A Combined Bioassay and Nanofractionation Approach to Investigate the Anticoagulant Toxins of Mamba and Cobra Venoms and Their Inhibition by Varespladib
Abstract
:1. Introduction
2. Results
2.1. Initial Screening of Crude Venom Coagulopathic Activity and Inhibition by Varespladib and Marimastat
2.2. Nanofractionation, Identification, and Inhibition of Coagulopathic Mamba Venom Toxins
2.2.1. Dendroaspis polylepis
2.2.2. Dendroaspis angusticeps
2.3. Nanofractionation, Identification, and Inhibition of Coagulopathic Cobra and Rinkhals Venom Toxins
2.3.1. Naja naja
2.3.2. Naja pallida
2.3.3. Naja nigricollis
2.3.4. Naja haje
2.3.5. Hemachatus haemachatus
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Chemical and Biological Reagents
5.2. Crude venom Coagulation Bioassaying and Inhibition with Varespladib and Marimastat
5.3. Coagulation of Nanofractionated Elapid Venom
5.3.1. An Overview of the Workflow
5.3.2. Instrumental Setup for HPLC/MS-Nanofractionation
5.3.3. Coagulation Activities of Nanofractionated Venom an Inhibition by Varespladib and Marimastat
5.4. Proteomics Analysis
5.4.1. In-Solution Tryptic Digestions from 384-Well Plates Containing Nanofractionated Venom Toxins
5.4.2. Instrument Setup for Proteomics
5.4.3. Proteomics Data Interpretation and Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kasturiratne, A.; Wickremasinghe, A.R.; De Silva, N.; Gunawardena, N.K.; Pathmeswaran, A.; Premaratna, R.; Savioli, L.; Lalloo, D.G.; De Silva, H.J. The Global Burden of Snakebite: A Literature Analysis and Modelling Based on Regional Estimates of Envenoming and Deaths. PLoS Med. 2008, 5, 1591–1604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutiérrez, J.M.; Calvete, J.J.; Habib, A.G.; Harrison, R.A.; Williams, D.J.; Warrell, D.A. Snakebite Envenoming. Nat. Rev. Dis. Primers 2017, 3, 17063. [Google Scholar] [CrossRef] [PubMed]
- Fox, S.; Rathuwithana, A.C.; Kasturiratne, A.; Lalloo, D.G.; de Silva, H.J. Underestimation of Snakebite Mortality by Hospital Statistics in the Monaragala District of Sri Lanka. Trans. R. Soc. Trop. Med. Hyg. 2006, 100, 693–695. [Google Scholar] [CrossRef]
- Harrison, R.A.; Hargreaves, A.; Wagstaff, S.C.; Faragher, B.; Lalloo, D.G. Snake Envenoming: A Disease of Poverty. PLoS Negl. Trop. Dis. 2009, 3, e569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Longbottom, J.; Shearer, F.M.; Devine, M.; Alcoba, G.; Chappuis, F.; Weiss, D.J.; Ray, S.E.; Ray, N.; Warrell, D.A.; Bill, F.; et al. Vulnerability to Snakebite Envenoming: A Global Mapping of Hotspots. Lancet 2018, 6736, 673–684. [Google Scholar] [CrossRef] [Green Version]
- Tasoulis, T.; Isbister, G.K. A Review and Database of Snake Venom Proteomes. Toxins 2017, 9, 290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aird, S.D. Ophidian Envenomation Strategies and the Role of Purines. Toxicon 2002, 40, 335–393. [Google Scholar] [CrossRef]
- Kumar, T.K.S.; Pandian, S.K.; Srisailam, S.; Yu, C. Structure and Function of Snake Venom Cardiotoxins. J. Toxicol. Toxin Rev. 1998, 17, 183–211. [Google Scholar] [CrossRef]
- Thwin, M.M.; Gopalakrishnakone, P. Snake Envenomation and Protective Natural Endogenous Proteins: A Mini Review of the Recent Developments (1991–1997). Toxicon 1998, 36, 1471–1482. [Google Scholar] [CrossRef]
- Barua, A.; Mikheyev, A.S.; Russo, C. Many Options, Few Solutions: Over 60 My Snakes Converged on a Few Optimal Venom Formulations. Mol. Biol. Evol. 2019, 36, 1964–1974. [Google Scholar] [CrossRef]
- Ponnappa, K.C.; Saviour, P.; Ramachandra, N.B.; Kini, R.M.; Gowda, T.V. INN-Toxin, a Highly Lethal Peptide from the Venom of Indian Cobra (Naja Naja) Venom-Isolation, Characterization and Pharmacological Actions. Peptides 2008, 29, 1893–1900. [Google Scholar] [CrossRef] [PubMed]
- Warrell, D.A. Clinical Toxicology of Snakebite in Asia. In Handbook of Clinical Toxicology of Animal Venoms and Poisons; Meier, J., White, J., Eds.; Informa Healthcare USA Inc: New York, NY, USA, 2008; pp. 496–588. ISBN 978-0-8493-4489-3. [Google Scholar]
