Ochratoxin A in Slaughtered Pigs and Pork Products
Abstract
:1. Introduction
2. Production of OTA
2.1. General Factors
2.2. Production of OTA in Meat and Meat Products
Species | Foodstuffs | References |
---|---|---|
Aspergillus spp. | ||
A. ochraceus | Processed meat | [90] |
Meat | [91] | |
Dry-cured ham | [27] | |
Sausages, speck | [75] | |
Dry-cured meat products | [57] | |
A. niger | Dry-cured meat products | [57] |
A. westerdijkiae | Meat products | [30,70,84,85,92,93] |
Penicillium spp. | ||
P. verrucosum | Sausage casings | [94] |
Sausages | [75] | |
Dry-cured meat products | [57] | |
P. nalgiovense | Dry cured ham | [95] |
Dry-cured meat (salami) | [50] | |
P. nordicum | Meat products | [46,96] |
Dry-cured ham | [64,65,95] | |
Meat | [97] | |
Cured meat | [98] | |
Fermented meat | [99] | |
Fermented sausage, liver pâté | [100] | |
Dry-cured meat | [70,71,84] | |
Sausage casings | [94] | |
Sausages | [75,101] | |
Meat product (Italian culatello) | [93] | |
Salami | [28,67] | |
Speck | [76] | |
P. salami, P. solitum, P. chrysogenum, P. olsonii | Dry-cured meat (salami) | [50] |
3. Physicochemical Properties of OTA
4. Toxicity of OTA
5. Regulations on OTA in Pork Meat and Meat Products
6. Methods for the Detection and Determination of OTA
7. Occurrence of OTA in Slaughtered Pigs
OTA Treatment | Sample | OTA Content (μg/kg-μg/L) | Method 2 | Reference | |
---|---|---|---|---|---|
Type | Number | ||||
1 male, 1 female control, 1 male, 1 female OTA-treated (0.8 μg/kg feed)/6 months | Kidneys | 2 control 2 treated | 12.1 and 9.6 (control) 98.3 and 103.8 (treated) | HPLC-FD | [172] |
Control/OTA-treated (25 µg/kg feed)/119 days | Kidneys | 32 control 32 treated | 10.50 (control) 69 (treated) | HPLC-FD | [173] |
Liver | 3.50 (control) 52.00 (treated) | ||||
Meat (Semimembranosus muscle) | 0.88 (control) 6.10 (treated) | ||||
OTA treated: 2.5 mg/kg feed | Kidneys | 5 treated | Mean: 29.15 | TLC and spectrophotometry | [174] |
Liver | Mean: 20.1 | ||||
Meat (heart/muscle) | Mean: 12.6 | ||||
T0: control group, OTA treated groups (T1-T3): 50, 100, 200 μg/kg feed/2 weeks | Blood | 24 (total) | T0: <0.02–0.26, Mean: 0.19 T1: 5.24–7.51, Mean: 6.35 T2: 7.41–16.5, Mean:11.4 T3: 17.3–34.5, Mean: 24.6 | HPLC-FD LOD: 0.02, LOQ: 0.05 | [175] |
Kidneys | T0: <0.04–0.32, Mean: 0.13 T1: 2.75–4.37, Mean: 3.74 T2: 4.56–5.72, Mean: 5.24 T3: 7.33–11.8, Mean:10 | LOD: 0.04, LOQ: 0.10 | |||
Liver | T0: <0.04–0.14, Mean: 0.06 T1: 1.26–1.82, Mean: 1.60 T2: 1.91–2.56, Mean: 2.35 T3: 3.16–6.98, Mean: 4.29 | LOD: 0.04, LOQ: 0.10 | |||
Meat | T0: ND 1 T1: 0.60–0.89, Mean: 0.74 T2: 1.08–1.45, Mean: 1.27 T3: 1.67–3.40, Mean: 2.23 | LOD: 0.04, LOQ: 0.10 | |||
Fat | T0: ND T1: 0.57–0.79, Mean: 0.68 T2: 0.86–1.26, Mean: 1.04 T3: 1.33–2.58, Mean: 1.71 | LOD: 0.02, LOQ: 0.05 | |||
