Cyclosporin A as a Source for a Novel Insecticidal Product for Controlling Spodoptera frugiperda
Abstract
:1. Introduction
2. Results
2.1. Insecticidal Activity of CsA on FAW
2.2. CsA Inhibits CaN (Insecticidal Target) Activity of Larvae
2.3. CsA Toxicity in Third Instar Larvae when Treatment Combined with other Insecticides
2.4. Sublethal Effects of CsA on FAW Larvae
2.5. Sublethal Effects of CsA on Pupae
2.6. Sublethal Effects of CsA on Adults
2.7. Sublethal Effects of CsA on Adult Reproduction and Egg Hatching
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Insects
5.2. CsA and Insecticides
5.3. Bioassay of CsA Insecticidal Activity
5.4. CaN Activity Measurement
5.5. Toxicity Tests for the Combination Treatments (CsA and Other Insecticides)
5.6. Bioassays of Sublethal Effects of CsA on FAW
5.7. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scholar, E. Cyclosporin. In xPharm: The Comprehensive Pharmacology Reference, 1st ed.; Enna, S.J., David, B.B., Eds.; Elsevier: New York, NY, USA, 2007; pp. 1–8. [Google Scholar]
- Chighizola, C.B.; Ong, V.H.; Meroni, P.L. The use of cyclosporine A in rheumatology: A 2016 comprehensive review. Clin. Rev. Allergy Immunol. 2016, 52, 401–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, D.; Wairkar, S. Recent advances in cyclosporine drug delivery: Challenges and opportunities. Drug Deliv. Transl. Res. 2019, 9, 1067–1081. [Google Scholar] [CrossRef] [PubMed]
- Weiser, J.; Matha, V. The insecticidal activity of cyclosporines on mosquito larvae. J. Invertebr. Pathol. 1988, 51, 92–93. [Google Scholar] [CrossRef]
- Fiolka, M.J. Immunosuppressive effect of cyclosporin A on insect humoral immune response. J. Invertebr. Pathol. 2008, 98, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Khangembam, R.; Singh, H.; Jyoti; Rath, S.S.; Singh, N.K. Effect of synergists on ivermectin resistance in field populations of Rhipicephalus (Boophilus) microplus from Punjab districts, India. Ticks Tick-Borne Dis. 2018, 9, 682–686. [Google Scholar] [CrossRef] [PubMed]
- Overton, K.; Maino, J.L.; Day, R.; Umina, P.A.; Bett, B.; Carnovale, D.; Ekesi, S.; Meagher, R.; Reynolds, O.L. Global crop impacts, yield losses and action thresholds for fall armyworm (Spodoptera frugiperda): A review. Crop Prot. 2021, 145, 105641. [Google Scholar] [CrossRef]
- Hruska, A.J. Fall armyworm (Spodoptera frugiperda) management by smallholders. CAB Rev. 2019, 14, 043. [Google Scholar] [CrossRef] [Green Version]
- Day, R.; Abrahams, P.; Bateman, M.; Beale, T.; Clottey, V.; Cock, M.; Colmenarez, Y.; Corniani, N.; Early, R.; Godwin, J.; et al. Fall armyworm: Impacts and implications for Africa. Outlooks Pest Manag. 2017, 28, 196–201. [Google Scholar] [CrossRef] [Green Version]
- Blanco, C.A.; Portilla, M.; Jurat-Fuentes, J.L.; Sánchez, J.F.; Viteri, D.; Vega-Aquino, P.; Terán-Vargas, A.P.; Azuara-Domínguez, A.; López, J.D., Jr.; Arias, R.; et al. Susceptibility of isofamilies of Spodoptera frugiperda (Lepidoptera: Noctuidae) to Cry1Ac and Cry1Fa proteins of Bacillus thuringiensis. Southwest. Entomol. 2010, 35, 409–415. [Google Scholar] [CrossRef]
- Carvalho, R.A.; Omoto, C.; Field, L.M.; Williamson, M.S.; Bass, C. Investigating the molecular mechanisms of organophosphate and pyrethroid resistance in the fall armyworm Spodoptera frugiperda. PLoS ONE 2013, 8, e62268. [Google Scholar] [CrossRef]
- Huang, F.; Qureshi, J.A.; Head, G.P.; Price, P.A.; Levy, R.; Yang, F.; Niu, Y. Frequency of Bacillus thuringiensis Cry1A.105 resistance alleles in field populations of the fall armyworm, Spodoptera frugiperda, in Louisiana and Florida. Crop Prot. 2016, 83, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Fatoretto, J.C.; Michel, A.P.; Silva-Fiho, M.; Silva, N. Adaptive potential of fall armyworm (Lepidoptera: Noctuidae) limits Bt trait durability in Brazil. J. Integ. Pest M. 2017, 8, 17. [Google Scholar] [CrossRef]
- APRD: Arthropod Pesticide Resistance Database. Available online: http://www.pesticide-resistance.org/ (accessed on 8 December 2021).
