Botulinum Toxin Intervention in Cerebral Palsy-Induced Spasticity Management: Projected and Contradictory Effects on Skeletal Muscles
Abstract
:1. Introduction
2. Cerebral Palsy-Induced Spasticity and Techniques for Its Management
2.1. Spastic Muscle
2.2. Spasticity Management
3. Mechanism of Botulinum Toxin Administration
4. Effects of BTX-A Administration
4.1. Active Muscle Properties in Relation to Movement
4.2. Passive Muscle Properties
4.3. Muscle Structure, Morphology, and Biochemistry
5. Recent Findings on the Effects of BTX-A
6. Conclusions and Future of BTX-A Use in CP
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Multani, I.; Manji, J.; Tang, M.J.; Herzog, W.; Howard, J.J.; Graham, H.K. Sarcopenia, Cerebral Palsy, and Botulinum Toxin Type A. JBJS Rev. 2019, 7, e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gracies, J.M.; Singer, B.; Dunne, J. The Role of Botulinum Toxin Injections in the Management of Muscle Overactivity of the Lower Limb. Disabil. Rehabil. 2007, 29, 1789–1805. [Google Scholar] [CrossRef] [PubMed]
- Longino, D.; Butterfield, T.A.; Herzog, W. Frequency and Length-Dependent Effects of Botulinum Toxin-Induced Muscle Weakness. J. Biomech. 2005, 38, 609–613. [Google Scholar] [CrossRef]
- Montastruc, J.; Marque, P.; Moulis, F.; Bourg, V.; Lambert, V.; Durrieu, G.; Montastruc, J.L.; Montastruc, F. Adverse Drug Reactions of Botulinum Neurotoxin Type A in Children with Cerebral Palsy: A Pharmaco-Epidemiological Study in VigiBase. Dev. Med. Child. Neurol. 2017, 59, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Rehan Youssef, A.; Longino, D.; Seerattan, R.; Leonard, T.; Herzog, W. Muscle Weakness Causes Joint Degeneration in Rabbits. Osteoarthr. Cartil. 2009, 17, 1228–1235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herzog, W.; Longino, D. The Role of Muscles in Joint Degeneration and Osteoarthritis. J. Biomech. 2007, 40, S54–S63. [Google Scholar] [CrossRef] [PubMed]
- Sätilä, H. Over 25 Years of Pediatric Botulinum Toxin Treatments: What Have We Learned from Injection Techniques, Doses, Dilutions, and Recovery of Repeated Injections? Toxins 2020, 12, 440. [Google Scholar] [CrossRef] [PubMed]
- Gough, M.; Fairhurst, C.; Shortland, A.P. Botulinum Toxin and Cerebral Palsy: Time for Reflection? Dev. Med. Child. Neurol. 2005, 47, 709–712. [Google Scholar] [CrossRef]
- Gough, M.; Shortland, A.P. Could Muscle Deformity in Children with Spastic Cerebral Palsy Be Related to an Impairment of Muscle Growth and Altered Adaptation? Dev. Med. Child. Neurol. 2012, 54, 495–499. [Google Scholar] [CrossRef] [Green Version]
- Laurent, R. Disorders of Skeletal Muscle. In The Musculoskeletal System: Systems of the Body Series; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Bar-On, L.; Molenaers, G.; Aertbeliën, E.; van Campenhout, A.; Feys, H.; Nuttin, B.; Desloovere, K. Spasticity and Its Contribution to Hypertonia in Cerebral Palsy. Biomed. Res. Int. 2015, 2015, 317047. [Google Scholar] [CrossRef]
- Ganguly, J.; Kulshreshtha, D.; Almotiri, M.; Jog, M. Muscle Tone Physiology and Abnormalities. Toxins 2021, 13, 282. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; McCarter, R.; Wright, J.; Beverly, J.; Ramirez-Mitchell, R. Viscoelasticity of the Sarcomere Matrix of Skeletal Muscles. The Titin-Myosin Composite Filament Is a Dual-Stage Molecular Spring. Biophys. J. 1993, 64, 1161–1177. [Google Scholar] [CrossRef] [Green Version]
- Campbell, K.S.; Lakie, M. A Cross-Bridge Mechanism Can Explain the Thixotropic Short-Range Elastic Component of Relaxed Frog Skeletal Muscle. J. Physiol. 1998, 510, 941–962. [Google Scholar] [CrossRef]
- Mukherjee, A.; Chakravarty, A. Spasticity Mechanisms-for the Clinician. Front. Neurol. 2010, 1, 149. [Google Scholar] [CrossRef] [Green Version]
- Lance, J.W. Symposium Synopsis. In Spasticity: Disordered Motor Control; Feldman, R.G., Young, R.R., Koella, W.P., Eds.; Year Book Medical Publishers: Chicago, IL, USA, 1980; pp. 485–494. [Google Scholar]
- Dressler, D.; Bhidayasiri, R.; Bohlega, S.; Chana, P.; Chien, H.F.; Chung, T.M.; Colosimo, C.; Ebke, M.; Fedoroff, K.; Frank, B.; et al. Defining Spasticity: A New Approach Considering Current Movement Disorders Terminology and Botulinum Toxin Therapy. J. Neurol. 2018, 265, 856–862. [Google Scholar] [CrossRef]
- Gracies, J.M.; Bayle, N.; Vinti, M.; Alkandari, S.; Vu, P.; Loche, C.M.; Colas, C. Five-Step Clinical Assessment in Spastic Paresis. Eur. J. Phys. Rehabil. Med. 2010, 46, 411–421. [Google Scholar] [PubMed]
- Multani, I.; Manji, J.; Hastings-Ison, T.; Khot, A.; Graham, K. Botulinum Toxin in the Management of Children with Cerebral Palsy. Pediatric Drugs 2019, 21, 261–281. [Google Scholar] [CrossRef] [Green Version]
- Cosgrove, A.P.; Corry, I.S.; Graham, H.K. Botulinum Toxin in the Management of the Lower Limb in Cerebral Palsy. Dev. Med. Child. Neurol. 1994, 36, 386–396. [Google Scholar] [CrossRef]
- Botte, M.J.; Nickel, V.L.; Akeson, W.H. Spasticity and Contracture. Physiologic Aspects of Formation. Clin. Orthop. Relat. Res. 1988, 233, 7–18. [Google Scholar] [CrossRef]
- O’Dwyer, N.J.; Ada, L. Reflex Hyperexcitability and Muscle Contracture in Relation to Spastic Hypertonia. Curr. Opin. Neurol. 1996, 9, 451–455. [Google Scholar] [CrossRef]
- Nahm, N.J.; Graham, H.K.; Gormley, M.E.; Georgiadis, A.G. Management of Hypertonia in Cerebral Palsy. Curr. Opin. Pediatr. 2018, 30, 57–64. [Google Scholar] [CrossRef]
- Bénard, M.R.; Jaspers, R.T.; Huijing, P.A.; Becher, J.G.; Harlaar, J. Reproducibility of Hand-Held Ankle Dynamometry to Measure Altered Ankle Moment-Angle Characteristics in Children with Spastic Cerebral Palsy. Clinical Biomechanics 2010, 25, 802–808. [Google Scholar] [CrossRef] [PubMed]
- de Bruin, M.; Smeulders, M.J.; Kreulen, M.; Huijing, P.A.; Jaspers, R.T. Intramuscular Connective Tissue Differences in Spastic and Control Muscle: A Mechanical and Histological Study. PLoS ONE 2014, 9, e101038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gracies, J.M. Pathophysiology of Spastic Paresis. I: Paresis and Soft Tissue Changes. Muscle Nerve 2005, 31, 535–551. [Google Scholar] [CrossRef]
- Smith, L.R.; Lee, K.S.; Ward, S.R.; Chambers, H.G.; Lieber, R.L. Hamstring Contractures in Children with Spastic Cerebral Palsy Result from a Stiffer Extracellular Matrix and Increased in Vivo Sarcomere Length. J. Physiol. 2011, 589, 2625–2639. [Google Scholar] [CrossRef] [PubMed]
- Alhusaini, A.A.; Crosbie, J.; Shepherd, R.B.; Dean, C.M.; Scheinberg, A. Mechanical Properties of the Plantarflexor Musculotendinous Unit during Passive Dorsiflexion in Children with Cerebral Palsy Compared with Typically Developing Children. Dev. Med. Child. Neurol. 2010, 52, e101–e106. [Google Scholar] [CrossRef]
- Elder, G.C.B.; Stewart, G.; Cook, K.; Weir, D.; Marshall, A.; Leahey, L. Contributing Factors to Muscle Weakness in Children with Cerebral Palsy. Dev. Med. Child. Neurol. 2003, 45, 542–550. [Google Scholar] [CrossRef]
- Fergusson, D.; Hutton, B.; Drodge, A. The Epidemiology of Major Joint Contractures: A Systematic Review of the Literature. Clin. Orthop. Relat. Res. 2007, 456, 22–29. [Google Scholar] [CrossRef]
- Bax, M.; Goldstein, M.; Rosenbaun, P.; Leviton, A.; Paneth, N.; Dan, B.; Jacobsson, B.; Damiano, D. Proposed Definition and Classification of Cerebral Palsy, April 2005. Dev. Med. Child. Neurol. 2005, 47, 571–576. [Google Scholar] [CrossRef]
- Rosenbaum, P.; Paneth, N.; Leviton, A.; Goldstein, M.; Bax, M. A Report: The Definition and Classification of Cerebral Palsy April 2006. Dev. Med. Child. Neurol. 2007, 109, 8–14. [Google Scholar] [CrossRef]
- Graham, H.K.; Selber, P. Musculoskeletal Aspects of Cerebral Palsy. J. Bone Jt. Surg. 2003, 85, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Cans, C. Surveillance of Cerebral Palsy in Europe: A Collaboration of Cerebral Palsy Surveys and Registers. Dev. Med. Child. Neurol. 2000, 42, 816–824. [Google Scholar] [CrossRef]
- Yeargin-Allsopp, M.; van Braun, K.N.; Doernberg, N.S.; Benedict, R.E.; Kirby, R.S.; Durkin, M.S. Prevalence of Cerebral Palsy in 8-Year-Old Children in Three Areas of the United States in 2002: A Multisite Collaboration. Pediatrics 2008, 121, 547–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanger, T.D.; Delgado, M.R.; Gaebler-Spira, D.; Hallett, M.; Mink, J.W. Classification and Definition of Disorders Causing Hypertonia in Childhood. Pediatrics 2003, 111, e89–e97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howard, J.; Soo, B.; Graham, H.K.; Boyd, R.N.; Reid, S.; Lanigan, A.; Wolfe, R.; Reddihough, D.S. Cerebral Palsy in Victoria: Motor Types, Topography and Gross Motor Function. J. Paediatr. Child Health 2005, 41, 479–483. [Google Scholar] [CrossRef]
- Noble, J.J.; Fry, N.R.; Lewis, A.P.; Keevil, S.F.; Gough, M.; Shortland, A.P. Lower Limb Muscle Volumes in Bilateral Spastic Cerebral Palsy. Brain Dev. 2014, 36, 294–300. [Google Scholar] [CrossRef]