5 controls, 5 OTA treated (0.78 mg/day) (300 μg/kg feed) | Blood | 10 (total) | ELISA Mean: 6.56 ± 2.15 HPLC-FD Mean: 6.35 ± 2.49 | ELISA: LOD: 1.34, LOQ: 2.94 HPLC-FD LOD: 0.15, LOQ: 0.20 | [21] |
Kidneys | ELISA Mean: 14.59 ± 3.47 HPLC-FD Mean: 15.31 ± 3.11 | ELISA: LOD: 1.59, LOQ: 3.32 HPLC-FD: LOD: 0.15, LOQ: 0.20 | |||
Liver | ELISA Mean: 8.23 ± 2.49 HPLC-FD Mean: 8.81 ± 2.08 | ELISA: LOD: 2.31, LOQ: 5.67 HPLC-FD: LOD: 0.15, LOQ: 0.20 | |||
Muscle | ELISA Mean: 5.42 ± 1.13 HPLC-FD Mean: 5.61 ± 2.01 | ELISA: LOD: 0.39, LOQ: 0.57 HPLC-FD: LOD: 0.15, LOQ: 0.20 | |||
Fat | ELISA Mean: 4.31 ± 1.58 HPLC-FD Mean: 4.59 ± 1.68 | ELISA: LOD: 0.32, LOQ: 0.40 HPLC-FD: LOD: 0.15, LOQ: 0.20 | |||
OTA treated (250 μg/kg feed)/4 weeks | Blood | 5 (total) | 3.71–6.57 Mean: 4.77 ± 1.57 | ELISA: LOD: 0.20, LOQ: 0.31 HPLC-FD: LOD: 0.10, LOQ: 0.15 | [176] |
Kidneys | 11.88–15.98 Mean: 13.87 ± 1.41 | ELISA: LOD: 1.44, LOQ: 1.89 HPLC-FD: LOD: 0.24, LOQ: 0.36 | |||
Liver | 4.89–9.78 Average: 7.28 ± 1.75 | ELISA: LOD: 1.54, LOQ: 2.11 HPLC-FD: LOD: 0.36, LOQ: 0.42 | |||
Meat | 2.79–5.37 Mean: 4.72 ± 0.86 | ELISA: LOD: 0.45, LOQ: 0.61 HPLC-FD: LOD: 0.16, LOQ: 0.22 | |||
Fat | 2.95-5.26 Average: 4.11 ± 0.88 | ELISA: LOD: 0.66, LOQ: 1.11 HPLC-FD: LOD: 0.23, LOQ: 0.29 |
Samples | Country | Year/Years of Study | OTA Prevalence | Method 2 | Comments | Reference | |
---|---|---|---|---|---|---|---|
Positive/Number Tested (% Positive) | Concentration (μg/kg-μg/L) | ||||||
Blood | Canada | 1988 | 1200 Total (3.6% of 194) (4.2% of 1006) | >20 | HPLC-FD | [166] | |
1989–1990 | 16–65% | 5.4–19.4 | |||||
Serum | Bulgaria | 1993–1994 | 25/75 (48–64%, autumn) (60.88 spring) | Mean: 4.8–21.94 (autumn) 60.88 (spring) | HPLC | [177] | |
Romania | 1998 | 52 (Total) | 98%: 0.05–13.4 92%: ≥0.1 Max: 13.4 Mean: 2.43 | HPLC-FD | LOD: 0.1 | [164] | |
Romania | NR 1 | 49/52 (94%) | 0.1–13.4 | HPLC-FD | LOD: 0.1 | [165] | |
Serbia | 2006–2007 | 28/90 (31%) | 0.22–220.8 Mean: 3.70 ± 23.59 | HPLC-FD | LOD: 0.1 | [167] | |
Kidneys | Bulgaria | 1994 | 80–100% (nephropathic kidneys) | Mean: 1.5–7.17 | Samples from porcine nephropathy affected farms | [178] | |
France | 1997 | 3/300 (1%) 6/100 (6%) | 1%: 0.40–1.40 6%: 0.16–0.48 | HPLC-FD | 300 Healthy pigs 100 Nephropathic pigs LOD: 0.05, LOQ: 0.16 | [179] | |
France | 1998 | 238/710 (33.5%) | 184/710 (25.9%): LOD-0.5 54/710 (7.6%): 0.5–5 | HPLC-FD | LOD: 0.05, LOQ: 0.16 | ||
Germany | NR | 26/58 (44%) | Max: 9.3 | HPLC-FD | LOD: 0.01 | [180] | |
Romania | 1998 | 41/52 (79%) | Max: 3.18, Mean: 0.54 | HPLC-FD | LOD: 0.01 | [165] | |
Denmark | 1999 | 284/300 (94.7%) | 0–15 Mean: 0.50, Median: 0.18 | HPLC-FD | LOD: 0.02, LOQ: 0.06 | [181] | |
Italy | NR | 52/54 (96%) | 0.26–3.05 | HPLC-FD | LOD: 0.14, LOQ: 0.52 | [182] | |