- Burtet, L.M.; Bernardi, O.; Melo, A.A.; Pes, M.P.; Strahl, T.T.; Guedes, J.V. Managing fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), with Bt maize and insecticides in southern Brazil. Pest Manag. Sci. 2017, 73, 2569–2577. [Google Scholar] [CrossRef] [PubMed]
- Elkhateeb, W.A.; Elnahas, M.O.; Daba, G.M.; Zohri, A.N. Biotechnology and environmental applications of Trichoderma spp. R. J. Pharmaco. Phytochem. 2021, 13, 149–157. [Google Scholar] [CrossRef]
- Horikoshi, R.J.; Vertuan, H.; de Castro, A.A.; Morrell, K.; Griffith, C.; Evans, A.; Tan, J.; Asiimwe, P.; Anderson, H.; José, M.O.M.A.; et al. A new generation of Bt maize for control of fall armyworm (Spodoptera frugiperda). Pest. Manag. Sci. 2021, 77, 3726–3727. [Google Scholar] [CrossRef]
- Yang, F.; Kerns, D.L.; Head, G.P.; Price, P.; Huang, F. Cross-resistance to purified Bt proteins, Bt corn and Bt cotton in a Cry2Ab2-corn resistant strain of Spodoptera frugiperda. Pest. Manag. Sci. 2017, 73, 2495–2503. [Google Scholar] [CrossRef]
- Zhang, D.; Wu, K. The bioassay of Chinese domestic Bt-Cry1Ab and Bt-(Cry1Ab+Vip3Aa) maize against the fall armymorm, Spodoptera frugiperda. Plant Prot. 2019, 45, 54–60. [Google Scholar] [CrossRef]
- Li, G.; Ji, T.; Sun, X.; Jiang, Y.; Wu, K.; Feng, H. Susceptibility evaluation of invaded Spodoptera frugiperda population in Yunnan province to five Bt proteins. Plant Prot. 2019, 45, 15–20. [Google Scholar] [CrossRef]
- Dijkers, P.F.; O′Farrell, P.H. Drosophila calcineurin promotes induction of innate immune responses. Curr. Biol. 2007, 17, 2087–2093. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Dijkers, P.F. Specific calcineurin isoforms are involved in Drosophila toll immune signaling. J. Immunol. 2014, 194, 168–176. [Google Scholar] [CrossRef]
- Wei, J.; Li, L.; Yao, S.; Yang, S.; Zhou, S.; Liu, X.; Du, M.; An, S. Calcineurin-modulated antimicrobial peptide expression is required for the development of Helicoverpa armigera. Front. Physiol. 2019, 10, 1312. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Yang, S.; Zhou, S.; Liu, S.; Cao, P.; Liu, X.; Du, M.; An, S. Suppressing calcineurin activity increases the toxicity of Cry2Ab to Helicoverpa armigera. Pest Manag. Sci. 2021, 77, 2142–2150. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Yao, X.; Yang, S.; Liu, S.; Zhou, S.; Cen, J.; Liu, X.; Du, M.; Tang, Q.; An, S. Suppression of calcineurin enhances the toxicity of Cry1Ac to Helicoverpa armigera. Front. Microbiol. 2021, 12, 634619. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, Y. Molecular cloning and characterization of the calcineurin subunit A from Plutella xylostella. Int. J. Mol. Sci. 2013, 14, 20692–20703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, W.; Li, L.; Zhang, Y.; Liu, X.; Wei, J.; Xie, Y.; Du, M.; An, S. Calcineurin is required for male sex pheromone biosynthesis and female acceptance. Insect Mol. Biol. 2018, 27, 373–382. [Google Scholar] [CrossRef]
- Kolata, G. FDA speeds approval of cyclosporin. Science 1983, 221, 1273. [Google Scholar] [CrossRef]
- Wang, N.; Ge, H.; Zhou, S. Cyclosporine A to treat unexplained recurrent spontaneous abortions: A prospective, randomized, double-blind, placebo-controlled, single-center trial. Int. J. Women’s Health 2021, 13, 1243–1250. [Google Scholar] [CrossRef]
- World Health Organization. WHO Model Formulary 2008; Stuart, M.C., Kouimtzi, M., Hill, S.R., Eds.; WHO: Geneva, Switzerland, 2009; Available online: https://apps.who.int/iris/handle/10665/44053 (accessed on 12 December 2021).