- Fry, N.R.; Gough, M.; Shortland, A.P. Three-Dimensional Realisation of Muscle Morphology and Architecture Using Ultrasound. Gait Posture 2004, 20, 177–182. [Google Scholar] [CrossRef]
- Malaiya, R.; McNee, A.E.; Fry, N.R.; Eve, L.C.; Gough, M.; Shortland, A.P. The Morphology of the Medial Gastrocnemius in Typically Developing Children and Children with Spastic Hemiplegic Cerebral Palsy. J. Electromyogr. Kinesiol. 2007, 17, 657–663. [Google Scholar] [CrossRef]
- Oberhofer, K.; Stott, N.S.; Mithraratne, K.; Anderson, I.A. Subject-Specific Modelling of Lower Limb Muscles in Children with Cerebral Palsy. Clin. Biomech. 2010, 25, 88–94. [Google Scholar] [CrossRef]
- Shortland, A. Muscle Deficits in Cerebral Palsy and Early Loss of Mobility: Can We Learn Something from Our Elders? Dev. Med. Child. Neurol. 2009, 51, 59–63. [Google Scholar] [CrossRef]
- Barber, L.; Hastings-Ison, T.; Baker, R.; Barrett, R.; Lichtwark, G. Medial Gastrocnemius Muscle Volume and Fascicle Length in Children Aged 2 to 5years with Cerebral Palsy. Dev. Med. Child. Neurol. 2011, 53, 543–548. [Google Scholar] [CrossRef] [PubMed]
- Handsfield, G.G.; Meyer, C.H.; Abel, M.F.; Blemker, S.S. Heterogeneity of Muscle Sizes in the Lower Limbs of Children with Cerebral Palsy. Muscle Nerve 2016, 53, 933–945. [Google Scholar] [CrossRef] [PubMed]
- Schless, S.H.; Cenni, F.; Bar-On, L.; Hanssen, B.; Goudriaan, M.; Papageorgiou, E.; Aertbeliën, E.; Molenaers, G.; Desloovere, K. Combining Muscle Morphology and Neuromotor Symptoms to Explain Abnormal Gait at the Ankle Joint Level in Cerebral Palsy. Gait Posture 2019, 68, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Haberfehlner, H.; Jaspers, R.T.; Rutz, E.; Becher, J.G.; Harlaar, J.; van der Sluijs, J.A.; Witbreuk, M.M.; Romkes, J.; Freslier, M.; Brunner, R.; et al. Knee Moment-Angle Characteristics and Semitendinosus Muscle Morphology in Children with Spastic Paresis Selected for Medial Hamstring Lengthening. PLoS ONE 2016, 11, e0166401. [Google Scholar] [CrossRef] [Green Version]
- Barrett, R.S.; Lichtwark, G.A. Gross Muscle Morphology and Structure in Spastic Cerebral Palsy: A Systematic Review. Dev. Med. Child. Neurol. 2010, 52, 794–804. [Google Scholar] [CrossRef]
- Herskind, A.; Ritterband-Rosenbaum, A.; Willerslev-Olsen, M.; Lorentzen, J.; Hanson, L.; Lichtwark, G.; Nielsen, J.B. Muscle Growth Is Reduced in 15-Month-Old Children with Cerebral Palsy. Dev. Med. Child. Neurol. 2016, 58, 485–491. [Google Scholar] [CrossRef]
- Moreau, N.G.; Teefey, S.A.; Damiano, D.L. In Vivo Muscle Architecture and Size of the Rectus Femoris and Vastus Lateralis in Children and Adolescents with Cerebral Palsy. Dev. Med. Child. Neurol. 2009, 51, 800–806. [Google Scholar] [CrossRef] [Green Version]
- Bandholm, T.; Magnusson, P.; Jensen, B.R.; Sonne-Holm, S. Dorsiflexor Muscle-Group Thickness in Children with Cerebral Palsy: Relation to Cross-Sectional Area. NeuroRehabilitation 2009, 24, 299–306. [Google Scholar] [CrossRef]
- Mohagheghi, A.A.; Khan, T.; Meadows, T.H.; Giannikas, K.; Baltzopoulos, V.; Maganaris, C.N. Differences in Gastrocnemius Muscle Architecture between the Paretic and Non-Paretic Legs in Children with Hemiplegic Cerebral Palsy. Clin. Biomech. 2007, 22, 718–724. [Google Scholar] [CrossRef]
- Pitcher, C.A.; Elliott, C.M.; Valentine, J.P.; Stannage, K.; Williams, S.A.; Shipman, P.J.; Reid, S.L. Muscle Morphology of the Lower Leg in Ambulant Children with Spastic Cerebral Palsy. Muscle Nerve 2018, 58, 818–823. [Google Scholar] [CrossRef]
- Lieber, R.L.; Fridén, J. Functional and Clinical Significance of Skeletal Muscle Architecture. Muscle Nerve 2000, 23, 1647–1666. [Google Scholar] [CrossRef]
- Mohagheghi, A.A.; Khan, T.; Meadows, T.H.; Giannikas, K.; Baltzopoulos, V.; Maganaris, C.N. In Vivo Gastrocnemius Muscle Fascicle Length in Children with and without Diplegic Cerebral Palsy. Dev. Med. Child. Neurol. 2008, 50, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Shortland, A.P.; Harris, C.A.; Gough, M.; Robinson, R.O. Architecture of the Medial Gastrocnemius in Children with Spastic Diplegia. Dev. Med. Child. Neurol. 2002, 44, 158–163. [Google Scholar] [CrossRef] [Green Version]
- Fry, N.R.; Gough, M.; McNee, A.E.; Shortland, A.P. Changes in the Volume and Length of the Medial Gastrocnemius after Surgical Recession in Children with Spastic Diplegic Cerebral Palsy. J. Pediatric Orthop. 2007, 27, 769–774. [Google Scholar] [CrossRef]
- Fry, N.R.; Childs, C.R.; Eve, L.C.; Gough, M.; Robinson, R.O.; Shortland, A.P. Accurate Measurement of Muscle Belly Length in the Motion Analysis Laboratory: Potential for the Assessment of Contracture. Gait Posture 2003, 17, 769–774. [Google Scholar] [CrossRef]
- Magnusson, S.P.; Hansen, P.; Kjær, M. Tendon Properties in Relation to Muscular Activity and Physical Training. Scand. J. Med. Sci. Sports 2003, 13, 211–223. [Google Scholar] [CrossRef]
- Barber, L.; Barrett, R.; Lichtwark, G. Medial Gastrocnemius Muscle Fascicle Active Torque-Length and Achilles Tendon Properties in Young Adults with Spastic Cerebral Palsy. J. Biomech. 2012, 45, 2526–2530. [Google Scholar] [CrossRef]
- Wren, T.A.L.; Cheatwood, A.P.; Rethlefsen, S.A.; Hara, R.; Perez, F.J.; Kay, R.M. Achilles Tendon Length and Medial Gastrocnemius Architecture in Children with Cerebral Palsy: And Equinus Gait. J. Pediatric Orthop. 2010, 30, 479–484. [Google Scholar] [CrossRef] [Green Version]
- Kruse, A.; Schranz, C.; Tilp, M.; Svehlik, M. Muscle and Tendon Morphology Alterations in Children and Adolescents with Mild Forms of Spastic Cerebral Palsy. BMC Pediatr. 2018, 18, 156. [Google Scholar] [CrossRef] [Green Version]
- Edwards, R.H.T. Physiological Analysis of Skeletal Muscle Weakness and Fatigue. Clin. Sci. Mol. Med. 1978, 54, 463–470. [Google Scholar] [CrossRef]
- Mockford, M.; Caulton, J.M. The Pathophysiological Basis of Weakness in Children with Cerebral Palsy. Pediatr. Phys. Ther. 2010, 22, 222–233. [Google Scholar] [CrossRef]
- van der Krogt, M.M.; Delp, S.L.; Schwartz, M.H. How Robust Is Human Gait to Muscle Weakness? Gait Posture 2012, 36, 113–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanssen, B.; Peeters, N.; Vandekerckhove, I.; de Beukelaer, N.; Bar-On, L.; Molenaers, G.; van Campenhout, A.; Degelaen, M.; van den Broeck, C.; Calders, P.; et al. The Contribution of Decreased Muscle Size to Muscle Weakness in Children with Spastic Cerebral Palsy. Front. Neurol. 2021, 12, 692582. [Google Scholar] [CrossRef]
- Goudriaan, M.; Nieuwenhuys, A.; Schless, S.H.; Goemans, N.; Molenaers, G.; Desloovere, K. A New Strength Assessment to Evaluate the Association between Muscle Weakness and Gait Pathology in Children with Cerebral Palsy. PLoS ONE 2018, 13, e0191097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papageorgiou, E.; Simon-Martinez, C.; Molenaers, G.; Ortibus, E.; van Campenhout, A.; Desloovere, K. Are Spasticity, Weakness, Selectivity, and Passive Range of Motion Related to Gait Deviations in Children with Spastic Cerebral Palsy? A Statistical Parametric Mapping Study. PLoS ONE 2019, 14, e0223363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stackhouse, S.K.; Binder-Macleod, S.A.; Lee, S.C.K. Voluntary Muscle Activation, Contractile Properties, and Fatigability in Children with and without Cerebral Palsy. Muscle Nerve 2005, 31, 594–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damiano, D.L.; Martellotta, T.L.; Sullivan, D.J.; Granata, K.P.; Abel, M.F. Muscle Force Production and Functional Performance in Spastic Cerebral Palsy: Relationship of Cocontraction. Arch. Phys. Med. Rehabil. 2000, 81, 895–900. [Google Scholar] [CrossRef]
- Unnithan, V.B.; Dowling, J.J.; Frost, G.; Bar-Or, O. Role of Cocontraction in the O2 Cost of Walking in Children with Cerebral Palsy. Med. Sci. Sports Exerc. 1996, 28, 1498–1504. [Google Scholar] [CrossRef]
- Ates, F.; Temelli, Y.; Yucesoy, C.A. Intraoperative Experiments Show Relevance of Inter-Antagonistic Mechanical Interaction for Spastic Muscle’s Contribution to Joint Movement Disorder. Clin. Biomech. 2014, 29, 943–949. [Google Scholar] [CrossRef]
- Ates, F.; Temelli, Y.; Yucesoy, C.A. Effects of Antagonistic and Synergistic Muscles’ Co-Activation on Mechanics of Activated Spastic Semitendinosus in Children with Cerebral Palsy. Hum. Mov. Sci. 2018, 57, 103–110. [Google Scholar] [CrossRef]
- Kaya, C.S.; Bilgili, F.; Akalan, N.E.; Temelli, Y.; Ateş, F.; Yucesoy, C.A. Intraoperative Experiments Combined with Gait Analyses Indicate That Active State Rather than Passive Dominates the Spastic Gracilis Muscle’s Joint Movement Limiting Effect in Cerebral Palsy. Clin. Biomech. 2019, 68, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Kaya, C.S.; Bilgili, F.; Akalan, N.E.; Yucesoy, C.A. Intraoperative Testing of Passive and Active State Mechanics of Spastic Semitendinosus in Conditions Involving Intermuscular Mechanical Interactions and Gait Relevant Joint Positions. J. Biomech. 2020, 103, 10955. [Google Scholar] [CrossRef] [PubMed]