Italy | NR | 54/54 (100%) | Mean: 0.29, Max: 0.9 | ELISA | LOD: 0.01 | [183] | |
Italy | 2005 | 5 (Total) | 23.9–27.5 Average: 25.6 ± 1.56 | HPLC-FD | LOD: 0.10, LOQ: 0.30 | [184] | |
Serbia | 2006–2007 | 30/90 (33.3%) | 0.17–52.5 Mean: 1.26 ± 5.85 | HPLC-FD | LOD: 0.01 | [167] | |
Czech Rebublic | 2011–2012 | 8% | 0.15–0.46, Mean: 0.18 | HPLC-FD | LOD: 0.10, LOQ: 0.30 | [168] | |
China | 2014 | 35/40 | (0.03–0.1) to 0.323 | UHPLC-MS/MS | LOD: 0.03, LOQ: 0.10 | [159] | |
Italy | NR | 5/5 (100%) | 0.17–0.91 Mean: 0.37 ± 0.30 | HPLC-FD (ED) | LOD: 0.001, LOQ: 0.002 | [147] | |
Belgium | 2012–2019 | 41/110 (37.3%) | Mean: 0.22 ± 0.25 | LC-MS/MS | LOD: 0.2 | [169] | |
Kidneys of wild boars | Italy | 2014–2015 | 48 (Total) 2014:26/26 (100%) 2015:22/22 (100%) | 2014: 0.19–3.23 Median: 0.68 2015: 0.07–1.72 Median: 0.34 | HPLC-FD (ED) | LOD: 0.001, LOQ: 0.002 | [120] |
Serbia | 2018 | 14/95 (14.74%) | 0.10–3.97 Average: 1.36 Median: 0.99 | HPLC-FD | LOQ: 0.10 | [148] | |
Liver | Germany | NR | 10/58 (17%) | Max: 2.7 µg/kg | HPLC-FD | LOD: 0.01 | [180] |
Romania | 1998 | 39/52 (75%) | Max: 0.61 Mean: 0.16 | HPLC-FD | LOD: 0.01 | [165] | |
Italy | 2005 | 5 (Total) | 3.2–5.3 Average: 4.4 ± 0.8 | HPLC-FD | LOD: 0.10, LOQ: 0.30 | [184] | |
Serbia | 2006–2007 | 24/90 (26.6%) | 0.22–14.5 Mean: 0.63 ± 1.87 | HPLC-FD | LOD: 0.01 | [167] | |
China | NR | 1/3 (33.33%) | 1.46 | LC-MS/MS | LOQ: 0.25-1.0 | [156] | |
Italy | NR | 5/5 (100%) | 0.07–0.59 Mean: 0.35 ± 0.20 | HPLC-FD (ED) | LOD: 0.001, LOQ: 0.002 | [147] | |
Liver of wild boars | Italy | 2014–2015 | 48 (Total) 2014: 26/26 (100%) 2015: 22/22 (100%) | 2014: 0.04–1.93, Median: 0.15 2015: 0.02–1.31 Median: 0.23 | HPLC-FD (ED) | LOD: 0.001, LOQ: 0.002 | [153] |
France | 2014 | 47/70 (67%) | 0.10–3.65 | SIDA–UHPLC–MS/MS | LOD: 0.03, LOQ: 0.10 | [23] | |
Pork meat and liver | Denmark | 1993–1994 | 64/76 (84.2%) (conventional) 4/7 (57.1%) (ecological) | Conventional Max: 1.3 Mean: 0.11, Median: 0.09 Ecological Max: 0.12, Mean: 0.05, Median: 0.05 | HPLC-FD | LOD: 0.02–0.03 | [185] |
Meat | Germany | NR | 10/58 (17.2%) | Max: 0.14, Median: <0.01 | HPLC-FD | LOD: 0.01 | [180] |
Romania | 1998 | 9/54 (17%) | Max: 0.53, Mean: 0.15 | HPLC-FD | LOD: 0.01 | [165] | |
Denmark | 1999 | 228/300 (76%) | 0–2.9 Mean: 0.12, Median: 0.03 | HPLC-FD | LOD: 0.03, LOQ: 0.09 | [181] | |
Swine muscle | Portugal | 2002–2003 | 1/13 (7.7%) | 0.12 Mean: 0.01 ± 0.03 | HPLC-FD | LOD: 0.01, LOQ: 0.04 | [144] |
Italy | NR | 54/54 (100%) 42/54 (78%) > 0.05 20% > 0.5 | Mean: 0.024, Median: 0.01 | ELISA | LOD: 0.01 | [183] | |
China | NR | 1/3 | 1.25 | LC-MS/MS | LOQ: 0.25–1.0 | [156] | |
Czech Rebublic | 2011–2012 | 8% | 0.15–0.20, Mean: 0.13 | HPLC-FD | LOD: 0.10, LOQ: 0.30 | [168] | |