- Cerenius, L.; Kawabata, S.; Lee, B.L.; Nonaka, M.; Söderhäll, K. Proteolytic cascades and their involvement in invertebrate immunity. Trends Biochem. Sci. 2010, 35, 575–583. [Google Scholar] [CrossRef]
- Asgari, S.; Rivers, D.B. Venom proteins from endoparasitoid wasps and their role in host-parasite interactions. Annu. Rev. Entomol. 2011, 56, 313–335. [Google Scholar] [CrossRef]
- Wing, K.D.; Sacher, M.; Kagaya, Y.; Tsurubuchi, Y.; Mulderig, L.; Connair, M.; Schnee, M. Bioactivation and mode of action of the oxadiazine indoxacarb in insects. Crop Prot. 2000, 19, 537–545. [Google Scholar] [CrossRef]
- Park, J.M. Rapid development of life-threatening emamectin benzoate poisoning. Emerg. Med. 2018, 50, 81–84. [Google Scholar] [CrossRef] [Green Version]
- Caballero, J.P.; Murillo, L.; List, O.; Bastiat, G.; Flochlay-Sigognault, A.; Guerino, F.; Apaire-Marchais, V. Nanoencapsulated deltamethrin as synergistic agent potentiates insecticide effect of indoxacarb through an unusual neuronal calcium-dependent mechanism. Pestic. Biochem. Physiol. 2019, 157, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Hartzell, C.; Putzier, I.; Arreola, J. Calcium-activated chloride channels. Annu. Rev. Physiol. 2005, 67, 719–758. [Google Scholar] [CrossRef] [Green Version]
- Boukedi, H.; Khedher, S.B.; Triki, N.; Kamoun, F.; Saadaoui, I.; Chakroun, M.; Tounsi, S.; Abdelkefi-Mesrati, L. Overproduction of the Bacillus thuringiensis Vip3Aa16 toxin and study of its insecticidal activity against the carob moth Ectomyelois ceratoniae. J. Invertebr. Pathol. 2015, 127, 127–129. [Google Scholar] [CrossRef]
- Bentley, K.S.; Fletcher, J.L.; Woodward, M.D. Chlorantraniliprole: An insecticide of the anthranilic diamide class. In Hayes′ Handbook of Pesticide Toxicology, 3rd ed.; Krieger, R., Ed.; Academic Press: New York, NY, USA, 2010; pp. 2231–2242. [Google Scholar]
- Li, K.; Jia, Q.; Li, S. Juvenile hormone signaling—A mini review. Insect Sci. 2019, 26, 600–606. [Google Scholar] [CrossRef] [PubMed]
- Kang, X.; Zhang, J.; Wang, D.; Zhao, Y.; Han, X.; Wang, J.; Zhao, X. The steroid hormone 20-hydroxyecdysone binds to dopamine receptor to repress lepidopteran insect feeding and promote pupation. PLoS Genet. 2019, 15, 1008331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, S.; Yang, Y.; Xue, Y.; Zhao, W.; Liu, X.; Du, M.; Yin, X.; Guan, R.; Wei, J.; An, S. New insights on the effects of spinosad on the development of Helicoverpa armigera. Ecotoxicol. Environ. Saf. 2021, 221, 112452. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Zhang, S.; Shen, F.; Liu, M.; Ren, C.; Gao, X. Residual toxicity and sublethal effects of chlorantraniliprole on Plutella xylostella (Lepidoptera: Plutellidae). Pest. Manag. Sci. 2012, 68, 1184–1190. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, P.; Zhai, Y.; Chen, C.; Wang, Q.; Han, J.; Zhang, Z.; Liu, F.; Mu, W. Sublethal concentration of benzothiazole adversely affect development, reproduction and longevity of Bradysia odoriphaga (Diptera: Sciaridae). Phytoparasitica 2016, 44, 115–124. [Google Scholar] [CrossRef]
- Hull, J.J.; Fónagy, A. A sexy moth model–the molecular basis of sex pheromone biosynthesis in the silkmoth Bombyx mori. In Insect Sex Pheromone Research and Beyond; Ishikaya, Y., Ed.; Springer: Singapore, 2020; pp. 111–150. [Google Scholar]