- Panagides, N.; Jackson, T.; Ikonomopoulou, M.; Arbuckle, K.; Pretzler, R.; Yang, D.; Ali, S.; Koludarov, I.; Dobson, J.; Sanker, B.; et al. How the Cobra Got Its Flesh-Eating Venom: Cytotoxicity as a Defensive Innovation and Its Co-Evolution with Hooding, Aposematic Marking, and Spitting. Toxins 2017, 9, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazandjian, T.D.; Robinson, S.D.; Greene, H.W.; Carter, D.A.; Wouters, R.M.; Wagstaff, S.C.; Arias, A.S.; Albulescu, L.-O.; McCabe, C.V.; da Silva, R.R.; et al. Convergent Evolution of Pain-Inducing Defensive Venom Components in Spitting Cobras. bioRxiv 2020. [Google Scholar] [CrossRef]
- Ainsworth, S.; Petras, D.; Engmark, M.; Süssmuth, R.D.; Whiteley, G.; Albulescu, L.O.; Kazandjian, T.D.; Wagstaff, S.C.; Rowley, P.; Wüster, W.; et al. The Medical Threat of Mamba Envenoming in Sub-Saharan Africa Revealed by Genus-Wide Analysis of Venom Composition, Toxicity and Antivenomics Profiling of Available Antivenoms. J. Proteom. 2018, 172, 173–189. [Google Scholar] [CrossRef] [PubMed]
- Harvey, A.L. Twenty Years of Dendrotoxins. Toxicon 2001, 39, 15–26. [Google Scholar] [CrossRef]
- Harvey, A.L.; Robertson, B. Dendrotoxins: Structure-Activity Relationships and Effects on Potassium Ion Channels. Curr. Med. Chem. 2004, 11, 3065–3072. [Google Scholar] [CrossRef]
- Marshall, L.R.; Herrmann, R.P. Coagulant and Anticoagulant Actions of Australian Snake Venoms. Thromb. Haemost. 1983, 50, 707–711. [Google Scholar] [CrossRef]
- Lister, C.; Arbuckle, K.; Jackson, T.N.W.; Debono, J.; Zdenek, C.N.; Dashevsky, D.; Dunstan, N.; Allen, L.; Hay, C.; Bush, B.; et al. Catch a Tiger Snake by Its Tail: Differential Toxicity, Co-Factor Dependence and Antivenom Efficacy in a Procoagulant Clade of Australian Venomous Snakes. Comp. Biochem. Physiol. Part C. Toxicol. Pharmacol. 2017, 202, 39–54. [Google Scholar] [CrossRef] [Green Version]
- Bittenbinder, M.A.; Dobson, J.S.; Zdenek, C.N.; op den Brouw, B.; Naude, A.; Vonk, F.J.; Fry, B.G. Differential Destructive (Non-Clotting) Fibrinogenolytic Activity in Afro-Asian Elapid Snake Venoms and the Links to Defensive Hooding Behavior. Toxicol. In Vitro 2019, 60, 330–335. [Google Scholar] [CrossRef]
- Youngman, N.J.; Zdenek, C.N.; Dobson, J.S.; Bittenbinder, M.A.; Gillett, A.; Hamilton, B.; Dunstan, N.; Allen, L.; Veary, A.; Veary, E.; et al. Mud in the Blood: Novel Potent Anticoagulant Coagulotoxicity in the Venoms of the Australian Elapid Snake Genus Denisonia (Mud Adders) and Relative Antivenom Efficacy. Toxicol. Lett. 2019, 302, 1–6. [Google Scholar] [CrossRef]
- Slagboom, J.; Kool, J.; Harrison, R.A.; Casewell, N.R. Haemotoxic Snake Venoms: Their Functional Activity, Impact on Snakebite Victims and Pharmaceutical Promise. Br. J. Haematol. 2017, 177, 947–959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCleary, R.J.R.; Kini, R.M. Snake Bites and Hemostasis/Thrombosis. Thromb. Res. 2013, 132, 642–646. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.A.; Jackson, T.N.W.; Casewell, N.R.; Low, D.H.W.; Rossi, S.; Baumann, K.; Fathinia, B.; Visser, J.; Nouwens, A.; Hendrikx, I.; et al. Extreme Venom Variation in Middle Eastern Vipers: A Proteomics Comparison of Eristicophis Macmahonii, Pseudocerastes Fieldi and Pseudocerastes Persicus. J. Proteom. 2015, 116, 106–113. [Google Scholar] [CrossRef]
- Bittenbinder, M.A.; Zdenek, C.N.; Op Den Brouw, B.; Youngman, N.J.; Dobson, J.S.; Naude, A.; Vonk, F.J.; Fry, B.G. Coagulotoxic Cobras: Clinical Implications of Strong Anticoagulant Actions of African Spitting Naja Venoms That Are Not Neutralised by Antivenom but Are by LY315920 (Varespladib). Toxins 2018, 10, 516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mantok, S.; Sekhon, H.; Sahi, G.; Jones, P. Cronfa-Swansea University Open Access Repository. J. Small Bus. Enterp. Dev. 2019, 92–105. [Google Scholar]
- Seneci, L.; Zdenek, C.N.; Bourke, L.A.; Cochran, C.; Elda, E.; Neri-castro, E.; Frank, N.; Fry, B.G.; Lucia, S.; Sciences, B.; et al. A symphony of destruction: Dynamic differential fibrinogenolytic toxicity by rattlesnake (Crotalus and Sistrurus) venoms. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2021, 245, 109034. [Google Scholar] [CrossRef] [PubMed]