Italy | NR | 5/5 (100%) | 0.09–0.20, Mean: 0.13 ± 0.04 | HPLC-FD (ED) | LOD: 0.001, LOQ: 0.002 | [146] | |
Muscle of wild boars | Italy | 2014–2015 | 48 (Total) 2014: 26/26 (100%) 2015: 22/22 (100%) | 2014: <LOD–0.77 Median: 0.08 2015: 0.03–0.50 Median: 0.13 | HPLC-FD (ED) | LOD: 0.001, LOQ: 0.002 | [152] |
China | NR | 1/4 | 0.88 | LC-MS/MS | LOD: 0.07, LOQ: 0.25 | [156] | |
France | 2014 | 19/25 (76%) | ≤0.03–1.15 | SIDA–UHPLC–MS/MS | LOD: 0.03, LOQ: 0.10 | [23] | |
Italy | NR | 5/5 (100%) Rearing system: Indoor & Outdoor | Indoor: 0.055 ± 0.015 Outdoor: 0.078 ± 0.011 | HPLC-FD | LOD: 0.0125, LOQ: 0.0250 | [15] | |
Fat | Italy | NR | 5/5 (100%) Rearing system: Indoor & Outdoor | Indoor: 0.079 ± 0.018 Outdoor: 0.085 ± 0.025 | HPLC-FD | LOD: 0.0125, LOQ: 0.0250 | [15] |
8. Occurrence of OTA in Pork Meat Products
Samples | Country | Year/Years of Study | OTA Prevalence | Method 1 | Comments 1 | Reference | |
---|---|---|---|---|---|---|---|
Positive/Number Tested (% Positive) | Concentration (μg/kg) | ||||||
Various Products | Various countries | 1990–1998 | NR | Mean: 0.052 | NR | [188] | |
France, Germany, Italy, U.S. | 1997–1999 and 2000–2002 | 18% | NR | NR | [190,191] | ||
Liver sausages | Germany | NR 1 | 68% | Mean: 0.02, Max.: 4.56 | HPLC-FD | [180] | |
Bologna type products | 46.7% | Mean: 0.01, Max.: 0.38 | |||||
Blood sausages | 77.2% | Mean: 0.04, Max.: 3.16 | |||||
Salami | Italy | 2001–2002 | 4/12 (33%) | Mean: 0.02, Max.: 0.08 | HPLC-FD | LOD: 0.01, LOQ: 0.03 | [145] |
Cooked ham | 1/12 (8%) | Mean: 0.004, Max.: 0.05 | |||||
Dry-cured ham | 12/30 (40%) | Mean: 1.62, Max.: 28.42 | |||||
Coppa | 5/18 (28%) | Mean: 0.03, Max.: 0.24 | |||||
Würstel | 1/12 (8%) | Mean: 0.005, Max.: 0.06 | |||||
Hams | Italy | NR | Inner samples: 2/10 (20%) Outer samples: 5/10 (50%) | 0.28–1.52, 0.11–7.28 | HPLC-FD | LOD: 0.02, LOQ: 0.06 | [192] |
NR | Inner samples: 32/110 (29%) Outer samples: 84/110 (76.4) | 4.66–12.51 | HPLC-FD | LOD: 0.1, LOQ: 0.3 | [26] | ||
Dry-cured hams | Italy | 2007–2010 | NR | Means: 0.6–4.11 | HPLC-FD | Choroform Extraction: LOD: 0.090, LOQ: 0.180 | [190] |
Means: 1.14–6.29 | Enzyme Assisted extraction: LOD: 0.060, LOQ: 0.120 | ||||||
Fermented sausages and dry-cured hams | Denmark | NR | 1/22 (4.5%) | Positive sample: Parma ham 1st analysis: 56, 2nd: 158 and 113 | LC-MS/MS | LOD: 11, LOQ: 50 | [142] |
Ham | Croatia | 2011–2014 | 18/105 (17.14%) | 0.97–9.95, Means: 0.16–1.82 | ELISA HPLC-FD | ELISA: LOD: 0.85–0.98 LOQ: 1.56–1.95 HPLC: LOD: 0.15, LOQ: 0.20 | [31] |
Dry-fermented sausages | 14/208 (6.73%) | 0.95–5.10, Means: 0.08–0.21 | |||||
Bacon | 2/62 (3.22%) | ND-1.23, Means: ND-0.07 | |||||
Cooked sausages | 3/35 (8.57%) | ND-3.13, Means: ND-0.26 | |||||
Dry-fermented sausages (industrial) | Croatia | 2013 | 18/56 (32.1%) | 1.36–7.12, Mean: 3.02 ± 2.45 | ELISA | Sausages LOD: 0.84, LOQ: 1.07 Ham LOD: 0.32, LOQ: 0.40 | [150] |