- Vaz, D.V.; Cotta Mancini, M.; Fonseca, S.T.; Vieira, D.S.R.; Eustáquio de Melo Pertence, A. Muscle Stiffness and Strength and Their Relation to Hand Function in Children with Hemiplegic Cerebral Palsy. Dev. Med. Child. Neurol. 2006, 48, 728–733. [Google Scholar] [CrossRef]
- Kwon, D.R.; Park, G.Y.; Lee, S.U.; Chung, I. Spastic Cerebral Palsy in Children: Dynamic Sonoelastographic Findings of Medial Gastrocnemius. Radiology 2012, 263, 794–801. [Google Scholar] [CrossRef] [PubMed]
- Brandenburg, J.E.; Eby, S.F.; Song, P.; Kingsley-Berg, S.; Bamlet, W.; Sieck, G.C.; An, K.N. Quantifying Passive Muscle Stiffness in Children with and without Cerebral Palsy Using Ultrasound Shear Wave Elastography. Dev. Med. Child. Neurol. 2016, 58, 1288–1294. [Google Scholar] [CrossRef] [Green Version]
- Lallemant-Dudek, P.; Vergari, C.; Dubois, G.; Forin, V.; Vialle, R.; Skalli, W. Ultrasound Shearwave Elastography to Characterize Muscles of Healthy and Cerebral Palsy Children. Sci. Rep. 2021, 11, 3577. [Google Scholar] [CrossRef]
- Booth, C.M.; Cortina-Borja, M.J.F.; Theologis, T.N. Collagen Accumulation in Muscles of Children with Cerebral Palsy and Correlation with Severity of Spasticity. Dev. Med. Child. Neurol. 2001, 43, 314–320. [Google Scholar] [CrossRef]
- Fridén, J.; Lieber, R.L. Spastic Muscle Cells Are Shorter and Stiffer than Normal Cells. Muscle Nerve 2003, 27, 157–164. [Google Scholar] [CrossRef]
- Damiano, D.L.; Alter, K.E.; Chambers, H. New Clinical and Research Trends in Lower Extremity Management for Ambulatory Children with Cerebral Palsy. Phys. Med. Rehabil. Clin. N. Am. 2009, 20, 469–491. [Google Scholar] [CrossRef] [Green Version]
- Strobl, W.; Theologis, T.; Brunner, R.; Kocer, S.; Viehweger, E.; Pascual-Pascual, I.; Placzek, R. Best Clinical Practice in Botulinum Toxin Treatment for Children with Cerebral Palsy. Toxins 2015, 7, 1629–1648. [Google Scholar] [CrossRef]
- Park, E.S.; Park, C.I.; Lee, H.J.; Cho, Y.S. The Effect of Electrical Stimulation on the Trunk Control in Young Children with Spastic Diplegic Cerebral Palsy. J. Korean Med. Sci. 2001, 16, 347–350. [Google Scholar] [CrossRef] [PubMed]
- Badawy, W.M.; Ibrahem, M.B.; Shawky, K.M. The Effect of Kinesio Taping on Seated Postural Control in Spastic Diplegic Cerebral Palsy Children. Med. J. Cairo Univ. 2015, 83, 37–44. [Google Scholar]
- Dewar, R.; Love, S.; Johnston, L.M. Exercise Interventions Improve Postural Control in Children with Cerebral Palsy: A Systematic Review. Dev. Med. Child. Neurol. 2015, 57, 504–520. [Google Scholar] [CrossRef] [PubMed]
- Morgan, C.; Darrah, J.; Gordon, A.M.; Harbourne, R.; Spittle, A.; Johnson, R.; Fetters, L. Effectiveness of Motor Interventions in Infants with Cerebral Palsy: A Systematic Review. Dev. Med. Child. Neurol. 2016, 58, 900–909. [Google Scholar] [CrossRef] [Green Version]
- Inamdar, K.; Molinini, R.M.; Panibatla, S.T.; Chow, J.C.; Dusing, S.C. Physical Therapy Interventions to Improve Sitting Ability in Children with or At-Risk for Cerebral Palsy: A Systematic Review and Meta-Analysis. Dev. Med. Child. Neurol. 2021, 63, 396–406. [Google Scholar] [CrossRef]
- Kalkman, B.M.; Bar-On, L.; Cenni, F.; Maganaris, C.N.; Bass, A.; Holmes, G.; Desloovere, K.; Barton, G.J.; O’Brien, T.D. Medial Gastrocnemius Muscle Stiffness Cannot Explain the Increased Ankle Joint Range of Motion Following Passive Stretching in Children with Cerebral Palsy. Exp. Physiol. 2018, 103, 350–357. [Google Scholar] [CrossRef]
- Aye, T.; Thein, S.; Hlaing, T. Effects of Strength Training Program on Hip Extensors and Knee Extensors Strength of Lower Limb in Children with Spastic Diplegic Cerebral Palsy. J. Phys. Ther. Sci. 2016, 28, 671–676. [Google Scholar] [CrossRef] [Green Version]
- Dodd, K.J.; Taylor, N.F.; Graham, H.K. A Randomized Clinical Trial of Strength Training in Young People with Cerebral Palsy. Dev. Med. Child. Neurol. 2003, 45, 652–657. [Google Scholar] [CrossRef]
- Arpino, C.; Vescio, M.F.; de Luca, A.; Curatolo, P. Efficacy of Intensive versus Nonintensive Physiotherapy in Children with Cerebral Palsy: A Meta-Analysis. Int. J. Rehabil. Res. 2010, 33, 161–171. [Google Scholar] [CrossRef] [Green Version]
- Moreau, N.G.; Bodkin, A.W.; Bjornson, K.; Hobbs, A.; Soileau, M.; Lahasky, K. Effectiveness of Rehabilitation Interventions to Improve Gait Speed in Children with Cerebral Palsy: Systematic Review and Meta-Analysis. Phys. Ther. 2016, 96, 1938–1954. [Google Scholar] [CrossRef] [Green Version]
- McNee, A.E.; Will, E.; Lin, J.P.; Eve, L.C.; Gough, M.; Morrissey, M.C.; Shortland, A.P. The Effect of Serial Casting on Gait in Children with Cerebral Palsy: Preliminary Results from a Crossover Trial. Gait Posture 2007, 25, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Morris, C.; Newdick, H.; Johnson, A. Variations in the Orthotic Management of Cerebral Palsy. Child Care Health Dev. 2002, 28, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Wiart, L.; Darrah, J.; Kembhavi, G. Stretching with Children with Cerebral Palsy: What Do We Know and Where Are We Going? Pediatr. Phys. Ther. 2008, 20, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Damiano, D.L.; Dejong, S.L. A Systematic Review of the Effectiveness of Treadmill Training and Body Weight Support in Pediatric Rehabilitation. J. Neurol. Phys. Ther. 2009, 33, 27–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crenshaw, S.; Herzog, R.; Castagno, P.; Richards, J.; Miller, F.; Michaloski, G.; Moran, E. The Efficacy of Tone-Reducing Features in Orthotics on the Gait of Children with Spastic Diplegic Cerebral Palsy. J. Pediatric Orthop. 2000, 20, 210–216. [Google Scholar] [CrossRef]
- Scianni, A.; Butler, J.M.; Ada, L.; Teixeira-Salmela, L.F. Muscle Strengthening Is Not Effective in Children and Adolescents with Cerebral Palsy: A Systematic Review. Aust. J. Physiother. 2009, 55, 81–87. [Google Scholar] [CrossRef] [Green Version]
- Gharib, N.M.M.; Abd El-Maksoud, G.M.; Rezk-Allah, S.S. Efficacy of Gait Trainer as an Adjunct to Traditional Physical Therapy on Walking Performance in Hemiparetic Cerebral Palsied Children: A Randomized Controlled Trial. Clin. Rehabil. 2011, 25, 924–934. [Google Scholar] [CrossRef]
- Peacock, W.J.; Arens, L.J. Selective Posterior Rhizotomy for the Relief of Spasticity in Cerebral Palsy. S. Afr. Med. J. 1982, 62, 119–124. [Google Scholar]
- Langerak, N.G.; Lamberts, R.P.; Fieggen, A.G.; Peter, J.C.; van der Merwe, L.; Peacock, W.J.; Vaughan, C.L. A Prospective Gait Analysis Study in Patients with Diplegic Cerebral Palsy 20 Years after Selective Dorsal Rhizotomy. J. Neurosurg. Pediatr. 2008, 1, 180–186. [Google Scholar] [CrossRef]
- Steinbok, P. Outcomes after Selective Dorsal Rhizotomy for Spastic Cerebral Palsy. Child’s Nerv. Syst. 2001, 17, 1–18. [Google Scholar] [CrossRef]
- Trost, J.P.; Schwartz, M.H.; Krach, L.E.; Dunn, M.E.; Novacheck, T.F. Comprehensive Short-Term Outcome Assessment of Selective Dorsal Rhizotomy. Dev. Med. Child. Neurol. 2008, 50, 765–771. [Google Scholar] [CrossRef] [PubMed]
- Grunt, S.; Becher, J.G.; Vermeulen, R.J. Long-Term Outcome and Adverse Effects of Selective Dorsal Rhizotomy in Children with Cerebral Palsy: A Systematic Review. Dev. Med. Child. Neurol. 2011, 53, 490–498. [Google Scholar] [CrossRef] [PubMed]
- Ates, F.; Brandenburg, J.E.; Kaufman, K.R. Effects of Selective Dorsal Rhizotomy on Ankle Joint Function in Patients With Cerebral Palsy. Front. Pediatr. 2020, 8, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tedroff, K.; Löwing, K.; Jacobson, D.N.O.; Åström, E. Does Loss of Spasticity Matter? A 10-Year Follow-up after Selective Dorsal Rhizotomy in Cerebral Palsy. Dev. Med. Child. Neurol. 2011, 53, 724–729. [Google Scholar] [CrossRef]
- Koman, L.A.; Smith, B.P.; Shilt, J.S. Cerebral Palsy. Lancet 2004, 363, 1619–1631. [Google Scholar] [CrossRef]
- Ward, A.B. A Summary of Spasticity Management—A Treatment Algorithm. Eur. J. Neurol. 2002, 9, 48–52. [Google Scholar] [CrossRef]
- Fairhurst, C. Cerebral Palsy: The Whys and Hows. Arch. Dis. Child. Educ. Pract. 2012, 97, 122–131. [Google Scholar] [CrossRef] [Green Version]
- McManus, M. Medical Management of Spasticity in Children with Cerebral Palsy. In Cerebral Palsy; Miller, F., Bachrach, S., Lennon, N., O’Neil, M., Eds.; Springer International Publishing: Cham, Switzerland, 2019. [Google Scholar]
- Massagli, T.L. Spasticity and Its Management in Children. Phys. Med. Rehabil. Clin. N. Am. 1991, 2, 867–889. [Google Scholar] [CrossRef]
- Watanabe, T.K. Role of Oral Medications in Spasticity Management. PM R 2009, 1, 839–841. [Google Scholar] [CrossRef]