- Asad, M.H.H.B.; Razi, M.T.; Khan, T.; Najam-Us-Saqib, Q.; Murtaza, G.; Hussain, M.S.; Hussain, M.S.; Karim, S.; Hussain, I. Coagulopathies in Naja Naja Karachiensis (Black Pakistan Cobra) Bites and Its Effect on Coagulation Tests upon Storage of Platelet-Poor Plasma. Acta Pol. Pharm.-Drug Res. 2012, 69, 1031–1034. [Google Scholar]
- MacKay, N.; Ferguson, J.C.; McNicol, G.P. Effects of Three Cobra Venoms on Blood Coagulation, Platelet Aggregation, and Fibrinolysis. J. Clin. Pathol. 1969, 22, 304–311. [Google Scholar] [CrossRef] [Green Version]
- Sundell, I.B.; Rånby, M.; Zuzel, M.; Robinson, K.A.; Theakston, R.D.G. In Vitro Procoagulant and Anticoagulant Properties of Naja Naja Naja Venom. Toxicon 2003, 42, 239–247. [Google Scholar] [CrossRef]
- Osipov, A.V.; Filkin, S.Y.; Makarova, Y.V.; Tsetlin, V.I.; Utkin, Y.N. A New Type of Thrombin Inhibitor, Noncytotoxic Phospholipase A2, from the Naja Haje Cobra Venom. Toxicon 2010, 55, 186–194. [Google Scholar] [CrossRef]
- Dutta, S.; Gogoi, D.; Mukherjee, A.K. Anticoagulant Mechanism and Platelet Deaggregation Property of a Non-Cytotoxic, Acidic Phospholipase A2 Purified from Indian Cobra (Naja Naja) Venom: Inhibition of Anticoagulant Activity by Low Molecular Weight Heparin. Biochimie 2015, 110, 93–106. [Google Scholar] [CrossRef]
- Kini, R.M. Structure-Function Relationships and Mechanism of Anticoagulant Phospholipase A2 Enzymes from Snake Venoms. Toxicon 2005, 45, 1147–1161. [Google Scholar] [CrossRef] [PubMed]
- Stefansson, S.; Kini, R.M.; Evans, H.J. The Inhibition of Clotting Complexes from the Extrinsic Coagulation Cascade by the Phospholipase A2 Isoenzymes from Naja Nigricollis Venom. Thromb. Res. 1989, 55, 481–491. [Google Scholar] [CrossRef]
- Boffa, M.C.; Barbier, D.; de Angulo, M. Anticoagulant Effect of Cardiotoxins. Thromb. Res. 1983, 32, 635–640. [Google Scholar] [CrossRef]
- Jiang, M.S.; Fletcher, J.E.; Smith, L.A. Factors Influencing the Hemolysis of Human Erythrocytes by Cardiotoxins from Naja Naja Kaouthia and Naja Naja Atra Venoms and a Phospholipase A2with Cardiotoxin-like Activities from Bungarus Fasciatus Venom. Toxicon 1989, 27, 247–257. [Google Scholar] [CrossRef]
- Xie, C.; Bittenbinder, M.A.; Slagboom, J.; Arrahman, A.; Kool, J. Erythrocyte Haemotoxicity Profiling of Snake Venom Toxins after Nanofractionation. J. Chromatogr. B 2021, 1176, 122586. [Google Scholar] [CrossRef]
- Kazandjian, T.; Arrahman, A.; Still, K.B.M.; Somsen, G.W.; Vonk, F.J.; Nicholas, R.; Wilkinson, M.C.; Kool, J. Anticoagulant Activity of Naja Nigricollis Venom Is Mediated by Phospholipase A2 Toxins and Inhibited by Varespladib. Toxins 2021, 13, 302. [Google Scholar] [CrossRef]
- Chowdhury, A.; Lewin, M.R.; Zdenek, C.N.; Carter, R.; Fry, B.G. The Relative Efficacy of Chemically Diverse Small-Molecule Enzyme-Inhibitors Against Anticoagulant Activities of African Spitting Cobra (Naja Species) Venoms. Front. Immunol. 2021, 12, 4215. [Google Scholar] [CrossRef]
- MacKay, N.; Ferguson, J.C.; McNicol, G.P. Effects of Three Mamba Venoms on the Haemostatic Mechanism. Br. J. Haematol. 1968, 15, 549–560. [Google Scholar] [CrossRef]
- Kaur, N.; Iyer, A.; Sunagar, K. Evolution Bites—Timeworn Inefficacious Snakebite Therapy in the Era of Recombinant Vaccines. Indian. Pediatr. 2021, 58, 219–223. [Google Scholar] [CrossRef]
- Attarde, S.; Iyer, A.; Khochare, S.; Shaligram, U.; Vikharankar, M.; Sunagar, K. The Preclinical Evaluation of a Second-Generation Antivenom for Treating Snake Envenoming in India. Toxins 2022, 14, 168. [Google Scholar] [CrossRef] [PubMed]
- Harrison, R.A.; Oluoch, G.O.; Ainsworth, S.; Alsolaiss, J.; Bolton, F.; Arias, A.S.; Gutiérrez, J.M.; Rowley, P.; Kalya, S.; Ozwara, H.; et al. Preclinical Antivenom-Efficacy Testing Reveals Potentially Disturbing Deficiencies of Snakebite Treatment Capability in East Africa. PLoS Negl. Trop. Dis. 2017, 11, e0005969. [Google Scholar] [CrossRef] [PubMed]