Dry-fermented sausage (homemade) | 11/77 (14.3%) | 1.36–6.26, Mean: 3.54 ± 1.70 | |||||
Dry-cured ham | 12/54 (22.1%) | 1.56–9.95, Mean: 3.16 ± 2.42 | |||||
Salami | Italy | NR | NR Rearing system indoor and outdoor | Indoor: 0.058 ± 0.015 Outdoor: 0.064 ± 0.004 | HPLC-FD | LOD: 0.0125, LOQ: 0.0250 | [15] |
Mortadella | Indoor: 0.537 ± 0.042 Outdoor: 0.558 ± 0.016 | ||||||
Prosciuttos | Croatia | NR | 15/67 (22.4%) | 2.16–6.86, Means: 3.56–5.04 | ELISA | [57] | |
Fermented sausages | 7/93 (7.5%) | 2.74–4.14, Means: 2.97–3.89 | |||||
Hams | Italy | NR | 27/42 (64.2%) <1.0 14/42 (33.4%) 1–2 1/42 (2.4%) > 2 | 0.04–0.98, 1.1–2, 2.20–2.30 | HPLC-FD VICAM fluorometer | HPLC: LOD: 0.04 Fluorometric: LOD: 0.7 | [171] |
Salami type cured meat | Italy | NR | 14/30 (46.7%) | 9/30 (30%): 0.006–0.06 5/30 (16.7%): 0.06–1 | HPLC-FD | LOD: 0.06, LOQ: 0.22 | [193] |
Salami | Italy | 2013 | 5/50 (10%) | 4 samples: 0.06–0.44 1 sample: 103.69 | HPLC-FD | LOD: 0.06, LOQ: 0.20 | [186] |
2013–2015 | 13/133 (9.8%) | - | LC-MS/MS | LOQ: 1 | [194] | ||
2015–2016 | 22/172 (12.8%) | 0.07–5.66, Mean: 0.51 | HPLC-FD | LOD: 0.05, LOQ: 0.20 | [32] | ||
Sausages | China | 2013–2014 | 1/10 | 0.5 | LC-MS/MS | LOD: 0.05, LOQ: 0.1 | [13] |
Dry Fermented sausages | Croatia | NR | 13/88 (14.8%) | <LOD-0.48, Mean: 0.26 ± 0.12 | LC-MS/MS | LOD: 0.44, LOQ: 1.44 | [56] |
Cured sausages | Italy | NR | 72/160 (45%) | Cases of sausages: 3–18 Means: 4.5–8.0 | ELISA | ELISA: LOD: 0.1 | [94] |
“Pâté” products | Spain | NR | 3/38 (7.9%) | Max.: 1.77 | HPLC-FD | LOD: 0.56, LOQ: 0.84 | [195] |
Products with porcine serum | Germany | NR | 58/325 (17.8%) | Mean: 0.15 | ELISA and HPLC-FD | - | [196] |
9. Risk Assessment of Human Exposure to OTA by Consumption of Pork Meat and Derived Products
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bostan, H.B.; Danesh, N.M.; Karimi, G.; Ramezani, M.; Shaegh, S.A.M.; Youssefi, K.; Charbgoo, F.; Abnous, K.; Taghdisi, S.M. Ultrasensitive detection of ochratoxin A using aptasensors. Biosens. Bioelectron. 2017, 98, 168–179. [Google Scholar] [CrossRef] [PubMed]
- Filazi, A.; Yurdakok-Dikmen, B.; Kuzukiran, O.; Sireli, U.T. Mycotoxins in Poultry. In Poultry Science; Manafi, M., Ed.; IntechOpen: Rijeka, Croatia, 2017. [Google Scholar]
- el Khoury, A.; Atoui, A. Ochratoxin A: General overview and actual molecular status. Toxins 2010, 2, 461–493. [Google Scholar] [CrossRef] [Green Version]
- Stoev, S.D. Studies on carcinogenic and toxic effects of ochratoxin A in chicks. Toxins 2010, 2, 649–664. [Google Scholar] [CrossRef] [Green Version]