- Leland Albright, A. Intrathecal Baclofen in Cerebral Palsy Movement Disorders. J. Child. Neurol. 1996, 11, S29–S35. [Google Scholar] [CrossRef]
- Papavasiliou, A.S. Management of Motor Problems in Cerebral Palsy: A Critical Update for the Clinician. Eur. J. Paediatr. Neurol. 2009, 13, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, E.B.; Seitz, D.G. Intramuscular Alcohol as an Aid in Management of Spastic Cerebral Palsy. Dev. Med. Child. Neurol. 1980, 22, 497–501. [Google Scholar] [CrossRef] [PubMed]
- Mooney, V.; Frykman, G.; McLamb, J. Current Status of Intraneural Phenol Injections. Clin. Orthop. Relat. Res. 1969, 63, 122–131. [Google Scholar] [CrossRef]
- Kirazli, Y.; On, A.Y.; Kismali, B.; Aksit, R. Comparison of Phenol Block and Botulinus Toxin Type a in the Treatment of Spastic Foot after Stroke: A Randomized, Double-Blind Trial. Am. J. Phys. Med. Rehabil. 1998, 77, 510–515. [Google Scholar] [CrossRef] [PubMed]
- Franki, I.; Bar-On, L.; Molenaers, G.; van Campenhout, A.; Craenen, K.; Desloovere, K.; Feys, H.; Pauwels, P.; de Cat, J.; Ortibus, E. Tone Reduction and Physical Therapy: Strengthening Partners in Treatment of Children with Spastic Cerebral Palsy. Neuropediatrics 2020, 51, 89–104. [Google Scholar] [CrossRef] [PubMed]
- Koman, L.A.; Mooney, J.F.; Smith, B.; Goodman, A.; Mulvaney, T. Management of Cerebral Palsy with Botulinum-a Toxin: Preliminary Investigation. J. Pediatric Orthop. 1993, 13, 489–495. [Google Scholar] [CrossRef]
- Heinen, F.; Desloovere, K.; Schroeder, A.S.; Berweck, S.; Borggraefe, I.; van Campenhout, A.; Andersen, G.L.; Aydin, R.; Becher, J.G.; Bernert, G.; et al. The Updated European Consensus 2009 on the Use of Botulinum Toxin for Children with Cerebral Palsy. Eur. J. Paediatr. Neurol. 2010, 1, 45–66. [Google Scholar] [CrossRef]
- Heinen, F.; Molenaers, G.; Fairhurst, C.; Carr, L.J.; Desloovere, K.; Chaleat Valayer, E.; Morel, E.; Papavassiliou, A.S.; Tedroff, K.; Ignacio Pascual-Pascual, S.; et al. European Consensus Table 2006 on Botulinum Toxin for Children with Cerebral Palsy. Eur. J. Paediatr. Neurol. 2006, 10, 215–225. [Google Scholar] [CrossRef]
- Love, S.C.; Novak, I.; Kentish, M.; Desloovere, K.; Heinen, F.; Molenaers, G.; O’Flaherty, S.; Graham, H.K. Botulinum Toxin Assessment, Intervention and after-Care for Lower Limb Spasticity in Children with Cerebral Palsy: International Consensus Statement. Eur. J. Neurol. 2010, 17, 9–37. [Google Scholar] [CrossRef]
- Graham, H.K.; Aoki, K.R.; Autti-Rämö, I.; Boyd, R.N.; Delgado, M.R.; Gaebler-Spira, D.J.; Gormley, M.E.; Guyer, B.M.; Heinen, F.; Holton, A.F.; et al. Recommendations for the Use of Botulinum Toxin Type A in the Management of Cerebral Palsy. Gait Posture 2000, 11, 67–79. [Google Scholar] [CrossRef]
- Placzek, R.; Siebold, D.; Funk, J.F. Development of Treatment Concepts for the Use of Botulinum Toxin A in Children with Cerebral Palsy. Toxins 2010, 2, 2258–2271. [Google Scholar] [CrossRef] [PubMed]
- Friedman, B.C.; Goldman, R.D. Use of Botulinum Toxin A in Management of Children with Cerebral Palsy. Can. Fam. Physician 2011, 57, 1006–1073. [Google Scholar] [PubMed]
- Nolan, K.W.; Cole, L.L.; Liptak, G.S. Use of Botulinum Toxin Type A in Children with Cerebral Palsy. Phys. Ther. 2006, 86, 573–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almina, S.; Karile, Y.; Audrone, P.; Indre, B. Analgesic Effect of Botulinum Toxin in Children with Cerebral Palsy: A Systematic Review. Toxicon 2021, 199, 60–67. [Google Scholar] [CrossRef]
- Ostojic, K.; Paget, S.; Kyriagis, M.; Morrow, A. Acute and Chronic Pain in Children and Adolescents With Cerebral Palsy: Prevalence, Interference, and Management. Arch. Phys. Med. Rehabil. 2020, 101, 213–219. [Google Scholar] [CrossRef]
- Ramstad, K.; Jahnsen, R.; Skjeldal, O.H.; Diseth, T.H. Mental Health, Health Related Quality of Life and Recurrent Musculoskeletal Pain in Children with Cerebral Palsy 8–18 Years Old. Disabil. Rehabil. 2012, 34, 1589–1595. [Google Scholar] [CrossRef]
- Dickinson, H.O.; Parkinson, K.N.; Ravens-Sieberer, U.; Schirripa, G.; Thyen, U.; Arnaud, C.; Beckung, E.; Fauconnier, J.; McManus, V.; Michelsen, S.I.; et al. Self-Reported Quality of Life of 8-12-Year-Old Children with Cerebral Palsy: A Cross-Sectional European Study. Lancet 2007, 369, 2171–2178. [Google Scholar] [CrossRef]
- Barwood, S.; Baillieu, C.; Boyd, R.; Brereton, K.; Low, J.; Nattrass, G.; Graham, H.K. Analgesic Effects of Botulinum Toxin A: A Randomized, Placebo-Controlled Clinical Trial. Dev. Med. Child. Neurol. 2000, 42, 116–121. [Google Scholar] [CrossRef]
- Wong, C.; Westphall, I.; Michelsen, J.S. Measuring Effects on Pain and Quality of Life after Abobotulinum Toxin A Injections in Children with Cerebral Palsy. Toxins 2022, 14, 43. [Google Scholar] [CrossRef]
- Turner-Stokes, L.; Ashford, S.; Jacinto, J.; Maisonobe, P.; Balcaitiene, J.; Fheodoroff, K. Impact of Integrated Upper Limb Spasticity Management Including Botulinum Toxin A on Patient-Centred Goal Attainment: Rationale and Protocol for an International Prospective, Longitudinal Cohort Study (ULIS-III). BMJ Open 2016, 6, e011157. [Google Scholar] [CrossRef] [Green Version]
- Michelsen, J.S.; Normann, G.; Wong, C. Analgesic Effects of Botulinum Toxin in Children with CP. Toxins 2018, 10, 162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edgar, T.S. Clinical Utility of Botulinum Toxin in the Treatment of Cerebral Palsy: Comprehensive Review. J. Child. Neurol. 2001, 16, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Boyd, R.; Graham, H.K. Botulinum Toxin A in the Management of Children with Cerebral Palsy: Indications and Outcome. Eur. J. Neurol. 1997, 4, S15–S22. [Google Scholar]
- Kahraman, A.; Seyhan, K.; Değer, Ü.; Kutlutürk, S.; Mutlu, A. Should Botulinum Toxin A Injections Be Repeated in Children with Cerebral Palsy? A Systematic Review. Dev. Med. Child. Neurol. 2016, 58, 910–917. [Google Scholar] [CrossRef] [Green Version]
- Desloovere, K.; Molenaers, G.; de Cat, J.; Pauwels, P.; van Campenhout, A.; Ortibus, E.; Fabry, G.; de Cock, P. Motor Function Following Multilevel Botulinum Toxin Type A Treatment in Children with Cerebral Palsy. Dev. Med. Child. Neurol. 2007, 49, 56–61. [Google Scholar] [CrossRef] [Green Version]
- Rosales, R.L.; Dressler, D. Introductory Chapter: Botulinum Toxin Type A Therapy in Dystonia and Spasticity-What Are Current Practical Applications? In Botulinum Toxin Therapy Manual for Dystonia and Spasticity; IntechOpen: London, UK, 2016. [Google Scholar]
- Molenaers, G.; van Campenhout, A.; Fagard, K.; de Cat, J.; Desloovere, K. The Use of Botulinum Toxin A in Children with Cerebral Palsy, with a Focus on the Lower Limb. J. Child. Orthop. 2010, 4, 183–195. [Google Scholar] [CrossRef] [Green Version]
- Molenaers, G.; Desloovere, K.; de Cat, J.; Jonkers, I.; de Borre, L.; Pauwels, P.; Nijs, J.; Fabry, G.; de Cock, P. Single Event Multilevel Botulinum Toxin Type A Treatment and Surgery: Similarities and Differences. Eur. J. Neurol. 2001, 8, 88–97. [Google Scholar] [CrossRef]
- Desloovere, K.; Schörkhuber, V.; Fagard, K.; van Campenhout, A.; de Cat, J.; Pauwels, P.; Ortibus, E.; de Cock, P.; Molenaers, G. Botulinum Toxin Type A Treatment in Children with Cerebral Palsy: Evaluation of Treatment Success or Failure by Means of Goal Attainment Scaling. Eur. J. Paediatr. Neurol. 2012, 16, 229–236. [Google Scholar] [CrossRef]
- Ahnert-Hilger, G.; Bigalke, H. Molecular Aspects of Tetanus and Botulinum Neurotoxin Poisoning. Prog. Neurobiol. 1995, 46, 83–96. [Google Scholar] [CrossRef]
- Aoki, K.R. Immunologic and Other Properties of Therapeutic Botulinum Toxin Serotypes. In Scientific and Therapeutic Aspects of Botulinum Toxin; Brin, M.F., Mallett M, J.J., Eds.; Lippincott Williams and Wilkins: Philadelphia, PA, USA, 2002; pp. 103–113. ISBN 9780781732673. [Google Scholar]
- Aoki, K.R.; Guyer, B. Botulinum Toxin Type A and Other Botulinum Toxin Serotypes: A Comparative Review of Biochemical and Pharmacological Actions. Eur. J. Neurol. 2001, 8, 21–29. [Google Scholar] [CrossRef]
- Kareem, A.A. Use of Botulinum Toxin A in Cerebral Palsy. In Cerebral Palsy-Clinical and Therapeutic Aspects; Al-Zwaini, I.J., Ed.; IntechOpen: London, UK, 2018; pp. 95–112. [Google Scholar]
- Blasi, J.; Chapman, E.R.; Link, E.; Binz, T.; Yamasaki, S.; de Camilli, P.; Südhof, T.C.; Niemann, H.; Jahn, R. Botulinum Neurotoxin a Selectively Cleaves the Synaptic Protein SNAP-25. Nature 1993, 365, 160–163. [Google Scholar] [CrossRef]
- Brin, M.F. Botulinum Toxin: Chemistry, Pharmacology, Toxicity, and Immunology. Muscle Nerve 1997, 6, 146–168. [Google Scholar] [CrossRef]
- Dolly, J.O.; de Paiva, A.; Foran, P.; Lawrence, G.; Daniels-Holgate, P.; Ashton, A.C. Probing the Process of Transmitter Release with Botulinum and Tetanus Neurotoxins. Semin. Neurosci. 1994, 6, 149–158. [Google Scholar] [CrossRef]