- Menzies, S.K.; Litschka-Koen, T.; Edge, R.J.; Alsolaiss, J.; Crittenden, E.; Hall, S.R.; Westhorpe, A.; Thomas, B.; Murray, J.; Shongwe, N.; et al. Two Snakebite Antivenoms Have Potential to Reduce Eswatini’s Dependency upon a Single, Increasingly Unavailable Product: Results of Preclinical Efficacy Testing. PLoS Negl. Trop. Dis. 2022, 16, e0010496. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, S.; Menzies, S.K.; Casewell, N.R.; Harrison, R.A. An Analysis of Preclinical Efficacy Testing of Antivenoms for Sub-Saharan Africa: Inadequate Independent Scrutiny and Poor-Quality Reporting Are Barriers to Improving Snakebite Treatment and Management. PLoS Negl. Trop. Dis. 2020, 14, e0008579. [Google Scholar] [CrossRef]
- Kalogeropoulos, K.; Treschow, A.F.; Auf Dem Keller, U.; Escalante, T.; Rucavado, A.; Gutiérrez, J.M.; Laustsen, A.H.; Workman, C.T. Protease Activity Profiling of Snake Venoms Using High-Throughput Peptide Screening. Toxins 2019, 11, 170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrison, R.A.; Cook, D.A.; Renjifo, C.; Casewell, N.R.; Currier, R.B.; Wagstaff, S.C. Research Strategies to Improve Snakebite Treatment: Challenges and Progress. J. Proteom. 2011, 74, 1768–1780. [Google Scholar] [CrossRef]
- Kini, R.M.; Sidhu, S.S.; Laustsen, A.H. Biosynthetic Oligoclonal Antivenom (BOA) for Snakebite and next-Generation Treatments for Snakebite Victims. Toxins 2018, 10, 534. [Google Scholar] [CrossRef] [Green Version]
- Habib, A.G.; Brown, N.I. The Snakebite Problem and Antivenom Crisis from a Health-Economic Perspective. Toxicon 2018, 150, 115–123. [Google Scholar] [CrossRef]
- Gutiérrez, J.M. Global Availability of Antivenoms: The Relevance of Public Manufacturing Laboratories. Toxins 2019, 11, 5. [Google Scholar] [CrossRef] [Green Version]
- Habibid, A.G.; Musa, B.M.; Iliyasuid, G.; Hamza, M.; Kuznik, A.; Chippauxid, J.P. Challenges and Prospects of Snake Antivenom Supply in Sub-Saharan Africa. PLoS Negl. Trop. Dis. 2020, 14, e0008374. [Google Scholar] [CrossRef]
- Bulfone, T.C.; Samuel, S.P.; Bickler, P.E.; Lewin, M.R. Developing Small Molecule Therapeutics for the Initial and Adjunctive Treatment of Snakebite. J. Trop. Med. 2018, 2018, 4320175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albulescu, L.O.; Xie, C.; Ainsworth, S.; Alsolaiss, J.; Crittenden, E.; Dawson, C.A.; Softley, R.; Bartlett, K.E.; Harrison, R.A.; Kool, J.; et al. A Therapeutic Combination of Two Small Molecule Toxin Inhibitors Provides Broad Preclinical Efficacy against Viper Snakebite. Nat. Commun. 2020, 11, 6094. [Google Scholar] [CrossRef] [PubMed]
- Varespladib. Am. J. Cardiovasc. Drugs 2011, 11, 137–143. [CrossRef]
- Thomas, A.L.; Steward, W.P. Marimastat: The Clinical Development of a Matrix Metalloproteinase Inhibitor. Expert Opin. Investig. Drugs 2000, 9, 2913–2922. [Google Scholar] [CrossRef]
- Fontana Oliveira, I.C.; Gutiérrez, J.M.; Lewin, M.R.; Oshima-Franco, Y. Varespladib (LY315920) Inhibits Neuromuscular Blockade Induced by Oxyuranus Scutellatus Venom in a Nerve-Muscle Preparation. Toxicon 2020, 187, 101–104. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, J.M.; Lewin, M.R.; Williams, D.J.; Lomonte, B. Varespladib (LY315920) and Methyl Varespladib (LY333013) Abrogate or Delay Lethality Induced by Presynaptically Acting Neurotoxic Snake Venoms. Toxins 2020, 12, 131. [Google Scholar] [CrossRef] [Green Version]
- Lewin, M.R.; Samue, S.P.; Merkel, J.; Bickler, P. Varespladib (LY315920) Appears to Be a Very Potent, Broad-Spectrum, Inhibitor of Snake Venom PLA2s from Six Continents. Toxicon 2016, 117, 103–104. [Google Scholar] [CrossRef]
- Zinenko, O.; Tovstukha, I.; Korniyenko, Y. PLA2 Inhibitor Varespladib as an Alternative to the Antivenom Treatment for Bites from Nikolsky’s Viper Vipera Berus Nikolskii. Toxins 2020, 12, 356. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.; Zhang, D.; Xiao, H.; Xiong, S.; Huang, C. Exploration of the Inhibitory Potential of Varespladib for Snakebite Envenomation. Molecules 2018, 23, 391. [Google Scholar] [CrossRef] [Green Version]
- Lewin, M.; Samuel, S.; Merkel, J.; Bickler, P. Varespladib (LY315920) Appears to Be a Potent, Broad-Spectrum, Inhibitor of Snake Venom Phospholipase A2 and a Possible Pre-Referral Treatment for Envenomation. Toxins 2016, 8, 248. [Google Scholar] [CrossRef] [Green Version]
