Reduction of Aflatoxin B1 and Zearalenone Contents in Corn Using Power Ultrasound and Its Effects on Corn Quality
Abstract
:1. Introduction
2. Results and Discussion
2.1. Degradation of AFB1
2.1.1. Power Intensity
2.1.2. Solid-Liquid Ratio
2.1.3. Treatment Modes
2.2. Degradation of ZEA
2.2.1. Power Intensity
2.2.2. Solid-Liquid Ratio
2.2.3. Treatment Modes
2.3. Amino Acid Content
2.4. Fatty-Acid Value
2.5. Gelatinization Properties
2.6. Thermodynamic Properties
2.7. Amylose Contents
2.8. Scanning Electron Microscopy
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Ultrasonic Treatment of Corn
4.3. Preparation of the Mixed Standard Solutions of AFB1 and ZEA
4.4. Extraction of AFB1 and ZEA
4.5. Determination of AFB1 and ZEA
4.6. Quantitative Analysis
4.7. Amino Acid Content
4.8. Fatty-Acid Value
4.9. Gelatinization Properties
4.10. Thermodynamic Properties
4.11. Amylose Content
4.12. SEM
4.13. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hussein, H.S.; Brasel, J.M. Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology 2001, 167, 101–134. [Google Scholar] [CrossRef] [PubMed]
- Khodaei, D.; Javanmardi, F.; Khaneghah, A.M. The global overview of the occurrence of mycotoxins in cereals: A three-year survey. Curr. Opin. Food Sci. 2021, 39, 36–42. [Google Scholar] [CrossRef]
- Konca, T.; Tunc, K. Investigation of total aflatoxin in corn and corn products in corn wet-milling industry. J. Food Process. Preserv. 2020, 44, e14893. [Google Scholar] [CrossRef]
- Weaver, A.C.; Weaver, D.M.; Adams, N.; Yiannikouris, A. Co-occurrence of 35 mycotoxins: A seven-year survey of corn grain and corn silage in the United States. Toxins 2021, 13, 516. [Google Scholar] [CrossRef] [PubMed]
- Driehuis, F.; Spanjer, M.C.; Scholten, J.M.; Te Giffel, M.C. Occurrence of mycotoxins in maize, grass and wheat silage for dairy cattle in the Netherlands. Food Addit. Contam. B Surveill. 2008, 1, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Driehuis, F. Silage and the safety and quality of dairy foods: A review. Agric. Food Sci. 2013, 22, 16–34. [Google Scholar] [CrossRef]
- Gallo, A.; Minuti, A.; Bani, P.; Bertuzzi, T.; Cappelli, F.P.; Doupovec, B.; Faas, J.; Schatzmayr, D.; Trevisi, E. A mycotoxin-deactivating feed additive counteracts the adverse effects of regular levels of Fusarium mycotoxins in dairy cows. J. Dairy Sci. 2020, 103, 11314–11331. [Google Scholar] [CrossRef]
- O’Brien, M.; Nielsen, K.F.; O’Kiely, P.; Forristal, P.D.; Fuller, H.T.; Frisvad, J.C. Mycotoxins and other secondary metabolites produced in vitro by Penicillium paneum Frisvad and Penicillium roqueforti Thom isolated from baled grass silage in Ireland. J. Agric. Food Chem. 2006, 54, 9268–9276. [Google Scholar] [CrossRef] [Green Version]
- Calado, T.; Abrunhosa, L.; Cabo Verde, S.; Alté, L.; Venâncio, A.; Fernández-Cruz, M.L. Effect of gamma-radiation on zearalenone-degradation, cytotoxicity and estrogenicity. Foods 2020, 9, 1687. [Google Scholar] [CrossRef]
- Feizollahi, E.; Roopesh, M.S. Degradation of zearalenone by atmospheric cold plasma: Effect of selected process and product factors. Food Bioprocess Technol. 2021, 14, 2107–2119. [Google Scholar] [CrossRef]
- Okwara, P.C.; Afolabi, I.S.; Ahuekwe, E.F. Application of laccase in aflatoxin b1 degradation: A review. In IOP Conference Series: Materials Science and Engineering, Proceedings of the International Conference on Engineering for Sustainable World (ICESW 2020), Ota, Nigeria, 10–14 August 2020; IOP Publishing Ltd.: Bristol, UK, 2021; Volume 1107, p. 012178. [Google Scholar] [CrossRef]
- Gallo, A.; Giuberti, G.; Frisvad, J.C.; Bertuzzi, T.; Nielsen, K.F. Review on mycotoxin issues in ruminants: Occurrence in forages, effects of mycotoxin ingestion on health status and animal performance and practical strategies to counteract their negative effects. Toxins 2015, 7, 3057–3111. [Google Scholar] [CrossRef] [PubMed]
