ | 36,531 | |
08:03 | 226.1468 | 211.1231; 226.1468 | DTXSID40154910 | C16H18O | 1,352,933 | |
25:44 | 344.0699 | 85.0397; 114.0423 | CTK9A2446 | C31H44N4O5 | 1,360,725 | |
28:47 | 268.0383 | 104.0622; 68.5348 | Cannabinolic acid | C22H26O4 | 3539 | |
Alcohol | 04:05 | 309.3482 | 57.0700; 125.1325 | Henicosanol | C21H44O | 615,961 |
Aldehyde | 05:53 | 178.1101 | 69.0574; 178.1101 | Benzothiazole, 2-amino-5,6-dimethyl- | C9H10N2S | 132,889 |
06:28 | 167.1353 | 45.0576; 87.0680 | 3-Cyclopentylpropionamide, N,N-dimethyl- | C10H19NO | 411,894 | |
08:01 | 140.0580 | 111.0554; 140.0580 | Benzaldehyde, 4-benzyloxy-3-methoxy-2-nitro- | C15H13NO5 | 689,665 | |
04:19 | 109.0615 | 109,0887; 43.0887 | propan-2-one, | C6H14O | 6,431,210 | |
Alkaloids | 30:34 | 324.1647 | 204.1126; 323.161 | Quinine | C20H24N2O2 | 10,651 |
Alkene | 07:15 | 270.0476 | 55.0544; 83.0855 | (E)-5-Octadecene | C18H36 | 381,486 |
11:00 | 405.0818 | 57,0699; 97.1013 | Nonacosene | C29H58 | 164,163 | |
Alkyl-phenylketones | 09:24 | 150.0676 | 107.0493; 135.0442 | 1-acetyl-2-hydroxy-5-methylbenzene | C9H10O2 | 447,852 |
Amide | 07:53 | 147.1180 | 59.0367; 126.0312 | N-(6-Chloro-2-pyrazinyl)-2-(1-piperidinyl)acetamide | C11H15ClN4O | 264,451 |
Amines | 03:15 | 224.8298 | 68.0258; 1120714 | Cyclopentanoneoxime | C5H9NO | 292,727 |
03:23 | 169.0877 | 141.0699; 169.0886 | 4-phenylaniline | C6H5-C6H4NH2 | 16,716 | |
03:45 | 420.0086 | 204,1133; 275,1631 | Ethyl (1S)-1-phenyl-3,4-dihydro-1H-isoquinoline-2-carboxylate | C18H19NO2 | 453,344 | |
04:50 | 181.0014 | 148,0217; 181,0014 | dimethyl ketone | CH3COCH3 | 1,018,170 | |
06:44 | 208.0854 | 70.0652; 97.0889 | 2-Ethyl(dimethyl)silyloxybutane | C8H20OSi | 48,784 | |
06:50 | 157.0885 | 128.0620; 156.0808 | 3-methyl-4-phenylpyrrole | C11H11N | 45,870 | |
07:01 | 287.9991 | 130.0652; 166.0739 | 3-Methylbutyl N-heptafluorobutyryltryptophanate | C12H24O2 | 712,718 | |
08:40 | 284.0485 | 84,0807; 31,0184 | N,N,4,4-Tetramethylcholestan-3-amine | C31H57N | 79,967 | |
29:13 | 136.0994 | 108.0684; 135.0917 | 2,6-Diethylpyrazine | C8H12N2 | 7879 | |
11:02 | 277.2139 | 85.0523; 177.0658 | Stearamide mea, | C20H41NO2 | 295,552 | |
Amino acids | 10:03 | 223.6640 | 99.0512; 125.0710 | Phenylalanine, methyl ester | C10H13NO2 | 2,534,272 |
09:34 | 257.1639 | 154.0652; 171.0918 | 5-Hydroxy-L-tryptophan | C11H12N2O3 | 17,277,429 | |
Anticholinergic agent | 07:56 | 176.9971 | 86.0386; 99.0679 | Benactizina | C20H25NO3 | 28,780 |
Aromatic hydrocarbons | 10:19 | 268.9954 | 121.0648; 149.0961 | 4,4’-(1,2-Diethylethylene)bis(anisole) | C20H26O2 | 113,270 |
Azole | 05:48 | 241.1339 | 83.0730; 193.0844 | 4-Methoxy-6-methyl-1,3,5-triazin-2-amine | C5H8N4O | 98,612 |