- Silva-Carvalho, R.; Gaspar, M.Z.; Quadros, L.H.B.; Lobo, L.G.G.; Giuffrida, R.; Santarém, C.L.; Silva, E.O.; Gerez, J.R.; Silva, N.J.; Hyslop, S.; et al. Partial Efficacy of a Brazilian Coralsnake Antivenom and Varespladib in Neutralizing Distinct Toxic Effects Induced by Sublethal Micrurus Dumerilii Carinicauda Envenoming in Rats. Toxicon 2022, 213, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Albulescu, L.-O.; Still, K.; Slagboom, J.; Zhao, Y.; Jiang, Z.; Somsen, G.; Vonk, F.; Casewell, N.; Kool, J. Varespladib Inhibits the Phospholipase A2 and Coagulopathic Activities of Venom Components from Haemotoxic Snakes. Biomedicines 2020, 8, 165. [Google Scholar] [CrossRef] [PubMed]
- Youngman, N.J.; Walker, A.; Naude, A.; Coster, K.; Sundman, E.; Fry, B.G. Varespladib (LY315920) Neutralises Phospholipase A2 Mediated Prothrombinase-Inhibition Induced by Bitis Snake Venoms. Comp. Biochem. Physiol. Part-C. Toxicol. Pharmacol. 2020, 236, 108818. [Google Scholar] [CrossRef] [PubMed]
- Howes, J.M.; Theakston, R.D.G.; Laing, G.D. Neutralization of the Haemorrhagic Activities of Viperine Snake Venoms and Venom Metalloproteinases Using Synthetic Peptide Inhibitors and Chelators. Toxicon 2007, 49, 734–739. [Google Scholar] [CrossRef] [PubMed]
- Slagboom, J.; Mladić, M.; Xie, C.; Kazandjian, T.D.; Vonk, F.; Somsen, G.W.; Casewell, N.R.; Kool, J. High Throughput Screening and Identification of Coagulopathic Snake Venom Proteins and Peptides Using Nanofractionation and Proteomics Approaches. PLoS Negl. Trop. Dis. 2020, 14, e0007802. [Google Scholar] [CrossRef] [Green Version]
- Layfield, H.J.; Williams, H.F.; Ravishankar, D.; Mehmi, A.; Sonavane, M.; Salim, A.; Vaiyapuri, R.; Lakshminarayanan, K.; Vallance, T.M.; Bicknell, A.B.; et al. Repurposing Cancer Drugs Batimastat and Marimastat to Inhibit the Activity of a Group i Metalloprotease from the Venom of the Western Diamondback Rattlesnake, Crotalus Atrox. Toxins 2020, 12, 309. [Google Scholar] [CrossRef]
- Menzies, S.K.; Clare, R.H.; Xie, C.; Westhorpe, A.; Hall, S.R.; Edge, R.J.; Alsolaiss, J.; Crittenden, E.; Marriott, A.E.; Harrison, R.A.; et al. In Vitro and in Vivo Preclinical Venom Inhibition Assays Identify Metalloproteinase Inhibiting Drugs as Potential Future Treatments for Snakebite Envenoming by Dispholidus Typus. Toxicon X 2022, 14, 100118. [Google Scholar] [CrossRef]
- Arias, A.S.; Rucavado, A.; Gutiérrez, J.M. Peptidomimetic Hydroxamate Metalloproteinase Inhibitors Abrogate Local and Systemic Toxicity Induced by Echis Ocellatus (Saw-Scaled) Snake Venom. Toxicon 2017, 132, 40–49. [Google Scholar] [CrossRef]
- Shan, L.L.; Gao, J.F.; Zhang, Y.X.; Shen, S.S.; He, Y.; Wang, J.; Ma, X.M.; Ji, X. Proteomic Characterization and Comparison of Venoms from Two Elapid Snakes (Bungarus Multicinctus and Naja Atra) from China. J. Proteom. 2016, 138, 83–94. [Google Scholar] [CrossRef]
- Kini, R.M. Anticoagulant Proteins from Snake Venoms: Structure, Function and Mechanism. Biochem. J. 2006, 397, 377–387. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, M.; McCleary, R.J.R.; Kesherwani, M.; Kini, R.M.; Velmurugan, D. Comparison of Proteomic Profiles of the Venoms of Two of the ‘Big Four’ Snakes of India, the Indian Cobra (Naja Naja) and the Common Krait (Bungarus Caeruleus), and Analyses of Their Toxins. Toxicon 2017, 135, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Slagboom, J.; Albulescu, L.O.; Bruyneel, B.; Still, K.B.M.; Vonk, F.J.; Somsen, G.W.; Casewell, N.R.; Kool, J. Antivenom Neutralization of Coagulopathic Snake Venom Toxins Assessed by Bioactivity Profiling Using Nanofractionation Analytics. Toxins 2020, 12, 53. [Google Scholar] [CrossRef] [PubMed]
- Albulescu, L.O.; Hale, M.S.; Ainsworth, S.; Alsolaiss, J.; Crittenden, E.; Calvete, J.J.; Evans, C.; Wilkinson, M.C.; Harrison, R.A.; Kool, J.; et al. Preclinical Validation of a Repurposed Metal Chelator as an Early-Intervention Therapeutic for Hemotoxic Snakebite. Sci. Transl. Med. 2020, 12, eaay8314. [Google Scholar] [CrossRef] [PubMed]