- Esquenazi, A.; Mayer, N. Botulinum Toxin for the Management of Muscle Overactivity and Spasticity after Stroke. Curr. Atheroscler. Rep. 2001, 3, 295–298. [Google Scholar] [CrossRef] [PubMed]
- Simpson, L.L. Current Concepts on the Mechanism of Action of Clostridial Neurotoxins. In Botulinum and Tetanus Neurotoxins; DasGupta, B.R., Ed.; Springer: Boston, MA, USA, 1993; pp. 5–15. [Google Scholar]
- de Paiva, A.; Meunier, F.A.; Molgó, J.; Aoki, K.R.; Dolly, J.O. Functional Repair of Motor Endplates after Botulinum Neurotoxin Type A Poisoning: Biphasic Switch of Synaptic Activity between Nerve Sprouts and Their Parent Terminals. Proc. Natl. Acad. Sci. USA 1999, 96, 3200–3205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kessler, K.R.; Benecke, R. Botulinum Toxin: From Poison to Remedy. Neurotoxicology 1997, 18, 761–770. [Google Scholar]
- Phadke, C.P.; On, A.Y.; Kirazli, Y.; Ismail, F.; Boulias, C. Intrafusal Effects of Botulinum Toxin Injections for Spasticity: Revisiting a Previous Paper. Neurosci. Lett. 2013, 541, 20–23. [Google Scholar] [CrossRef]
- Frascarelli, F.; di Rosa, G.; Bisozzi, E.; Castelli, E.; Santilli, V. Neurophysiological Changes Induced by the Botulinum Toxin Type A Injection in Children with Cerebral Palsy. Eur. J. Paediatr. Neurol. 2011, 15, 59–64. [Google Scholar] [CrossRef]
- Byrnes, M.L.; Thickbroom, G.W.; Wilson, S.A.; Sacco, P.; Shipman, J.M.; Stell, R.; Mastaglia, F.L. The Corticomotor Representation of Upper Limb Muscles in Writer’s Cramp and Changes Following Botulinum Toxin Injection. Brain 1998, 121, 977–988. [Google Scholar] [CrossRef]
- Filippi, G.M.; Errico, P.; Santarelli, R.; Bagolini, B.; Manni, E. Botulinum a Toxin Effects on Rat Jaw Muscle Spindles. Acta Oto-Laryngol. 1993, 113, 400–404. [Google Scholar] [CrossRef]
- Yaraskavitch, M.; Leonard, T.; Herzog, W. Botox Produces Functional Weakness in Non-Injected Muscles Adjacent to the Target Muscle. J. Biomech. 2008, 41, 897–902. [Google Scholar] [CrossRef] [PubMed]
- Kaya, C.S.; Yılmaz, E.O.; Akdeniz-Doğan, Z.D.; Yucesoy, C.A. Long-Term Effects With Potential Clinical Importance of Botulinum Toxin Type-A on Mechanics of Muscles Exposed. Front. Bioeng. Biotechnol. 2020, 8, 738. [Google Scholar] [CrossRef] [PubMed]
- Yucesoy, C.A.; Ates, F. BTX-A Has Notable Effects Contradicting Some Treatment Aims in the Rat Triceps Surae Compartment, Which Are Not Confined to the Muscles Injected. J. Biomech. 2018, 66, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Yucesoy, C.A.; Emre Arikan, Ö.; Ates, F. BTX-A Administration to the Target Muscle Affects Forces of All Muscles within an Intact Compartment and Epimuscular Myofascial Force Transmission. J. Biomech. Eng 2012, 134, 111002. [Google Scholar] [CrossRef]
- Choi, J.Y.; Jung, S.; Rha, D.W.; Park, E.S. Botulinum Toxin Type a Injection for Spastic Equinovarus Foot in Children with Spastic Cerebral Palsy: Effects on Gait and Foot Pressure Distribution. Yonsei Med. J. 2016, 57, 496–504. [Google Scholar] [CrossRef]
- Cimolin, V.; Galli, M.; Crivellini, M.; Albertini, G. Quantitative Effects on Proximal Joints of Botulinum Toxin Treatment for Gastrocnemius Spasticity: A 4-Year-Old Case Study. Case Rep. Med. 2009, 2009, 985717. [Google Scholar] [CrossRef]
- Degelaen, M.; de Borre, L.; Kerckhofs, E.; de Meirleir, L.; Buyl, R.; Cheron, G.; Dan, B. Influence of Botulinum Toxin Therapy on Postural Control and Lower Limb Intersegmental Coordination in Children with Spastic Cerebral Palsy. Toxins 2013, 5, 93–105. [Google Scholar] [CrossRef] [Green Version]
- Eek, M.; Himmelmann, K. No Decrease in Muscle Strength after Botulinum Neurotoxin-A Injection in Children with Cerebral Palsy. Front. Hum. Neurosci. 2016, 10, 506. [Google Scholar] [CrossRef] [Green Version]
- Galli, M.; Cimolin, V.; Valente, E.M.; Crivellini, M.; Ialongo, T.; Albertini, G. Computerized Gait Analysis of Botulinum Toxin Treatment in Children with Cerebral Palsy. Disabil. Rehabil. 2007, 29, 659–664. [Google Scholar] [CrossRef]
- Löwing, K.; Thews, K.; Haglund-Åkerlind, Y.; Gutierrez-Farewik, E.M. Effects of Botulinum Toxin-A and Goal-Directed Physiotherapy in Children with Cerebral Palsy GMFCS Levels I & II. Phys. Occup. Ther. Pediatr. 2017, 37, 268–282. [Google Scholar] [CrossRef]
- Matsuda, M.; Tomita, K.; Yozu, A.; Nakayama, T.; Nakayama, J.; Ohguro, H.; Iwasaki, N. Effect of Botulinum Toxin Type A Treatment in Children with Cerebral Palsy: Sequential Physical Changes for 3 months after the Injection. Brain Dev. 2018, 40, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Peeters, N.; Papageorgiou, E.; Hanssen, B.; de Beukelaer, N.; Staut, L.; Degelaen, M.; van den Broeck, C.; Calders, P.; Feys, H.; van Campenhout, A.; et al. The Short-Term Impact of Botulinum Neurotoxin-A on Muscle Morphology and Gait in Children with Spastic Cerebral Palsy. Toxins 2022, 14, 676. [Google Scholar] [CrossRef] [PubMed]
- Rutz, E.; Hofmann, E.; Brunner, R. Preoperative Botulinum Toxin Test Injections before Muscle Lengthening in Cerebral Palsy. J. Orthop. Sci. 2010, 15, 647–653. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, D.H.; Kaufman, K.R.; Wyatt, M.P.; Chambers, H.G.; Mubarak, S.J. Double-Blind Study of Botulinum A Toxin Injections into the Gastrocnemius Muscle in Patients with Cerebral Palsy. Gait Posture 1999, 10, 1–9. [Google Scholar] [CrossRef]
- Tedroff, K.; Löwing, K.; Haglund-ÅKerlind, Y.; Gutierrez-Farewik, E.M.; Forssberg, H. Botulinumtoxin A Treatment in Toddlers with Cerebral Palsy. Acta Paediatr. 2010, 99, 1156–1162. [Google Scholar] [CrossRef]
- Bjornson, K.; Hays, R.; Graubert, C.; Price, R.; Won, F.; McLaughlin, J.F.; Cohen, M. Botulinum Toxin for Spasticity in Children with Cerebral Palsy: A Comprehensive Evaluation. Pediatrics 2007, 120, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Morais Filho, M.C.; Neves, D.L.; Abreu, F.P.; Juliano, Y.; Guimarães, L. Treatment of Fixed Knee Flexion Deformity and Crouch Gait Using Distal Femur Extension Osteotomy in Cerebral Palsy. J. Child. Orthop. 2008, 2, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Tedroff, K.; Granath, F.; Forssberg, H.; Haglund-Akerlind, Y. Long-Term Effects of Botulinum Toxin A in Children with Cerebral Palsy. Dev. Med. Child. Neurol. 2009, 51, 120–127. [Google Scholar] [CrossRef]
- Read, F.A.; Boyd, R.N.; Barber, L.A. Longitudinal Assessment of Gait Quality in Children with Bilateral Cerebral Palsy Following Repeated Lower Limb Intramuscular Botulinum Toxin-A Injections. Res. Dev. Disabil. 2017, 68, 35–41. [Google Scholar] [CrossRef]
- Mirska, A.; Kułak, W.; Okurowska-Zawada, B.; Dmitruk, E. Effectiveness of Multiple Botulinum Toxin Sessions and the Duration of Effects in Spasticity Therapy in Children with Cerebral Palsy. Child’s Nerv. Syst. 2019, 35, 141–147. [Google Scholar] [CrossRef] [Green Version]
- Alhusaini, A.A.A.; Crosbie, J.; Shepherd, R.B.; Dean, C.M.; Scheinberg, A. No Change in Calf Muscle Passive Stiffness after Botulinum Toxin Injection in Children with Cerebral Palsy. Dev. Med. Child. Neurol. 2011, 53, 553–558. [Google Scholar] [CrossRef] [PubMed]
- Bar-On, L.; Aertbeliën, E.; Molenaers, G.; van Campenhout, A.; Vandendoorent, B.; Nieuwenhuys, A.; Jaspers, E.; Hunaerts, C.; Desloovere, K. Instrumented Assessment of the Effect of Botulinum Toxin-A in the Medial Hamstrings in Children with Cerebral Palsy. Gait Posture 2014, 39, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Bertan, H.; Oncu, J.; Vanli, E.; Alptekin, K.; Sahillioglu, A.; Kuran, B.; Yilmaz, F. Use of Shear Wave Elastography for Quantitative Assessment of Muscle Stiffness After Botulinum Toxin Injection in Children With Cerebral Palsy. J. Ultrasound Med. 2020, 39, 2327–2337. [Google Scholar] [CrossRef] [PubMed]
- Brandenburg, J.E.; Eby, S.F.; Song, P.; Bamlet, W.R.; Sieck, G.C.; An, K.N. Quantifying Effect of Onabotulinum Toxin a on Passive Muscle Stiffness in Children with Cerebral Palsy Using Ultrasound Shear Wave Elastography. Am. J. Phys. Med. Rehabil. 2018, 97, 500. [Google Scholar] [CrossRef] [PubMed]
- Colovic, H.; Dimitrijevic, L.; Stankovic, I.; Nikolic, D.; Radovic-Janosevic, D. Estimation of Botulinum Toxin Type A Efficacy on Spasticity and Functional Outcome in Children with Spastic Cerebral Palsy. Biomed. Pap. 2012, 156, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Kwon, D.R.; Park, G.Y.; Kwon, J.G. The Change of Intrinsic Stiffness in Gastrocnemius after Intensive Rehabilitation with Botulinum Toxin A Injection in Spastic Diplegic Cerebral Palsy. Ann. Rehabil. Med. 2012, 36, 400–403. [Google Scholar] [CrossRef] [Green Version]
- Haubruck, P.; Mannava, S.; Plate, J.F.; Callahan, M.F.; Wiggins, W.F.; Schmidmaier, G.; Tuohy, C.J.; Saul, K.R.; Smith, T.L. Botulinum Neurotoxin a Injections Influence Stretching of the Gastrocnemius Muscle-Tendon Unit in an Animal Model. Toxins 2012, 4, 605–619. [Google Scholar] [CrossRef]