- Jallow, A.; Xie, H.; Tang, X.; Qi, Z.; Li, P. Worldwide aflatoxin contamination of agricultural products and foods: From occurrence to control. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2332–2381. [Google Scholar] [CrossRef] [PubMed]
- Mason, T.J.; Chemat, F.; Vinatoru, M. The extraction of natural products using ultrasound or microwaves. Curr. Org. Chem. 2011, 15, 237–247. [Google Scholar] [CrossRef]
- Khandpur, P.; Gogate, P.R. Evaluation of ultrasound based sterilization approaches in terms of shelf life and quality parameters of fruit and vegetable juices. Ultrason. Sonochem. 2016, 29, 337–353. [Google Scholar] [CrossRef]
- Wagh, A.; Walsh, M.K.; Martini, S. Effect of lactose monolaurate and high intensity ultrasound on crystallization behavior of anhydrous milk fat. J. Am. Oil Chem. Soc. 2013, 90, 977–987. [Google Scholar] [CrossRef]
- McClements, D.J. Advances in the application of ultrasound in food analysis and processing. Trends Food Sci. Technol. 1995, 6, 293–299. [Google Scholar] [CrossRef]
- Freire, L.; Sant’Ana, A.S. Modified mycotoxins: An updated review on their formation, detection, occurrence, and toxic effects. Food Chem. Toxicol. 2018, 111, 189–205. [Google Scholar] [CrossRef]
- Entezari, M.H.; Nazary, S.H.; HKhodaparast, M.H.H. The direct effect of ultrasound on the extraction of date syrup and its micro-organisms. Ultrason. Sonochem. 2004, 11, 379–384. [Google Scholar] [CrossRef]
- Raso, J.; Mañas, P.; Pagán, R.; Sala, F.J. Influence of different factors on the output power transferred into medium by ultrasound. Ultrason. Sonochem. 1999, 5, 157–162. [Google Scholar] [CrossRef]
- Liu, Y.; Li, M.; Liu, Y.; Bai, F.; Bian, K. Effects of pulsed ultrasound at 20 kHz on the sonochemical degradation of mycotoxins. World Mycotoxin J. 2019, 12, 357–366. [Google Scholar] [CrossRef]
- Park, C.E.; Kim, Y.S.; Park, K.J.; Kim, B.K. Changes in physicochemical characteristics of rice during storage at different temperatures. J. Stored Prod. Res. 2012, 48, 25–29. [Google Scholar] [CrossRef]
- Herceg, I.L.; Jambrak, A.R.; Šubarić, D.; Brnčić, M.; Brnčić, S.R.; Badanjak, M.; Tripalo, B.; Ježek, D.; Novotni, D.; Herceg, Z. Texture and pasting properties of ultrasonically treated corn starch. Czech J. Food Sci. 2010, 28, 83–93. [Google Scholar] [CrossRef] [Green Version]
- Hoover, R.; Manuel, H. Effect of heat—Moisture treatment on the structure and physicochemical properties of legume starches. Food Res. Int. 1996, 29, 731–750. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Li, J.; Zhu, C. Effect of ultrasound pretreatment on enzymolysis and physicochemical properties of corn starch. Int. J. Biol. Macromol. 2018, 111, 848–856. [Google Scholar] [CrossRef] [PubMed]
- Błaszczak, W.; Fornal, J.; Kiseleva, V.I.; Yuryev, V.P.; Sergeev, A.I.; Sadowska, J. Effect of high pressure on thermal, structural and osmotic properties of waxy maize and Hylon VII starch blends. Carbohydr. Polym. 2007, 68, 387–396. [Google Scholar] [CrossRef]
- Vodeničarová, M.; Dřímalová, G.; Hromádková, Z.; Malovíková, A.; Ebringerová, A. Xyloglucan degradation using different radiation sources: A comparative study. Ultrason. Sonochem. 2006, 13, 157–164. [Google Scholar] [CrossRef]
- Kang, N.; Zuo, Y.J.; Hilliou, L.; Ashokkumar, M.; Hemar, Y. Viscosity and hydrodynamic radius relationship of high-power ultrasound depolymerised starch pastes with different amylose content. Food Hydrocoll. 2016, 52, 183–191. [Google Scholar] [CrossRef]
- Hu, A.; Jiao, S.; Zheng, J.; Li, L.; Fan, Y.; Chen, L.; Zhang, Z. Ultrasonic frequency effect on corn starch and its cavitation. LWT—Food Sci. Technol. 2015, 60, 941–947. [Google Scholar] [CrossRef]
- Liu, Y.; Li, M.; Liu, Y.; Bian, K. Structures of Reaction Products and Degradation Pathways of Aflatoxin B1 by Ultrasound Treatment. Toxins 2019, 11, 526. [Google Scholar] [CrossRef]
- Chen, C.; Jiang, T.; Hu, J. Localization of buffer solution in the determination of maize amino acids. J. Chin. Cereals Oils Assoc. 2020, 9, 158–162. Available online: https://kns.cnki.net/kcms/detail/11.2864.TS.20200713.1152.050.html (accessed on 1 December 2020).