- Malih, I.; Ahmad rusmili, M.R.; Tee, T.Y.; Saile, R.; Ghalim, N.; Othman, I. Proteomic Analysis of Moroccan Cobra Naja Haje Legionis Venom Using Tandem Mass Spectrometry. J. Proteom. 2014, 96, 240–252. [Google Scholar] [CrossRef] [PubMed]
- Rosenson, R.S.; Elliott, M.; Stasiv, Y.; Hislop, C. Randomized Trial of an Inhibitor of Secretory Phospholipase A2 on Atherogenic Lipoprotein Subclasses in Statin-Treated Patients with Coronary Heart Disease. Eur. Heart J. 2011, 32, 999–1005. [Google Scholar] [CrossRef] [Green Version]
- Nicholls, S.J.; Cavender, M.A.; Kastelein, J.J.P.; Schwartz, G.; Waters, D.D.; Rosenson, R.S.; Bash, D.; Hislop, C. Inhibition of Secretory Phospholipase A 2 in Patients with Acute Coronary Syndromes: Rationale and Design of the Vascular Inflammation Suppression to Treat Acute Coronary Syndrome for 16 Weeks (VISTA-16) Trial. Cardiovasc. Drugs Ther. 2012, 26, 71–75. [Google Scholar] [CrossRef]
- Nicholls, S.J.; Kastelein, J.J.P.; Schwartz, G.G.; Bash, D.; Rosenson, R.S.; Cavender, M.A.; Brennan, D.M.; Koenig, W.; Jukema, J.W.; Nambi, V.; et al. Varespladib and Cardiovascular Events in Patients with an Acute Coronary Syndrome: The VISTA-16 Randomized Clinical Trial. JAMA 2014, 311, 252–262. [Google Scholar] [CrossRef] [Green Version]
- Lewin, M.R.; Gilliam, L.L.; Gilliam, J.; Samuel, S.P.; Bulfone, T.C.; Bickler, P.E.; Gutiérrez, J.M. Delayed LY333013 (Oral) and LY315920 (Intravenous) Reverse Severe Neurotoxicity and Rescue Juvenile Pigs from Lethal Doses of Micrurus Fulvius (Eastern Coral Snake) Venom. Toxins 2018, 10, 479. [Google Scholar] [CrossRef] [Green Version]
- Lewin, M.R.; María Gutiérrez, J.; Samuel, S.P.; Herrera, M.; Bryan-Quirós, W.; Lomonte, B.; Bickler, P.E.; Bulfone, T.C.; Williams, D.J. Delayed Oral LY333013 Rescues Mice from Highly Neurotoxic, Lethal Doses of Papuan Taipan (Oxyuranus Scutellatus) Venom. Toxins 2018, 10, 380. [Google Scholar] [CrossRef] [Green Version]
- Ferraz, C.R.; Arrahman, A.; Xie, C.; Casewell, N.R.; Lewis, R.J.; Kool, J.; Cardoso, F.C. Multifunctional Toxins in Snake Venoms and Therapeutic Implications: From Pain to Hemorrhage and Necrosis. Front. Ecol. Evol. 2019, 7, 218. [Google Scholar] [CrossRef] [Green Version]
- Still, K.B.M.; Nandlal, R.S.S.; Slagboom, J.; Somsen, G.W.; Casewell, N.R.; Kool, J. Multipurpose HTS Coagulation Analysis: Assay Development and Assessment of Coagulopathic Snake Venoms. Toxins 2017, 9, 382. [Google Scholar] [CrossRef] [PubMed]
Species | R. Time (min) | m/z | Charge | Mol. Mass (Da) | Protein Identification/Mascot Hits | Mascot Exact Mass (Da) | Species-specific Database Hits | Toxin Class |
---|---|---|---|---|---|---|---|---|
Dendroaspis polylepis | 14.4 | 1019.93 | 7+ | 7129.47 | Three-finger toxin | N.A. | N.A. | 3FTx |
15.3 | 1007.31 | 7+ | 7040.16 | Three-finger toxin | N.A. | N.A | 3FTx | |
15.8 | 1006.03 | 7+ | 7031.17 | 3SLS_DENPO (Calciseptin) Dendroaspis polylepis | 7031.21 | D_polylepis_T0010 | 3FTx | |
16.4 | 999.34 | 8+ | 7982.68 | 3L24_DENPO (Alpha-elapitoxin-Dpp2d) Dendroaspis polylepis | 7986.68 | N.A. | 3FTx | |
16.4 | 999.34 | +26 | 25,957.30 | Snake venom metalloprotease | 23433.41 (non-glycosylated) | D_polylepis_T3990_T0439 | SVMP | |
16.8 | 1055.34 | 7+ | 7377.36 | 3SIM3_DENAN (Muscarinic toxin 3) Dendroaspis angusticeps | 7392.54 | D_polylepis_T2320 | 3FTx | |
16.8 | 1055.05 | 36+ | 37,947.16 | Snake venom metalloproteinase | 27,106.10 (non-glycosylated) | D_polylepis_T0167 | SVMP | |
17.7 | 1081.83 | 6+ | 6481.97 | Three finger toxins | N.A. | D_polylepis_T2331 | 3FTx | |
Dendroaspis angusticeps | 15.1 | 965.14 | 7+ | 6745.91 | 3SE2_DENAN (Fasciculin-2) Dendroaspis angusticeps | 6744.96 | D_angusticeps_T1380_T2642 | 3FTx |
15.5 | 971.99 | 7+ | 6793.93 | 3SE1_DENAN (Fasciculin-1) Dendroaspis angusticeps | 6793.98 | D_angusticeps_T2737 | 3FTx | |
16.1 | 943.44 | 7+ | 6593.05 | Three-finger toxin | N.A. | D_angusticeps_T1011 | 3FTx | |
16.4 | 945.44 | 7+ | 6607.07 | VKTHE_DENAN (Kunitz-type serine protease inhibitor long epsilon-dendrotoxin His55) Dendroaspis angusticeps | 6609.17 | D_angusticeps_T3547 | Kunitz-type serine protease | |