- Du, M.; Liu, X.; Ma, N.; Liu, X.; Wei, J.; Yin, X.; Zhou, S.; Rafaeli, A.; Song, Q.; An, S. Calcineurin-mediated dephosphorylation of acetyl-coA carboxylase is required for pheromone biosynthesis activating neuropeptide (PBAN)-induced sex pheromone biosynthesis in Helicoverpa armigera. Mol. Cell. Proteom. 2017, 16, 2138–2152. [Google Scholar] [CrossRef]
- Yao, S.; Zhou, S.; Li, X.; Liu, X.; Zhao, W.; Wei, J.; Du, M.; An, S. Transcriptome snalysis of Ostrinia furnacalis female pheromone gland: Esters biosynthesis and requirement for mating success. Front. Endocrinol. 2021, 12, 736906. [Google Scholar] [CrossRef] [PubMed]
- Jhonsa, R.; Nongthomba, U. Knock down of Calcineurin-B2, a calcium binding regulatory subunit of Calcineurin, gives rise to hypercontraction myopathy in indirect flight muscles of Drosophila through dysregulation of calcium homeostasis. bioRxiv 2017, 108605. [Google Scholar] [CrossRef] [Green Version]
- Takeo, S.; Hawley, R.S.; Aigaki, T. Calcineurin and its regulation by Sra/RCAN is required for completion of meiosis in Drosophila. Dev. Biol. 2010, 344, 957–967. [Google Scholar] [CrossRef] [PubMed]
- Takeo, S.; Swanson, S.K.; Nandanan, K.; Nakai, Y.; Aigaki, T.; Washburn, M.P.; Florens, L.; Hawley, R.S. Shaggy/glycogen synthase kinase 3β and phosphorylation of Sarah/regulator of calcineurin are essential for completion of Drosophila female meiosis. Proc. Natl. Acad. Sci. USA 2012, 109, 6382–6389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Ni, C.; Xia, C.; Jaw, J.; Wang, Y.; Cao, Y.; Xu, M.; Guo, X. Calcineurin/nuclear factor-κB signaling mediates isoflurane-induced hippocampal neuroinflammation and subsequent cognitive impairment in aged rats. Mol. Med. Rep. 2017, 15, 201–209. [Google Scholar] [CrossRef] [Green Version]
- Liang, G.; Tan, W.; Guo, Y. Improvement of artificial rearing technique of Helicoverpa armigera. Plant Protection 1999, 25, 15–17. [Google Scholar] [CrossRef]
Larvae | LC50 (95% CL a, μg/g) | LC95 (95% CL, μg/g) | Slope ± SE | χ2 | df | p b |
---|---|---|---|---|---|---|
First instar | 9.69 (5.95–16.46) | 82.96 (38.00–514.634) | 1.76 ± 0.12 | 22.01 | 4 | <0.01 |
Third instar | 260.13 (162.98–490.31) | 1997.89 (869.31–15,405.45) | 1.86 ± 0.13 | 23.31 | 4 | <0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, C.; Li, S.; Wang, K.; Feng, H.; Tian, C.; Liu, X.; Li, X.; Yin, X.; Wang, Y.; Wei, J.; et al. Cyclosporin A as a Source for a Novel Insecticidal Product for Controlling Spodoptera frugiperda. Toxins 2022, 14, 721. https://doi.org/10.3390/toxins14100721
Sun C, Li S, Wang K, Feng H, Tian C, Liu X, Li X, Yin X, Wang Y, Wei J, et al. Cyclosporin A as a Source for a Novel Insecticidal Product for Controlling Spodoptera frugiperda. Toxins. 2022; 14(10):721. https://doi.org/10.3390/toxins14100721
Chicago/Turabian StyleSun, Chengxian, Shunjia Li, Kai Wang, Hongqiang Feng, Caihong Tian, Xiaoguang Liu, Xiang Li, Xinming Yin, Yanmei Wang, Jizhen Wei, and et al. 2022. "Cyclosporin A as a Source for a Novel Insecticidal Product for Controlling Spodoptera frugiperda" Toxins 14, no. 10: 721. https://doi.org/10.3390/toxins14100721
APA StyleSun, C., Li, S., Wang, K., Feng, H., Tian, C., Liu, X., Li, X., Yin, X., Wang, Y., Wei, J., & An, S. (2022). Cyclosporin A as a Source for a Novel Insecticidal Product for Controlling Spodoptera frugiperda. Toxins, 14(10), 721. https://doi.org/10.3390/toxins14100721