Benzene | 10:24 | 117.0574 | 90.0465; 117.0574 | 1H-indole | C8H7N | 15,162,269 |
Benzene/amines | 29:23 | 155.0729 | 127.0542; 155.07729 | N-(4-methylphenyl)pyridin-3-amine | C25H21N | 9681 |
Beta carbolines | 07:27 | 168.0685 | 140.0498; 184.1125 | Carbazoline | C11H8N2 | 42,951 |
Carboxamides | 07:46 | 287.9859 | 59.0368; 83.0855 | Oleamide | C18H35NO | 33,866 |
03:13 | 219.2235 | 152.1435; 31.0185 | 3-Ethyl-5-methyl-2,4-heptadiene | C10H18 | 673,311 | |
03:29 | 347.0880 | 135.0804; 156.0808 | Propanone, | C3H6O | 18,547 | |
Cytochrome | 30:56 | 281.1641 | 85.1013; 149.0231 | Tetrahydropyran Z-10-dodecenoate | C17H30O3 | 18,827 |
Esters | 09:14 | 389,0513 | 125.0709; 153.0658 | Epoxypropanol methacrylate | C7H10O3 | 22,299 |
27:59 | 347.3253 | 135.0903; 1490958 | Phthalic acid, di(8-chlorooctyl) ester | C24H36Cl2O4 | 10,848 | |
Ether | 09:22 | 136.0128 | 45.0336; 59.0492 | Carbitol, | C6H14O3 | 234,708 |
Fatty acids | 06:14 | 181.0346 | 71,0855,; 98.0966 | Undec-2-en-4-ol | C11H22O | 129,187 |
10:16 | 270.2548 | 74.0362; 143.1068 | Palmitic acid methyl ester | C17H34O2 | 12,371,227 | |
Halogenated pyrroles. | 08:32 | 268.0174 | 44.133; 59.0367 | Phantom | C15H11BrClF3N2O | 1,251,965 |
Heterocyclic compound | 07:15 | 221.1369 | 124.0633; 180.0894 | 2,3-Dihydrothiophene | C4H6S | 392,746 |
29:51 | 211.1444 | 70.0652; 154,0740 | L-Phe-D-Pro lactam | C11H18N2O2 | 15,224 | |
08:25 | 315.1130 | 91.0544; 300.0896 | 2,6-Dimethyl-3-isopentylpyrazine | C17H18ClN3O | 96,316 | |
Ketone | 05:25 | 246.1358 | 91,0543; 127,0864 | Propanone, | (CH3)2CO | 403,574 |
Organic acid | 06:31 | 269.9949 | 179,0688; 263,9868 | Cypionic acid | C20H22O2 | 153,948 |
Organosilicon compounds | 30:17 | 244.0916 | 91.0544; 167.0525 | Dimethoxydiphenylsilane | C14H16O2Si | 55,316 |
30:19 | 211.1355 | 168.0809; 211.1335 | Methyloctyldimethoxysilane | C10H16OSi | 2,187,251 | |
Phenols | 05:24 | 206.1665 | 57.0700; 191.1430 | 2,4-Di-tert-butylphenol | C14H22O | 451,861 |
Polycyclic aromatic hydrocarbon | 09:37 | 202.0774 | 101.0393; 202.0774 | Benzo(jk)Fluoren | C20H12 | 44,281 |
29:19 | 202.0777 | 178.0976; 202.0777 | Beta-Pyrene | C16H10 | 3558 | |
Protein | 05:27 | 219.1606 | 91.0543; 99,0555 | Cyclo(Ala-Phe) | C12H14N2O2 | 9,331,496 |
Pyridines | 05:45 | 231.1038 | 75.0234; 231.1038 | 2,6-DPhPy | C17H13N | 304,326 |
07:33 | 182.0840 | 154.0654; 182.0840 | brevicolline | C12H10N2 | 43,227 | |
Pyrrolidine | 06:00 | 180.9439 | 41.0387; 84.0444 | Pyrrolidon | C4H7NO | 35,732 |
Pyrrolidinone | 06:01 | 190.0754 | 41.0387; 84.0444 | 5-(Cyclohexylmethyl)-2-pyrrolidinone | C11H19NO | 50,942 |
Quinolines | 10:32 | 227.9064 | 154.0737 | Acetone anil | C12H15N | 280,959 |