- Mannava, S.; Wiggins, W.F.; Saul, K.R.; Stitzel, J.D.; Smith, B.P.; Andrew Koman, L.; Smith, T.L.; Tuohy, C.J. Contributions of Neural Tone to in Vivo Passive Muscle-Tendon Unit Biomechanical Properties in a Rat Rotator Cuff Animal Model. Ann. Biomed. Eng. 2011, 39, 1914–1924. [Google Scholar] [CrossRef]
- Mannava, S.; Callahan, M.F.; Trach, S.M.; Wiggins, W.F.; Smith, B.P.; Koman, L.A.; Smith, T.L.; Tuohy, C.J. Chemical Denervation with Botulinum Neurotoxin a Improves the Surgical Manipulation of the Muscletendon Unit: An Experimental Study in an Animal Model. J. Hand Surg. 2011, 36, 222–234. [Google Scholar] [CrossRef]
- Pingel, J.; Wienecke, J.; Lorentzen, J.; Nielsen, J.B. Botulinum Toxin Injection Causes Hyper-Reflexia and Increased Muscle Stiffness of the Triceps Surae Muscle in the Rat. J. Neurophysiol. 2016, 116, 2615–2623. [Google Scholar] [CrossRef] [Green Version]
- Thacker, B.E.; Tomiya, A.; Hulst, J.B.; Suzuki, K.P.; Bremner, S.N.; Gastwirt, R.F.; Greaser, M.L.; Lieber, R.L.; Ward, S.R. Passive Mechanical Properties and Related Proteins Change with Botulinum Neurotoxin A Injection of Normal Skeletal Muscle. J. Orthop. Res. 2012, 30, 497–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dodd, S.L.; Selsby, J.; Payne, A.; Judge, A.; Dott, C. Botulinum Neurotoxin Type A Causes Shifts in Myosin Heavy Chain Composition in Muscle. Toxicon 2005, 46, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Ates, F.; Yucesoy, C.A. Effects of Botulinum Toxin Type A on Non-Injected Bi-Articular Muscle Include a Narrower Length Range of Force Exertion and Increased Passive Force. Muscle Nerve 2014, 49, 866–878. [Google Scholar] [CrossRef]
- Turkoglu, A.N.; Yucesoy, C.A. Simulation of Effects of Botulinum Toxin on Muscular Mechanics in Time Course of Treatment Based on Adverse Extracellular Matrix Adaptations. J. Biomech. 2016, 49, 1192–1198. [Google Scholar] [CrossRef]
- Ates, F.; Yucesoy, C.A. Botulinum Toxin Type-A Affects Mechanics of Non-Injected Antagonistic Rat Muscles. J. Mech. Behav. Biomed. Mater. 2018, 84, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, E.O.; Kaya, C.S.; Akdeniz-Doğan, Z.D.; Yucesoy, C.A. Long-Term BTX-A Effects on Bi-Articular Muscle: Higher Passive Force, Limited Length Range of Active Force Production and Unchanged Intermuscular Interactions. J. Biomech. 2021, 126, 110627. [Google Scholar] [CrossRef]
- Koo, T.K.; Guo, J.Y.; Cohen, J.H.; Parker, K.J. Quantifying the Passive Stretching Response of Human Tibialis Anterior Muscle Using Shear Wave Elastography. Clin. Biomech. 2014, 29, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Ates, F.; Hug, F.; Bouillard, K.; Jubeau, M.; Frappart, T.; Couade, M.; Bercoff, J.; Nordez, A. Muscle Shear Elastic Modulus Is Linearly Related to Muscle Torque over the Entire Range of Isometric Contraction Intensity. J. Electromyogr. Kinesiol. 2015, 25, 703–708. [Google Scholar] [CrossRef]
- Boulard, C.; Gautheron, V.; Lapole, T. Mechanical Properties of Ankle Joint and Gastrocnemius Muscle in Spastic Children with Unilateral Cerebral Palsy Measured with Shear Wave Elastography. J. Biomech. 2021, 124, 110502. [Google Scholar] [CrossRef]
- Morbiato, L.; Carli, L.; Johnson, E.A.; Montecucco, C.; Molgó, J.; Rossetto, O. Neuromuscular Paralysis and Recovery in Mice Injected with Botulinum Neurotoxins A and C. Eur. J. Neurosci. 2007, 25, 2697–2704. [Google Scholar] [CrossRef]
- Schroeder, A.S.; Ertl-Wagner, B.; Britsch, S.; Schröder, J.M.; Nikolin, S.; Weis, J.; Müller-Felber, W.; Koerte, I.; Stehr, M.; Berweck, S.; et al. Muscle Biopsy Substantiates Long-Term MRI Alterations One Year after a Single Dose of Botulinum Toxin Injected into the Lateral Gastrocnemius Muscle of Healthy Volunteers. Mov. Disord. 2009, 24, 1494–1503. [Google Scholar] [CrossRef]
- Ma, J.; Elsaidi, G.A.; Smith, T.L.; Walker, F.O.; Tan, K.H.; Martin, E.; Koman, L.A.; Smith, B.P. Time Course of Recovery of Juvenile Skeletal Muscle after Botulinum Toxin A Injection: An Animal Model Study. Am. J. Phys. Med. Rehabil. 2004, 83, 774–780. [Google Scholar] [CrossRef] [PubMed]
- Fortuna, R.; Aurélio Vaz, M.; Rehan Youssef, A.; Longino, D.; Herzog, W. Changes in Contractile Properties of Muscles Receiving Repeat Injections of Botulinum Toxin (Botox). J. Biomech. 2011, 44, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Fortuna, R.; Horisberger, M.; Vaz, M.A.; Herzog, W. Do Skeletal Muscle Properties Recover Following Repeat Onabotulinum Toxin A Injections? J. Biomech. 2013, 46, 2426–2433. [Google Scholar] [CrossRef] [PubMed]
- Park, E.S.; Sim, E.; Rha, D.W.; Jung, S. Architectural Changes of the Gastrocnemius Muscle after Botulinum Toxin Type A Injection in Children with Cerebral Palsy. Yonsei Med. J. 2014, 55, 1406–1412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, S.A.; Reid, S.; Elliott, C.; Shipman, P.; Valentine, J. Muscle Volume Alterations in Spastic Muscles Immediately Following Botulinum Toxin Type-A Treatment in Children with Cerebral Palsy. Dev. Med. Child. Neurol. 2013, 55, 813–820. [Google Scholar] [CrossRef]
- van Campenhout, A.; Verhaegen, A.; Pans, S.; Molenaers, G. Botulinum Toxin Type A Injections in the Psoas Muscle of Children with Cerebral Palsy: Muscle Atrophy after Motor End Plate-Targeted Injections. Res. Dev. Disabil. 2013, 34, 1052–1058. [Google Scholar] [CrossRef]
- Alexander, C.; Elliott, C.; Valentine, J.; Stannage, K.; Bear, N.; Donnelly, C.J.; Shipman, P.; Reid, S. Muscle Volume Alterations after First Botulinum Neurotoxin A Treatment in Children with Cerebral Palsy: A 6-Month Prospective Cohort Study. Dev. Med. Child. Neurol. 2018, 60, 1165–1171. [Google Scholar] [CrossRef]
- de Beukelaer, N.; Weide, G.; Huyghe, E.; Vandekerckhove, I.; Hanssen, B.; Peeters, N.; Uytterhoeven, J.; Deschrevel, J.; Maes, K.; Corvelyn, M.; et al. Reduced Cross-Sectional Muscle Growth Six Months after Botulinum Toxin Type-A Injection in Children with Spastic Cerebral Palsy. Toxins 2022, 14, 139. [Google Scholar] [CrossRef]
- Barber, L.; Hastings-Ison, T.; Baker, R.; Kerr Graham, H.; Barrett, R.; Lichtwark, G. The Effects of Botulinum Toxin Injection Frequency on Calf Muscle Growth in Young Children with Spastic Cerebral Palsy: A 12-Month Prospective Study. J. Child. Orthop. 2013, 7, 425–433. [Google Scholar] [CrossRef] [Green Version]
- Carli, L.; Montecucco, C.; Rossetto, O. Assay of Diffusion of Different Botulinum Neurotoxin Type A Formulations Injected in the Mouse Leg. Muscle Nerve 2009, 40, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Jakubiec-Puka, A.; Ciechomska, I.; Morga, J.; Matusiak, A. Contents of Myosin Heavy Chains in Denervated Slow and Fast Rat Leg Muscles. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1999, 122, 355–362. [Google Scholar] [CrossRef]
- Delgaudio, J.M.; Sciote, J.J. Changes in Myosin Expression in Denervated Laryngeal Muscle. Ann. Otol. Rhinol. Laryngol. 1997, 106, 1076–1081. [Google Scholar] [CrossRef] [PubMed]
- Mukund, K.; Mathewson, M.; Minamoto, V.; Ward, S.R.; Subramaniam, S.; Lieber, R.L. Systems Analysis of Transcriptional Data Provides Insights into Muscle’s Biological Response to Botulinum Toxin. Muscle Nerve 2014, 50, 744–758. [Google Scholar] [CrossRef]
- Kasper, C.E.; Xun, L. Expression of Titin in Skeletal Muscle Varies with Hind-Limb Unloading. Biol Res Nurs 2000, 2, 107–115. [Google Scholar] [CrossRef]
- Legerlotz, K.; Matthews, K.G.; Christopher, M.D.; Smith, H.K. Botulinum Toxin-Induced Paralysis Leads to Slower Myosin Heavy Chain Isoform Composition and Reduced Titin Content In Juvenile Rat Gastrocnemius Muscle. Muscle Nerve 2009, 39, 472–479. [Google Scholar] [CrossRef]
- Burgen, A.S.V.; Dickens, F.; Zatman, L.J. The Action of Botulinum Toxin on the Neuro-muscular Junction. J. Physiol. 1949, 109, 10–24. [Google Scholar] [CrossRef]
- Shaari, C.M.; Sanders, I. Quantifying How Location and Dose of Botulinum Toxin Injections Affect Muscle Paralysis. Muscle Nerve 1993, 16, 964–969. [Google Scholar] [CrossRef]
- Turkoglu, A.N.; Huijing, P.A.; Yucesoy, C.A. Mechanical Principles of Effects of Botulinum Toxin on Muscle Length-Force Characteristics: An Assessment by Finite Element Modeling. J. Biomech. 2014, 47, 1565–1571. [Google Scholar] [CrossRef] [PubMed]
- Yucesoy, C.A. Epimuscular Myofascial Force Transmission Implies Novel Principles for Muscular Mechanics. Exerc. Sport Sci. Rev. 2010, 38, 128–134. [Google Scholar] [CrossRef]
- Huijing, P.A. Epimuscular Myofascial Force Transmission between Antagonistic and Synergistic Muscles Can Explain Movement Limitation in Spastic Paresis. J. Electromyogr. Kinesiol. 2007, 17, 708–724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yucesoy, C.A.; Huijing, P.A. Substantial Effects of Epimuscular Myofascial Force Transmission on Muscular Mechanics Have Major Implications on Spastic Muscle and Remedial Surgery. J. Electromyogr. Kinesiol. 2007, 17, 664–679. [Google Scholar] [CrossRef] [PubMed]