- He, X.; Jiang, T.; Feng, Y. Inspection of Cereals and Oils Determination of Fatty Acid Value of Cereals and Oilseeds; Standards Press of China: Beijing, China, 2011. [Google Scholar]
- American Association for Clinical Chemistry. Method 76-21. General Pasting Method for Wheat or Rye Flour or Starch Using the Rapid Visco Analyser. In AACC Approved Methods of Analysis, 11th ed.; Cereals & Grains Association: St. Paul, MN, USA, 1999. [Google Scholar]
- Yun, S.H.; Matheson, N.K. Estimation of amylose content of starches after precipitation of amylopectin by concanavalin-A. Starch—Stärke 1990, 42, 302–305. [Google Scholar] [CrossRef]
Control | 6 min | 10 min | |
---|---|---|---|
Aspartic acid (Asp) | 0.45 ± 0.02 | 0.42 ± 0.03 | 0.42 ± 0.00 |
Threonine (Thr) | 0.26 ± 0.00 | 0.25 ± 0.01 | 0.25 ± 0.00 |
Serine (Ser) | 0.36 ± 0.01 | 0.34 ± 0.01 | 0.35 ± 0.00 |
Glutamic acid (Glu) | 1.81 ± 0.04 | 1.78 ± 0.04 | 1.77 ± 0.01 |
Glycine (Gly) | 0.31 ± 0.00 | 0.29 ± 0.01 | 0.29 ± 0.00 |
Alanine (Ala) | 0.58 ± 0.01 | 0.57 ± 0.02 | 0.56 ± 0.00 |
Cysteine (Cys) | 0.06 ± 0.01 | 0.06 ± 0.01 | 0.06 ± 0.00 |
Valine (Val) | 0.27 ± 0.00 | 0.25 ± 0.01 | 0.25 ± 0.01 |
Methionine (Met) | 0.11 ± 0.02 | 0.11 ± 0.02 | 0.11 ± 0.01 |
Isoleucine (Ile) | 0.24 ± 0.01 | 0.24 ± 0.01 | 0.23 ± 0.00 |
Leucine (Leu) | 0.78 ± 0.03 | 0.81 ± 0.01 | 0.77 ± 0.01 |
Tyrosine (Tyr) | 0.28 ± 0.00 | 0.25 ± 0.02 | 0.26 ± 0.00 |
Phenylalanine (Phe) | 0.28 ± 0.00 | 0.28 ± 0.02 | 0.26 ± 0.01 |
Histidine (His) | 0.29 ± 0.01 | 0.29 ± 0.01 | 0.29 ± 0.00 |
Lysine (Lys) | 0.22 ± 0.01 | 0.20 ± 0.01 | 0.20 ± 0.00 |
Arginine (Arg) | 0.30 ± 0.02 | 0.29 ± 0.01 | 0.29 ± 0.00 |
Proline (Pro) | 0.62 ± 0.01 | 0.62 ± 0.00 | 0.62 ± 0.02 |
Essential amino acid (EAA) | 2.15 | 2.14 | 2.08 |
Total amino acid (TAA) | 7.23 | 7.05 | 6.99 |
EAA/TAA | 0.30 | 0.30 | 0.30 |
Treatment Time (min) | Peak Viscosity (mPa·s) | Through (mPa·s) | Breakdown (mPa·s) | Final Viscosity (mPa·s) | Setback (mPa·s) | Gelatinization Temperature (°C) |
---|---|---|---|---|---|---|
0 | 1422 ± 30a | 1210 ± 31a | 212 ± 10a | 2390 ± 29a | 1180 ± 2a | 77.90 ± 0.49a |
4 | 1578 ± 23b | 1292 ± 16ab | 256 ± 35a | 2393 ± 45a | 1151 ± 34a | 77.58 ± 0.04a |
6 | 1557 ± 35b | 1316 ± 33b | 252 ± 18a | 2511 ± 30b | 1195 ± 24a | 77.53 ± 0.04a |
8 | 1675 ± 33c | 1396 ± 20bc | 245 ± 36a | 2581 ± 8b | 1185 ± 12a | 77.48 ± 0.04a |
10 | 1648 ± 3c | 1421 ± 19c | 228 ± 16a | 2560 ± 6b | 1140 ± 25a | 77.05 ± 0.57a |
12 | 1715 ± 32c | 1444 ± 20c | 270 ± 30a | 2598 ± 52b | 1154 ± 11a | 77.48 ± 0.04a |