Unsaturated aliphatic hydrocarbons | 06:35 | 252.2804 | 55.0545; 83.0855 | 3-eicosene | C20H40 | 474,139 |
Metabolites Class | RT (min) | Observed Ion m/z | m/z | Metabolite Name | Molecular Formula | Peak Areas Average |
---|---|---|---|---|---|---|
Acids | 25:44 | 324.1651 | 44.0497; 74.0237 | Succinic acid | C4H6O4 | 748,584 |
Acids/Esters | 09:33 | 156.5059 | 41.0388; 84.0444 | 2-Pyrrolidinecarboxylic acid-5-oxo-, ethyl ester | C11H14O3 | 30,578,538 |
Acids/Propionates | 19:00 | 210.0846 | 139.0865; 225.0758 | Linalyl propionate | C7H11NO3 | 125,699 |
Adipates/Acids | 21:38 | 299.2737 | 59.0367; 129.0547 | Diethylhexyl adipate | C13H22O2 | 1,358,675 |
Alkanes | 12:58 | 225.4679 | 57.0700; 71.0855 | Cetane | C22H42O4 | 234,536 |
Alcohols | 04:52 | 174.0471 | 74.0237; 86.0964 | Undec-2-en-4-ol | C16H34 | 1,854,763 |
14:06 | 264.0909 | 138.0789; 151.0867 | 2-(4-Fluoro-phenyl)-cyclohexanol | C11H22O | 649,839 | |
04:19 | 136.0144 | 45.0337; 59.0493 | ethyl carbitol | C12H15FO | 1,2961,908 | |
Alkaloids/Ergotamines | 21:47 | 567.0431 | 125.0711; 153.0660 | Ergotamine | C6H14O3 | 41,429,291 |
Alkaloids | 16:15 | 401.9806 | 57.0212; 114.0424 | Veratramine | C33H37N5O5 | 4,429,604 |
Alkane | 21:34 | 336.3753 | 57.0699; 97.1013 | Cyclotetracosane | C27H39NO2 | 4,929,019 |
Alkene | 19:50 | 266.2966 | 57.0700; 83.0855 | Nonadec-1-ene | C24H48 | 7,761,975 |
09:24 | 224.0703 | 55.0544; 83.0855 | Cetene | C19H38 | 328,938 | |
12:52 | 264.1646 | 44.0497; 86.0964 | Octadec-9-ene | C16H32 | 1,546,382 | |
Amides | 22:59 | 364.4082 | 30.0343; 44.0497 | Histidine amide | C18H36 | 16,30,440 |
21:27 | 286.2631 | 59.0367; 72.0444 | oleic acid amide | C6H10N4O | 14,326,846 | |
19:48 | 255.256 | 59.0367; 72.0444 | Cetyl amide | C18H35NO | 2,500,587 | |
Amines | 13:13 | 192.1621 | 177.1388; 192.1612 | 2-Propanamine, N-[(3-nitrophenyl)methylene]- | C16H33NO | 61,970 |
25:54 | 393.3375 | 250.1583; 322.2517 | bis(4-t-octylphenyl)amine | C11H14N2O2 | 103,487 | |
10:19 | 227.0685 | 44.0497; 57.0211 | N,N,4,4-Tetramethyl-5alpha-cholestan-3beta-amine | C28H43N | 4,308,153 | |
23:20 | 264.279 | 144.0806; 171.0916 | Phenoharmane | C31H57N | 134,169 | |
19:22 | 238.2169 | 85.0523; 98.0602 | N-lauroylethanolamine | C18H18N2 | 202,235 | |
Aromatic Hydrocarbons | 18:52 | 202.0776 | 101.0395; 202.0775 | Benzo(jk)fluorene | C14H29NO2 | 160,110 |
Aromatic Heterocyclic organic compound | 08:17 | 117.0574 | 90.0465; 117.0574 | Indole | C16H10 | 5,054,596 |
09:37 | 131.0729 | 130.0652; 145.0762 | Skatole | C8H7N | 412,362 | |
Azoles/Pyrroles | 12:54 | 157.0886 | 128.0622; 156.0809 | 3-Me-4-Ph-pyrrole | C9H9N | 1,455,835 |
17:08 | 221.1279 | 124.0632; 180.0895 | 2-undecyl-1H-pyrrole | C11H11N | 2,640,782 | |