- Maas, H.; Sandercock, T.G. Force Transmission between Synergistic Skeletal Muscles through Connective Tissue Linkages. J. Biomed. Biotechnol. 2010, 2010, 575672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huijing, P.A.; Baan, G.C. Myofascial Force Transmission: Muscle Relative Position and Length Determine Agonist and Synergist Muscle Force. J. Appl. Physiol. 2003, 94, 1092–1107. [Google Scholar] [CrossRef] [PubMed]
- Maas, H.; Baan, G.C.; Huijing, P.A. Intermuscular Interaction via Myofascial Force Transmission: Effects of Tibialis Anterior and Extensor Hallucis Longus Length on Force Transmission from Rat Extensor Digitorum Longus Muscle. J. Biomech. 2001, 34, 927–940. [Google Scholar] [CrossRef]
- Maas, H.; Meijer, H.J.M.; Huijing, P.A. Intermuscular Interaction between Synergists in Rat Originates from Both Intermuscular and Extramuscular Myofascial Force Transmission. Cells Tissues Organs 2005, 181, 38–50. [Google Scholar] [CrossRef]
- Yucesoy, C.A.; Baan, G.C.; Koopman, B.H.F.J.M.; Grootenboer, H.J.; Huijing, P.A. Pre-Strained Epimuscular Connections Cause Muscular Myofascial Force Transmission to Affect Properties of Synergistic EHL and EDL Muscles of the Rat. J. Biomech. Eng. 2005, 127, 819–828. [Google Scholar] [CrossRef]
- Pamuk, U.; Karakuzu, A.; Ozturk, C.; Acar, B.; Yucesoy, C.A. Combined Magnetic Resonance and Diffusion Tensor Imaging Analyses Provide a Powerful Tool for in Vivo Assessment of Deformation along Human Muscle Fibers. J. Mech. Behav. Biomed. Mater. 2016, 63, 207–219. [Google Scholar] [CrossRef]
- Karakuzu, A.; Pamuk, U.; Ozturk, C.; Acar, B.; Yucesoy, C.A. Magnetic Resonance and Diffusion Tensor Imaging Analyses Indicate Heterogeneous Strains along Human Medial Gastrocnemius Fascicles Caused by Submaximal Plantar-Flexion Activity. J. Biomech. 2017, 57, 69–78. [Google Scholar] [CrossRef]
- Ates, F.; Andrade, R.J.; Freitas, S.R.; Hug, F.; Lacourpaille, L.; Gross, R.; Yucesoy, C.A.; Nordez, A. Passive Stiffness of Monoarticular Lower Leg Muscles Is Influenced by Knee Joint Angle. Eur. J. Appl. Physiol. 2018, 118, 585–593. [Google Scholar] [CrossRef]
- Kaya, C.S.; Temelli, Y.; Ates, F.; Yucesoy, C.A. Effects of Inter-Synergistic Mechanical Interactions on the Mechanical Behaviour of Activated Spastic Semitendinosus Muscle of Patients with Cerebral Palsy. J. Mech. Behav. Biomed. Mater. 2018, 77, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Yucesoy, C.A.; Temelli, Y.; Ates, F. Intra-Operatively Measured Spastic Semimembranosus Forces of Children with Cerebral Palsy. J. Electromyogr. Kinesiol. 2017, 36, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Ates, F.; Temelli, Y.; Yucesoy, C.A. Human Spastic Gracilis Muscle Isometric Forces Measured Intraoperatively as a Function of Knee Angle Show No Abnormal Muscular Mechanics. Clin. Biomech. 2013, 28, 48–54. [Google Scholar] [CrossRef]
- Ates, F.; Temelli, Y.; Yucesoy, C.A. The Mechanics of Activated Semitendinosus Are Not Representative of the Pathological Knee Joint Condition of Children with Cerebral Palsy. J. Electromyogr. Kinesiol. 2016, 28, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Yucesoy, C.A.; Ates, F.; Akgun, U.; Karahan, M. Measurement of Human Gracilis Muscle Isometric Forces as a Function of Knee Angle, Intraoperatively. J. Biomech. 2010, 43, 2665–2671. [Google Scholar] [CrossRef]
- Huijing, P.A.; Baan, G.C. Extramuscular Myofascial Force Transmission within the Rat Anterior Tibial Compartment: Proximo-Distal Differences in Muscle Force. Acta Physiol. Scand. 2001, 173, 297–311. [Google Scholar] [CrossRef] [PubMed]
- Yucesoy, C.A.; Turkoğlu, A.N.; Umur, S.; Ates, F. Intact Muscle Compartment Exposed to Botulinum Toxin Type a Shows Compromised Intermuscular Mechanical Interaction. Muscle Nerve 2015, 51, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Mudge, A.; Harvey, L.A.; Lancaster, A.; Lowe, K. Electrical Stimulation Following Botulinum Toxin a in Children with Spastic Diplegia: A within-Participant Randomized Pilot Study. Phys. Occup. Ther. Pediatr. 2015, 35, 342–353. [Google Scholar] [CrossRef]
- Picelli, A.; Santamato, A.; Chemello, E.; Cinone, N.; Cisari, C.; Gandolfi, M.; Ranieri, M.; Smania, N.; Baricich, A. Adjuvant Treatments Associated with Botulinum Toxin Injection for Managing Spasticity: An Overview of the Literature. Ann. Phys. Rehabil. Med. 2019, 62, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, P.R.; Calhes Franco De Moura, R.; Galli, M.; Santos Oliveira, C. Effect of Physiotherapeutic Intervention on the Gait after the Application of Botulinum Toxin in Children with Cerebral Palsy: Systematic Review. Eur. J. Phys. Rehabil. Med. 2018, 54, 757–765. [Google Scholar] [CrossRef]
- Bandholm, T.; Jensen, B.R.; Nielsen, L.M.; Rasmussen, H.; Bencke, J.; Curtis, D.; Pedersen, S.A.; Sonne-Holm, S. Neurorehabilitation with versus without Resistance Training after Botulinum Toxin Treatment in Children with Cerebral Palsy: A Randomized Pilot Study. NeuroRehabilitation 2012, 30, 277–286. [Google Scholar] [CrossRef] [PubMed]
Reference | Study Population | Aim/Intervention | Muscle(s) Injected | Duration of Observation | Outcome Measures | Results |
---|---|---|---|---|---|---|
Choi et al. [162] | 25 children with hemiplegic (n = 17) and diplegic (n = 8) SCP. GMFCS: I or II | To investigate the effect of BTX-A injection on gait and dynamic foot pressure distribution in children with SCP | Gastrocnemius and TP | Before and 1 and 4 months after injection | -Clinical assessment using the MAS and MTS -3D gait -Dynamic foot pressure measurements with F-scan system | Spasticity reduced, dynamic foot pressure and ankle movement improved at both 1 and 4 months after BTX-A. |
Cimolin et al. [163] | A child with spastic diplegic CP (4-year-old) | To quantify the effects of BTX-A in reducing excessive knee flexion due to calf spasticity/Two injections at an interval of 10 months | Gastrocnemius | Before injection, 5 days after the first injection (POST1) and 3 months after the second (POST2) BTX-A | -3D gait | POST1: Ankle and knee dynamic ROM improved, but hip position and hip power worsened. POST2: All joints tested improved |
Degelaen et al. [164] | 28 children with spastic hemiplegic (n = 14) and diplegic (n = 14) CP (3–12 years) GMFCS: I or II | To analyze the effect of BTX-A on trunk postural control and lower-limb coordination | Lower limb muscles (psoas, hip adductors, medial hamstrings, gastrocnemius, soleus) | Before and 4 months after injection | -3D gait | Lower-limb coordination is unaltered. Varying effects (decrease/increase) in trunk movement. Greater trunk excursions in the transverse plane. |
Desloovere et al. [138] | 60 children with SCP (BTX-A = 30, control = 30, 19 with hemiplegia, and 11 with diplegia in each group) GMFCS: I-III | To evaluate the effects of multilevel BTX-A treatments on the gait pattern of children with SCP/Both groups received the same conservative treatment, in the BTX-A group children received min one BTX-A. | Lower limb muscles (gastrocnemius, hamstrings, adductors, iliopsoas, TP, less often, RF, soleus, tensor fascia latae, foot muscles) | An average of 1 year 10 months after the initial injection | -3D gait combined with EMG | The BTX-A group showed a less pronounced pathological gait pattern. Major improvements were pelvic anterior tilt, max hip and knee extension, and internal hip rotation. |
Eek and Himmelmann [165] | 20 children with spastic hemiplegic (n = 16) and diplegic (n = 4) CP GMFCS: I or II | To detect if voluntary muscle strength is affected by BTX-A injections, and relate the effect of BTX-A to gait pattern and passive ROM | Gastrocnemius | Before, and 1.5 and 6 months after injection | -Clinical assessment using the MAS -Muscle strength measurement with a handheld device -2D gait | A small increase in passive ROM. Increased muscle strength after 6 months. Improved knee extension at initial contact. No changes in dynamic ankle angle, gait velocity, or stride length. |
Galli et al. [166] | 15 children with hemiplegic (n = 8) and diplegic (n = 7) CP (5–11 years) 20 TD children (5–14 years) | To evaluate the BTX-A-induced improvement of the walking functional ability in children with CP | Gastrocnemius | Before and 1.5 months after injection | -3D gait | Improvement in the ankle, knee, and hip joint positions and ROMs at gait. The peak absorbed ankle power reached values close to those of the control group. |
Löwing et al. [167] | 40 children with spastic hemiplegic (n = 24) and diplegic (n = 16) CP (4–12 years) GMFCS: I or II | To evaluate short and long-term effects of BTX-A combined with goal-directed physiotherapy in children with CP/1 to 10 injections were given | Mainly plantar flexors | Before and at 3, 12, and 24 months after the initial injection | -3D gait -GAS and body function assessment | A significant but small long-term improvement in gait. GAS increased, reached the highest levels at 12 months, maintained at 24 months. |