- Stoev, S.D. Long term preliminary studies on toxic and carcinogenic effect of individual or simultaneous exposure to ochratoxin A and penicillic acid in mice. Toxicon 2020, 184, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Stoev, S.D. Follow up long term preliminary studies on carcinogenic and toxic effects of ochratoxin A in rats and the putative protection of phenylalanine. Toxicon 2021, 190, 41–49. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer. Agents Classified by the IARC Monographs; IARC: Lyon, France, 2016; Volumes 1–117. [Google Scholar]
- Commission of the European Communities (CEC). Commission Regulation (EC) No. 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union L 2006, 364, 5–24. [Google Scholar]
- Di Stefano, V. Occurrence & Risk of OTA in Food and Feed. In Encyclopedia of Food Chemistry; Melton, L., Shahidi, F., Varelis, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 420–423. [Google Scholar]
- Duarte, S.C.; Lino, C.M.; Pena, A. Ochratoxin A in feed of food-producing animals: An undesirable mycotoxin with health and performance effects. Vet. Microbiol. 2011, 154, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Stoev, S.D.; Goundasheva, D.; Mirtcheva, T.; Mantle, P.G. Susceptibility to secondary bacterial infections in growing pigs as an early response in ochratoxicosis. Exp. Toxicol. Pathol. 2000, 52, 287–296. [Google Scholar] [CrossRef]
- Loh, Z.H.; Ouwerkerk, D.; Klieve, A.V.; Hungerford, N.L.; Fletcher, M.T. Toxin Degradation by Rumen Microorganisms: A Review. Toxins 2020, 12, 664. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Liu, N.; Yang, L.; Deng, Y.; Wang, J.; Song, S.; Lin, S.; Wu, A.; Zhou, Z.; Hou, J. Multi-mycotoxin analysis of animal feed and animal-derived food using LC-MS/MS system with timed and highly selective reaction monitoring. Anal. Bioanal. Chem. 2015, 407, 7359–7368. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Risk assessment of ochratoxin A in food. EFSA J. 2020, 18, 6113. [Google Scholar]
- Meucci, V.; Pistoia, A.; Bertini, S.; Menozzi, A.; Intorre, L. Natural occurrence of ochratoxin a in confined reared and grazing pigs derived products. Large Anim. Rev. 2019, 25, 95–99. [Google Scholar]
- Leiva, A.; Méndez, G.; Rodríguez, C.; Molina, A.; Granados-Chinchilla, F. Chemical assessment of mycotoxin contaminants and veterinary residues in Costa Rican animal feed. Int. J. Food Contam. 2019, 6, 5. [Google Scholar] [CrossRef]
- Pozzo, L.; Cavallarin, L.; Nucera, D.; Antoniazzi, S.; Schiavone, A. A survey of ochratoxin A contamination in feeds and sera from organic and standard swine farms in Northwest Italy. J. Sci. Food Agric. 2010, 90, 1467–1472. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhao, L.; Fan, Y. Occurrence of mycotoxins in feed ingredients and complete feeds obtained from the Beijing region of China. J. Anim. Sci. Biotechnol. 