17.1 | 1073.63 | 7+ | 7504.03 | 3SI1B_DENAN (Rho-elapitoxin-Da1b) Dendroaspis angusticeps | 7507.48 | D_angusticeps_T4405 | 3FTx | |
1048.76 | 7+ | 7330.29 | 3NOJ_DENAN (Toxin Tx7335) Dendroaspis angusticeps | 7330.33 | D_angusticeps_T3777 | 3FTx | ||
17.1 | 1045.05 | 59+ | 61,599.77 | Snake venom metalloproteinase | 62,965.82 | D_angusticeps_T0082 | SVMP | |
18.2 | 951.35 | 7+ | 6648.35 | 3SA5_NAJKA (Cytotoxin 5) Naja kaouthia | 6846.95 | N.A. | 3FTx | |
Naja naja | 15.3 | 1116.36 | 7+ | 7803.47 | 3L22_NAJNA (Long neurotoxin 2) Naja naja | 7805.48 | N.A. | 3FTx |
15.7 | 1118.79 | 7+ | 7819.46 | 3L23_NAJNA (Long neurotoxin 3) Naja naja | 7817.54 | N.A. | 3FTx | |
16.3 | 1663.70 | 8+ | 13,293.52 | PA2B3_NAJMO (Basic phospholipase A2 CM-III) Naja mossambica | 13,288.82 | N.A. | PLA2 | |
1678.07 | 8+ | 13,408.51 | PA2A2_NAJME (Acidic phospholipase A2 DE-II) Naja melanoleuca | 13,413.07 | N.A. | PLA2 | ||
16.4 | 972.19 | 7+ | 6795.27 | 3SA4_NAJHA (Cytotoxin 4) Naja haje | 6794.58 | N.A. | 3FTx | |
16.5 | 1482.07 | 9+ | 13,321.59 | PA2A2_NAJNA (Acidic phospholipase A2 2) Naja naja | 13,322.64 | N.A. | PLA2 | |
1474.18 | 9+ | 13,249.27 | PA2B4_NAJNG (Basic phospholipase A2) Naja nigricollis | 13,245.22 | N_naja_T0142_T1042_T2728_T2640_ T2414_T1496_T0668_T2421 | PLA2 | ||
1447.12 | 9+ | 13,007.02 | NGFV_NAJNA (Venom nerve growth factor) Naja naja | 13,008.10 | N.A. | vNGF | ||
1681.58 | 8+ | 13,435.58 | Phospholipase A2 | N.A. | N.A. | PLA2 | ||
16.6 | 1649.45 | 8+ | 13,179.51 | PA2A_NAJAT (Acidic phospholipase A2 natratoxin) Naja atra | 13,174.25 | N.A. | PLA2 | |
1672.58 | 8+ | 13,364.56 | Phospholipase A2 | N.A. | N.A. | PLA2 | ||
16.6 | 2217.76 | 12+ | 26,598.04 | Snake venom metalloproteinase | N.A. | N.A. | SVMP | |
17.2 | 1001.78 | 7+ | 7002.44 | 3SOFL_NAJNA (Cytotoxin like basic protein) Naja naja | 7006.56 | N_naja_T0917 | 3FTx | |
17.4 | 965.91 | 7+ | 6750.33 | 3SAA_NAJNA (Cytotoxin 10) Naja naja 3SA2_NAJNA (Cytotoxin 2) Naja naja | 6751.34 6750.36 | N_naja_T2400_T1263_T0382_T2324 | 3FTx 3FTx | |
963.33 | 7+ | 6733.32 | 3SA3_NAJNA (Cytotoxin 3) Naja naja | 6732.34 | N.A. | 3FTx | ||
17.6 | 969.7+ | 7+ | 6778.33 | 3SA1_NAJNA (Cytotoxin 1) Naja naja 3SA7_NAJNA (Cytotoxin 7) Naja naja 3SA8_NAJNA (Cytotoxin 8) Naja naja | 6778.32 6779.30 6780.28 | N_naja_T0481 | 3FTx 3FTx 3FTx | |
18.3 | 1113.05 | 6+ | 6669.27 | 3SA9_NAJNA (Cytotoxin 9) Naja naja | 6661.77 | N_naja_T2420_T2418_T2687_T1672 | 3FTx | |
Naja pallida | 12.5 | 970.74 | 7+ | 6785.08 | 3SA4_NAJHA (Cytotoxin 4) Naja haje | 6789.37 | N_pallida_T1076 N_pallida_T0738 | 3FTx |
14.9 | 987.35 | 7+ | 6901.42 | Three finger toxins | N.A. | N.A. | 3FTx | |
16.2 | 1478.76 | 9+ | 13,290.79 | (Basic phospholipase A2) Naja pallida | 13,266.83 | N_pallida_T0443 | PLA2 | |
16.4 | 1496.20 | 9+ | 13,205.74 | Phospholipase A2 | N.A. | N.A. | PLA2 | |
1666.72 | 8+ | 13,320.73 | PA2B_NAJPA (Basic phospholipase A2 nigexine) Naja pallida | 13,316.93 | N.A. | PLA2 | ||
963.19 | 7+ | 6732.29 | Three finger toxins | 6731.85 | N_pallida_T2193_T1690 | 3FTx | ||
17.3 | 994.06 | 7+ | 6948.36 | 3S1CB_NAJNA (Cobrotoxin homolog) Naja naja | 6943.98 | N.A. | 3FTx | |
17.5 | 970.34 | 7+ | 6782.34 | 3S11_NAJPA (Short neurotoxin 1) Naja pallida | 6782.10 | N_pallida_T0954 | 3FTx | |
17.8 | 984.77 | 7+ | 6883.39 | 3SA3_NAJMO (Cytotoxin 3) Naja mossambica | 6881.42 | N_pallida_T1038_T1323 | 3FTx | |
18.2 | 975.05 | 7+ | 6815.31 | 3SA1_NAJPA (Cytotoxin 1) Naja pallida | 6814.31 | N_pallida_T1011_T2149_T1010_T0889 | 3FTx | |
Naja nigricollis | 15.6 | 1036.75 | 7+ | 7247.19 | Three-finger toxin | N.A. | N.A. | 3FTx |
16.1 | 1473.65 | 9+ | 13,245.77 | PA2B4_NAJNG (Phospholipase A2 Basic) Naja nigricollis | 13,244.90 | N_nigricollis_T2086_T1848_T3198 | PLA2 | |
16.8 | 1477.42 | 9+ | 13,279.66 | Acidic phospholipase A2 | 13,279.08 | N_nigricollis_T3199_T0053 | PLA2 | |
17.0 | 959.33 | 7+ | 6705.27 | 3SA4_NAJMO (Cytotoxin 4) Naja mossambica | 6702.34 | N.A. | 3FTx | |