Azoles/Triazoles | 23:01 | 315.1132 | 119.0856; 300.0898 | Tinuvin 326 | C15H27N | 742,229 |
18:50 | 225.0897 | 44.0496; 86.0964 | Tinuvin P | C17H18ClN3O | 817,086 | |
Biphenyl Compounds | 12:10 | 169.0888 | 115.0544; 169.0888 | 4-Biphenylamine | C13H11N3O | 130,219 |
Benzoate | 11:53 | 194.0938 | 211.0285; 149.0599 | 4-Ethoxy ethylbenzoate | C12H11N | 315,670 |
Butyl Esters | 15:21 | 219.0888 | 104.0622; 135.0805 | Butyl fumarate | C12H20O4 | 253,338 |
Esters | 12:00 | 270.0461 | 74.0237; 86.0964 | isohexyl ester | C16H30O4 | 118,061 |
Ethyl Ethers | 03:13 | 125.0713 | 44.0496; 86.0964 | Chloromethyl isobutyl ether | C3H7ClO | 1,473,624 |
Fatty Acids | 17:11 | 270.2552 | 30.0343; 74.0237 | Methyl palmitate | C17H34O2 | 358,875 |
Heterocyclic Compounds/Pyridines | 10:54 | 155.073 | 127.0543; 155.0730 | 3-PhenyIpyridine | C11H9N | 1,702,430 |
Hydrocarbons | 17:53 | 280.3128 | 83.0856; 97.1014 | 3-eicosene | C20H40 | 4,116,824 |
Indole | 18:13 | 168.0684 | 140.0497; 168.0684 | Carbazoline | C11H8N2 | 1,824,128 |
Indole/Benzene | 18:06 | 182.0839 | 30.0343; 74.0237 | Azobenzene | C12H10N2 | 2,035,127 |
Ketones | 17:07 | 225.1517 | 140.0581; 196.1208 | 2-Methyl-4-amino-6-methoxy-s-triazine | C5H8N4O | 586,977 |
Nitriles | 10:36 | 154.0527 | 127.0418; 154.0527 | Isoquinaldonitrile | C10H6N2 | 236,359 |
03:18 | 108.0684 | 81.0574; 108.0684 | 1,6-Dihydroimidazole[4,5-d]imadazole/Diaminomaleonitrile | C8H7N | 1,245,557 | |
Olefin/Alkenes | 23:09 | 343.066 | 57.0701; 97.1012 | Nonacosene | C29H58 | 2,784,072 |
Organosilicon Compunds | 11:15 | 506.1064 | 73.0468; 147.0657 | CTK6B0391 | C18H52O7Si7 | 1,529,176 |
13:58 | 490.0586 | 73.0468; 355.0699 | Hexadecamethyl-cyclooctasioxane | C16H48O8Si8 | 661,927 | |
Phenols | 11:45 | 206.1666 | 57.0700; 191.1431 | 2,4-Di-tert-butylphenol | C14H22O | 1,293,238 |
Pyrenes | 19:24 | 202.0777 | 88.0308; 202.0777 | ß-Pyrene | C16H10 | 143,873 |
Pyridines | 20:27 | 231.1037 | 74.0236; 86.0964 | Pyridine, 2,6-diphenyl- | C17H13N | 436,201 |
Pyrroles | 04:58 | 109.0887 | 94.0653; 109.0887 | 2,3,4-Trimethylpyrrole | C7H11N | 3,128,380 |
04:25 | 269.0491 | 59.0367; 151.0898 | Pylon | C15H11BrClF3N2O | 1,066,266 | |
13:42 | 157.0887 | 77.5362; 156.0810 | 2-Methyl-5-phenylpyrrole | C11H11N | 230,614 | |
Quinazolines/heterocyclic compounds | 08:56 | 144.0683 | 98.0602; 144.0683 | 4-Methylquinazoline | C9H8N2 | 215,987 |
Sulphides/sulphur compounds | 03:59 | 125.9626 | 110.9393; 125.9626 | Dimethyltrisulfane | C2H6S3 | 1,926,298 |
Thiophenes | 13:09 | 169.053 | 109.0762, 137.0710 | benzothiophene sulfone | C12H8O2S | 330,702 |
Test Statistics a,b | |
---|---|
%Peaks Area Average | |
Kruskal-Wallis H | 1.854 |