2014, 5, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosa, C.A.R.; Keller, K.M.; Keller, L.A.M.; González Pereyra, M.L.; Pereyra, C.M.; Dalcero, A.M.; Cavaglieri, L.R.; Lopes, C.W.G. Mycological survey and ochratoxin A natural contamination of swinefeedstuffs in Rio de Janeiro State, Brazil. Toxicon 2009, 53, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Battacone, G.; Nudda, A.; Pulina, G. Effects of ochratoxin A on livestock production. Toxins 2010, 2, 1796–1824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perši, N.; Pleadin, J.; Kovačević, D.; Scortichini, G.; Milone, S. Ochratoxin A in raw materials and cooked meat products made from OTA-treated pigs. Meat Sci. 2014, 96, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Altafini, A.; Armorini, S.; Zaghini, A.; Sardi, L.; Roncada, P. Tissue distribution of ochratoxin A in pigs after administration of two-levels contaminated diets. World Mycotoxin J. 2017, 10, 263–272. [Google Scholar] [CrossRef]
- Hort, V.; Nicolas, M.; Minvielle, B.; Maleix, C.; Desbourdes, C.; Hommet, F.; Dragacci, S.; Dervilly-Pinel, G.; Engel, E.; Guérin, T. Ochratoxin A determination in swine muscle and liver from French conventional or organic farming production systems. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2018, 1092, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Montero, L.; Córdoba, J.J.; Peromingo, B.; Álvarez, M.; Núñez, F. Effects of environmental conditions and substrate on growth and ochratoxin A production by Penicillium verrucosum and Penicillium nordicum: Relative risk assessment of OTA in dry-cured meat products. Food Res. Int. 2019, 121, 604–611. [Google Scholar] [CrossRef]
- Tolosa, J.; Ruiz, M.J.; Ferrer, E.; Vila-Donat, P. Ochratoxin A: Occurrence and carry-over in meat and meat by-products. A Review. Rev. Toxicol. 2020, 37, 106–110. [Google Scholar]
- Dall’Asta, C.; Galaverna, G.; Bertuzzi, T.; Moseriti, A.; Pietri, A.; Dossena, A.; Marchelli, R. Occurrence of ochratoxin A in raw ham muscle, salami and dry-cured ham from pigs fed with contaminated diet. Food Chem. 2010, 120, 978–983. [Google Scholar] [CrossRef]
- Rodríguez, A.; Rodriguez, M.; Martin, A.; Delgado, J.; Cordoba, J.J. Presence of Ochratoxin A on the Surface of Dry-Cured Iberian Ham After Initial Fungal Growth in the Drying Stage. Meat Sci. 2012, 92, 728–734. [Google Scholar] [CrossRef]
- Berni, E.; Montagna, I.; Restivo, F.; Degola, F. Ochratoxin A Control in Meat Derivatives: Intraspecific Biocompetition between Penicillium nordicum Strains. J. Food Qual. 2017, 2017, 8370106. [Google Scholar] [CrossRef] [Green Version]