Treatment Time (min) | T0 (°C) | Tp (°C) | Tc (°C) | Tc–T0 (°C) | ΔH (J/g) |
---|---|---|---|---|---|
0 | 63.19 ± 0.14a | 71.29 ± 0.24a | 76.18 ± 0.16a | 12.99 ± 0.16a | 4.90 ± 0.08a |
4 | 63.87 ± 0.13a | 71.46 ± 0.22a | 76.12 ± 0.11a | 12.25 ± 0.13a | 4.79 ± 0.08a |
6 | 63.52 ± 0.21a | 71.26 ± 0.37a | 76.05 ± 0.20a | 12.53 ± 0.18a | 4.80 ± 0.28a |
8 | 63.05 ± 0.14a | 71.76 ± 0.13a | 76.34 ± 0.18a | 12.99 ± 0.24a | 4.80 ± 0.18a |
10 | 63.81 ± 0.23a | 71.72 ± 0.34a | 76.26 ± 0.11a | 12.45 ± 0.34a | 4.74 ± 0.16a |
12 | 63.96 ± 0.11a | 71.20 ± 0.26a | 76.25 ± 0.14a | 12.29 ± 0.24a | 3.97 ± 0.35b |
Treatment Time (min) | 0 | 4 | 6 | 8 | 10 | 12 |
---|---|---|---|---|---|---|
Amylose content (%) | 29.80 ± 1.01a | 30.05 ± 0.09ab | 30.58 ± 0.75ab | 32.09 ± 1.41ab | 31.21 ± 0.13ab | 32.93 ± 0.54b |
AFB1 Concentration (μg/L) | ZEA Concentration (μg/L) | |
---|---|---|
M1 | 2 | 2 |
M2 | 4 | 4 |
M3 | 8 | 8 |
M4 | 20 | 20 |
M5 | 40 | 40 |
M6 | 80 | 80 |
M7 | 160 | 160 |
AFB1 in Corn | AFB1 in Soaking Water | ZEA in Corn | ZEA in Soaking Water | |
---|---|---|---|---|
Linear range (μg/L) | 2.5–160 | 2.5–160 | 2.5–80 | 2.5–160 |
Standard curve equations | Y = −85380.7 + 271689X | Y = −154813 + 245147X | Y = 9405.45 + 12111.4X | Y = −6128.01 + 9970.71X |
Coefficient of determination (R2) | 0.9963 | 0.9967 | 0.9981 | 0.9947 |
Limit of detection (μg/L) | 0.72 | 0.70 | 2.12 | 2.72 |
Limit of quantification (μg/L) | 2.43 | 2.10 | 7.06 | 8.16 |
Recovery (%) | 85.8% | 101.4% | 90.3% | 106.0% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Liu, Y.; Zhao, W.; Li, M.; Liu, N.; Bian, K. Reduction of Aflatoxin B1 and Zearalenone Contents in Corn Using Power Ultrasound and Its Effects on Corn Quality. Toxins 2022, 14, 834. https://doi.org/10.3390/toxins14120834
Liu Y, Liu Y, Zhao W, Li M, Liu N, Bian K. Reduction of Aflatoxin B1 and Zearalenone Contents in Corn Using Power Ultrasound and Its Effects on Corn Quality. Toxins. 2022; 14(12):834. https://doi.org/10.3390/toxins14120834
Chicago/Turabian StyleLiu, Yuanfang, Yuanxiao Liu, Wenbo Zhao, Mengmeng Li, Na Liu, and Ke Bian. 2022. "Reduction of Aflatoxin B1 and Zearalenone Contents in Corn Using Power Ultrasound and Its Effects on Corn Quality" Toxins 14, no. 12: 834. https://doi.org/10.3390/toxins14120834
APA StyleLiu, Y., Liu, Y., Zhao, W., Li, M., Liu, N., & Bian, K. (2022). Reduction of Aflatoxin B1 and Zearalenone Contents in Corn Using Power Ultrasound and Its Effects on Corn Quality. Toxins, 14(12), 834. https://doi.org/10.3390/toxins14120834