df | 2 |
Asymp. Sig. | 0.396 |
Compound | Origin | Lethal Concentration (LC50) in mg/mL) |
---|---|---|
(1) 4-Methyl-pentyl amine | S. saprophyticus (ATCC 35552) | 0.0231 ± 0.0027 |
(2) Fluoranthene | S. aureus (isolated from milk | 0.0167 ± 0.0003 |
(3) Cyclo (leucyl-prolyl | S. aureus (isolated from milk) | 0.0310 ± 0.0012 |
(4) Oleamide | S.epiderdis (ATCC 51625) | 0.0333 ± 0.0012 |
(5) Veratramine | S. saprophyticus (ATCC 35552) | 0.0274 ± 0.0007 |
(6) Methyl palmitate | S. epidermidis (ATCC 51625) | 0.0441 ± 0.0040 |
(7) 3-methyl-2-phenyl-1H-pyrrole | S. aureus (isolated from milk | 0.0341 ± 0.0093 |
(8)1,2,6-Hexanetriol | S. saprophyticus (ATCC 35552) | 0.0333 ± 0.0031 |
(9) Succinic acid | S. saprophyticus (ATCC 35552) | 0.0334 ± 0.0017 |
Doxorubicin | 0.0101 ± 0.0004 |
ANOVA a | ||||||
---|---|---|---|---|---|---|
Model | Sum of Squares | df | Mean Square | F | Sig. | |
1 | Regression | 2173.098 | 1 | 2173.098 | 136.707 | 0.000 b |
Residual | 826.594 | 52 | 15.896 | |||
Total | 2999.693 | 53 |
Model Summary b | ||||
---|---|---|---|---|
Model | R | R Square | Adjusted R Square | Std. Error of the Estimate |
1 | 0.851 a | 0.724 | 0.719 | 3.98698469 |
Bacterial Strain | Source/or Supplier of Bacterial Strain | Strain ATCC |
---|---|---|
Staphylococcus aureus | Cow milk, MSA agar confirmed | Isolated from milk |
Staphylococcus epidermidis | Thermofisher Scientific, South Africa | ATCC 51625 |
Staphylococcus saprophyticus | Thermofisher Scientific, South Africa | ATCC 35552 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Modimola, M.S.; Green, E.; Njobeh, P.; Senabe, J.; Fouche, G.; McGaw, L.; Nkadimeng, S.M.; Mathiba, K.; Mthombeni, J. Investigating the Toxicity of Compounds Yielded by Staphylococci on Vero Cells. Toxins 2022, 14, 712. https://doi.org/10.3390/toxins14100712
Modimola MS, Green E, Njobeh P, Senabe J, Fouche G, McGaw L, Nkadimeng SM, Mathiba K, Mthombeni J. Investigating the Toxicity of Compounds Yielded by Staphylococci on Vero Cells. Toxins. 2022; 14(10):712. https://doi.org/10.3390/toxins14100712
Chicago/Turabian StyleModimola, Margaret Selina, Ezekiel Green, Patrick Njobeh, Jeremiah Senabe, Gerda Fouche, Lyndy McGaw, Sanah Malomile Nkadimeng, Kgama Mathiba, and Julian Mthombeni. 2022. "Investigating the Toxicity of Compounds Yielded by Staphylococci on Vero Cells" Toxins 14, no. 10: 712. https://doi.org/10.3390/toxins14100712
APA StyleModimola, M. S., Green, E., Njobeh, P., Senabe, J., Fouche, G., McGaw, L., Nkadimeng, S. M., Mathiba, K., & Mthombeni, J. (2022). Investigating the Toxicity of Compounds Yielded by Staphylococci on Vero Cells. Toxins, 14(10), 712. https://doi.org/10.3390/toxins14100712