Matsuda et al. [168] | 9 children with hemiplegic (n = 1) and diplegic (n = 8) CP (4–8 years) GMFCS: I, III, and IV | To investigate the gait function over time after BTX-A treatment | Gastrocnemius Additionally, soleus, hip adductors, RF, hamstrings, TP, and upper limb muscles | Before and 1, 2, and 3 months after injection | -Clinical assessment using the MTS and ROM -2D gait using the Foot Contact Scale and the Physician’s Rating Scale -GMFM-66 | Significant improvements for the max dorsiflexion at gait, the ankle ROM, and GMFM-66 in 8 weeks. Increased knee joint extension torque in 12 weeks. |
Peeters et al. [169] | 45 children with SCP (BTX-A = 25, control = 20, 20 with hemiplegia, and 25 with diplegia) (3–11 years) GMFCS: I-III | To investigate the impact of BTX-A on muscle morphology, spasticity, and gait | Gastrocnemius and semitendinosus | Before and 8–10 weeks after injection | -3D gait (in BTX-A group) -EMG during passive muscle stretches (in BTX-A group) -3D ultrasound (BTX-A vs. control) | Significant improvements in ankle kinematics. Limited effects on knee kinematics. Spasticity reduced. Muscle volumes reduced only in BTX-A group. |
Rutz et al. [170] | 110 children with CP. 42 hemiplegic, 39 diplegic, 27 quadriplegic patients and 2 with ataxia. GMFCS: I-III | Application of BTX-A before a muscle lengthening surgery to test whether muscular weakness deteriorates function hence the gait pattern | All muscles considered for surgical lengthening | 1.5 and 4 months after injection | -3D gait analysis combined with EMG | 20.9% (n = 23) showed deterioration in gait after pre-operative BTX-A test injections resulting in the cancelation of their lengthening surgeries. |
Sutherland et al. [171] | 20 children with CP (2–16 years) 10 with hemiplegia, 9 with diplegia, and 1 with quadriplegia. | To quantify the gait of subjects receiving two injections of either BTX-A (n = 10) or saline (n = 10)/Two injections were given at an interval of 1 month | Gastrocnemius | Before and 2 months after the first injection | -3D gait analysis, gait video recordings, and dynamic EMG | Dynamic ankle ROM improved in the BTX-A group. No difference in time-distance parameters, and dynamic EMG. Muscle strength change varied between subjects. |
Tedroff et al. [172] | 15 children with hemiplegic (n = 6) and diplegic (n = 9) CP. GMFCS: I-III | To evaluate the subjects receiving a daily stretching program with (n = 6) and without (n = 9) 1-year of repeated BTX-A treatment/Two injections given at an interval of 6 months. | Gastrocnemius | Before and 1 and an average of 3.5 years after the initial injection. | -Clinical assessment using the MAS -3D gait -GMFM-66 -PEDI | Reduced plantar flexor muscle tone in the BTX-A group. No group differences at gait, GMFM-66, or PEDI. |
Reference | Study Population | Aim/Intervention | Muscle(s) Injected | Duration of Observation | Outcome Measures | Results |
---|---|---|---|---|---|---|
Alhusaini et al. [178] | 16 children with spastic CP (4–10 years) GMFCS: I or II | To investigate non-neurally mediated calf-muscle tightness before and after BTX-A injection | Gastrocnemius and soleus | Before and 6 weeks after injection | -Passive ROM -Joint torques at predetermined angles -Passive mechanical stiffness, and hysteresis | An increase in ankle passive ROM, a small decrease in the torque required to achieve plantigrade and 5° of dorsiflexion. No change in ankle torque. No difference in myotendinous stiffness or hysteresis |
Bar-On et al. [179] | 19 children with hemiplegic (n = 6), diplegic (n = 11) and quadriplegic (n = 2) CP (3–18 years) GMFCS: I-IV | To quantify the effects of BTX-A injection in treating medial hamstrings spasticity | Medial hamstrings | Before and 43 ± 16 days after injection | -Position, torque, and EMG signals integrated during passive stretches of the medial hamstrings at low, medium, and high velocity. | Improvements found for nearly all EMG and torque parameters at high velocity and at high versus low velocity, however large inter-subject variability was noted. |
Bertan et al. [180] | 33 children with CP received either a BTX-A injection and a home-based exercise program (n = 17) or only a home-based exercise program (n = 16). | To investigate the stiffness of the gastrocnemius with sonoelastography after BTX-A injection and to examine the relationship with clinical parameters | Gastrocnemius | Before and 1 and 3 months after injection | -Ankle passive ROM, the MAS, and MTS evaluation -Pediatric Functional Independence Measure, and GMFCS -Muscle stiffness assessed by ultrasound elastography | Muscle stiffness decreased in the BTX-A group only in the first month after treatment. MAS, MTS, and passive ROM improved but not GMFCS. A correlation between the clinical and elastographic measurements. |
Brandenburg et al. [181] | 10 children with spastic CP (2–12 years) GMFCS: I-III | To quantify the effect of BTX-A on passive muscle properties using ultrasound shear wave elastography | Gastrocnemius | Before and 1 and 3 months after injection | -Ankle passive ROM, and the MAS evaluation -GMFCS -Muscle stiffness assessed by B-mode ultrasound and shear wave elastography | No differences in ankle passive ROM or spasticity. Passive muscle stiffness dropped at some specific ankle joint positions between 1 and 3 months post-BTX-A. |
Colovic et al. [182] | 27 children with spastic CP (2–6 years) GMFCS: I-III | To evaluate the effects of BTX-A on passive motion resistance of the affected muscles and the functional motor status | Lower limb muscles: Group I (n = 16) injected into their adductors, hamstrings, gastrocnemius. Group II (n = 11) injected into the gastrocnemius | Before and 3, 8, 16 weeks, and 6 months after injection | -Passive motion resistance estimated using the MAS -Achieved functional motor level evaluated by GMFCS and GMFM | Decreased passive motion resistance for hip adductors and knee extensors in Group I over 3–16 weeks, and for ankle joint extensors in both groups. Both groups: GMFCS improved 16 weeks after injection, GMFM increased after 8 and 16 weeks. |
Kwon et al. [183] | A child with spastic diplegic CP (28-month-old) | To show the change in muscle intrinsic stiffness due to BTX-A treatment/Intensive rehabilitation performed | Gastrocnemius | Before and 4 weeks after injection | -Passive motion resistance using the MAS -GMFM -Muscle stiffness by B-mode ultrasound and dynamic sonoelastography | Improved MAS and increased GMFM score. Decreased muscle stiffness shown by a decrease in shear velocity, and an increase in the strain ratio. |
Spastic Muscles in Comparison with Healthy Muscles | BTX-A Exposed Muscles in Comparison with Control Muscles |
---|---|
Impaired muscle growth | |
Muscle size alterations | Muscle atrophy |
smaller volume [29,38,39,40,41,42,43,44,45,46] | reduced volume [203,204,205] |
less thickness [33,47,49,50] | reduced thickness [202] |
smaller cross-sectional area [29,33,46,47,49,50,52] | reduced muscle mass [159,190,197,199,200] |
Muscle-tendon unit length alterations | Reduced length range [159,160] |
shorter muscle belly [39,40,56] | |
longer tendon [59,60] | |
Structural adaptations | |
Greater collagen [25,27,79] | Increased collagen [159,160,190] |
Greater stiffness [75,76,77,78,196] | Increased passive state forces [159,161] |
Functional deficits | |
Muscle weakness (less strength) [29,63,67,75] | Muscle weakness (reduced force production in active state) [159,160,161] |
Disrupted co-working of muscles | Altered mechanics of diffused muscles [190,192,193] |
less agonist activation [68] | |
greater antagonist activation [29,68,69,70] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaya Keles, C.S.; Ates, F. Botulinum Toxin Intervention in Cerebral Palsy-Induced Spasticity Management: Projected and Contradictory Effects on Skeletal Muscles. Toxins 2022, 14, 772. https://doi.org/10.3390/toxins14110772
Kaya Keles CS, Ates F. Botulinum Toxin Intervention in Cerebral Palsy-Induced Spasticity Management: Projected and Contradictory Effects on Skeletal Muscles. Toxins. 2022; 14(11):772. https://doi.org/10.3390/toxins14110772
Chicago/Turabian StyleKaya Keles, Cemre Su, and Filiz Ates. 2022. "Botulinum Toxin Intervention in Cerebral Palsy-Induced Spasticity Management: Projected and Contradictory Effects on Skeletal Muscles" Toxins 14, no. 11: 772. https://doi.org/10.3390/toxins14110772
APA StyleKaya Keles, C. S., & Ates, F. (2022). Botulinum Toxin Intervention in Cerebral Palsy-Induced Spasticity Management: Projected and Contradictory Effects on Skeletal Muscles. Toxins, 14(11), 772. https://doi.org/10.3390/toxins14110772