975.33 | 7+ | 6816.29 | 3SA1_NAJPA (Cytotoxin 1) Naja pallida | 6814.31 | N_nigricollis_VG_T3171_T1648 | 3FTx | ||
17.2 | 965.90 | 7+ | 6751.26 | 3SA9_NAJNA (Cytotoxin 9) Naja naja | 6570.36 | N.A. | 3FTx | |
1656.97 | 9+ | 13,167.58 | PA2A1_NAJMO (Acidic phospholipase A2 CM-I | 13,195.75 | N.A. | PLA2 | ||
17.4 | 956.17 | 7+ | 6683.20 | 3SAN_NAJNG (Naniproin) Naja nigricollis | 6682.41 | N_nigricollis_VG_T2771 | 3FTx | |
17.7 | 947.48 | 7+ | 6811.32 | 3SA5_NAJAT (Cytotoxin 5) Naja atra | 6810.35 | N.A. | 3FTx | |
18.0 | 984.77 | 7+ | 6883.38 | 3SA3_NAJMO (Cytotoxin 3) Naja mossambica | 6881.42 | N.A. | 3FTx | |
18.4 | 975.05 | 7+ | 6815.31 | 3SA1_NAJMO (Cytotoxin 1) Naja mossambica | 6813.33 | N_nigricollis_VG_T1821_T1178 | 3FTx | |
Naja haje | 14.4 | 963.21 | 8+ | 7692.63 | Three finger toxins | N.A. | N.A. | 3FTx |
16.1 | 1031.16 | 7+ | 7208.09 | 3SI3_NAJMO (Short neurotoxin 3) Naja mossambica | 7210.58 | N.A. | 3FTx | |
16.5 | 1552.38 | 9+ | 13,963.36 | PA2A3_NAJSG (Acidic phospholipase A2 3) Naja sagitifera | 13,955.23 | N.A. | PLA2 | |
16.9 | 981.89 | 7+ | 6863.21 | 3SA2_NAJME (Cytotoxin 2) Naja melanoleuca | 6863.54 | N_haje_T2831_T1704_T3906_T3905_ T0971 | 3FTx | |
17.2 | 967.31 | 7+ | 6761.18 | 3SA5_NAJHH (Cytotoxin 5) Naja haje | 6765.18 | N.A. | 3FTx | |
17.6 | 974.73 | 7+ | 6813.29 | 3SA1_NAJMO (Cytotoxin 1) Naja mossambica | 6813.33 | N.A. | 3FTx | |
17.9 | 979.32 | 7+ | 6845.24 | 3SA2_NAJHA (Cytotoxin 2) Naja haje 3SA5_NAJHA (Cytotoxin 5) Naja haje 3SA6_NAJHA (Cytotoxin 6) Naja haje 3SA7_NAJHA (Cytotoxin 7) Naja haje | 6845.24 6843.27 6844.25 6843.27 | N.A. | 3FTx 3FTx 3FTx 3FTx | |
Hemachatus haemachatus | 15.3 | 1014.45 | 7+ | 7091.10 | 3SUB_DENAN (Muscarinic toxin) Dendroaspis angusticeps | 7092.35 | N.A. | 3FTx |
15.8 | 1501.53 | 9+ | 13,498.76 | PA2B1_HEMHA (Basic phospholipase A2 DE-1) Hemachatus haemachatus | 13,495.94 | H_haemachatus_T1146 | PLA2 | |
15.8 | 1031.22 | 7+ | 7208.50 | Three finger toxins | N.A. | N.A. | 3FTx | |
16.4 | 971.21 | 7+ | 6788.43 | 3S11_NAJPA (Short neurotoxin 1) Naja pallida 3SA4_NAJHA (Cytotoxin 4) Naja haje 3SB2_HEMHA (Cytotoxin 2) Hemachatus haemachatus | 6782.10 6789.37 6787.44 | H_haemachatus_T1235 | 3FTx 3FTx 3FTx | |
16.7 | 977.50 | 7+ | 6832.45 | 3S11_NAJHA (Short neurotoxin 1) Naja haje 3SBH_HEMHA (Three-finger hemachatoxin) Hemachatus haemachatus 3SB1_HEMHA (Cytotoxin 1) Hemachatus haemachatus | 6831.05 6381.45 6831.45 | H_haemachatus_T1274_T1588_T1866_ T1092_T1440_T1175 | 3FTx 3FTx 3FTx | |
18.0 | 972.34 | 7+ | 6795.35 | 3SA8_NAJHA (Cytotoxin 8) Naja haje | 6799.32 | N.A. | 3FTx | |
18.2 | 969.91 | 7+ | 6779.36 | 3SB3_HEMHA (Cytotoxin 3) Hemachatus haemachatus | 6780.32 | N.A. | 3FTx |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arrahman, A.; Kazandjian, T.D.; Still, K.B.M.; Slagboom, J.; Somsen, G.W.; Vonk, F.J.; Casewell, N.R.; Kool, J. A Combined Bioassay and Nanofractionation Approach to Investigate the Anticoagulant Toxins of Mamba and Cobra Venoms and Their Inhibition by Varespladib. Toxins 2022, 14, 736. https://doi.org/10.3390/toxins14110736
Arrahman A, Kazandjian TD, Still KBM, Slagboom J, Somsen GW, Vonk FJ, Casewell NR, Kool J. A Combined Bioassay and Nanofractionation Approach to Investigate the Anticoagulant Toxins of Mamba and Cobra Venoms and Their Inhibition by Varespladib. Toxins. 2022; 14(11):736. https://doi.org/10.3390/toxins14110736
Chicago/Turabian StyleArrahman, Arif, Taline D. Kazandjian, Kristina B. M. Still, Julien Slagboom, Govert W. Somsen, Freek J. Vonk, Nicholas R. Casewell, and Jeroen Kool. 2022. "A Combined Bioassay and Nanofractionation Approach to Investigate the Anticoagulant Toxins of Mamba and Cobra Venoms and Their Inhibition by Varespladib" Toxins 14, no. 11: 736. https://doi.org/10.3390/toxins14110736
APA StyleArrahman, A., Kazandjian, T. D., Still, K. B. M., Slagboom, J., Somsen, G. W., Vonk, F. J., Casewell, N. R., & Kool, J. (2022). A Combined Bioassay and Nanofractionation Approach to Investigate the Anticoagulant Toxins of Mamba and Cobra Venoms and Their Inhibition by Varespladib. Toxins, 14(11), 736. https://doi.org/10.3390/toxins14110736