- Pleadin, J.; Zadravec, M.; Brnić, D.; Perković, I.; Škrivanko, M.; Kovačević, D. Moulds and mycotoxins detected in the regional speciality fermented sausage “slavonski kulen” during a 1-year production period. Food Addit. Contam. A 2017, 34, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Parussolo, G.; Oliveira, M.S.; Valle Garcia, M.; Olivier Bernardi, A.; Lemos, J.C.; Stefanello, A.; Mallmann, C.A.; Venturini Copetti, M. Ochratoxin A production by Aspergillus westerdijkiae in Italian-type salami. Food Microbiol. 2019, 83, 134–140. [Google Scholar] [CrossRef]
- Pleadin, J.; Malenica Staver, M.; Vahčić, N.; Kovačević, D.; Milone, S.; Saftić, L.; Scortichini, G. Survey of aflatoxin B1 and ochratoxin A occurrence in traditional meat products coming from Croatian households and markets. Food Cont. 2015, 52, 71–77. [Google Scholar] [CrossRef]
- Altafini, A.; Fedrizzi, G.; Roncada, P. Occurrence of ochratoxin A in typical salami produced in different regions of Italy. Mycotoxin Res. 2019, 35, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Vila-Donat, P.; Marín, S.; Sanchis, V.; Ramos, A.J. A review of the mycotoxin adsorbing agents, with an emphasis on their multi-binding capacity, for animal feed decontamination. Food Chem. Toxicol. 2018, 114, 246–259. [Google Scholar] [CrossRef] [Green Version]
- Agriopoulou, S.; Stamatelopoulou, E.; Varzakas, T. Advances in Occurrence, Importance, and Mycotoxin Control Strategies: Prevention and Detoxification in Foods. Foods 2020, 9, 137. [Google Scholar] [CrossRef] [PubMed]
- Malir, F.; Ostry, V.; Pfohl-Leszkowicz, A.; Malir, J.; Toman, J. Ochratoxin A: 50 Years of Research. Toxins 2016, 8, 191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abrunhosa, L.; Paterson, R.R.; Venâncio, A. Biodegradation of Ochratoxin A for food and feed decontamination. Toxins 2010, 2, 1078–1099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayat, A.; Paniel, N.; Rhouati, A.; Marty, J.-L.; Barthelmebs, L. Recent advances in ochratoxin A-producing fungi detection based on PCR methods and ochratoxin A analysis in food matrices. Food Control 2012, 26, 401–415. [Google Scholar] [CrossRef]
- Akbar, A.; Medina, A.; Magan, N. Resilience of Aspergillus westerdijkiae Strains to Interacting Climate-Related Abiotic Factors: Effects on Growth and Ochratoxin a Production on Coffee-Based Medium and in Stored Coffee. Microorganisms 2020, 8, 1268. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.; Liu, F.; Wang, Q.; Selvaraj, J.N.; Xing, F.; Zhao, Y.; Liu, Y. Ochratoxin A Producing Fungi, Biosynthetic Pathway and Regulatory Mechanisms. Toxins 2016, 8, 83. [Google Scholar] [CrossRef] [Green Version]
- Chuaysrinule, C.; Maneeboon, T.; Roopkham, C.; Mahakarnchanakul, W. Occurrence of aflatoxin- and ochratoxin A-producing Aspergillus species in Thai dried chilli. J. Agric. Food Res. 2020, 2, 100054. [Google Scholar] [CrossRef]
- Hong, S.B.; Lee, M.; Kim, D.H.; Varga, J.; Frisvad, J.C.; Perrone, G.; Gomi, K.; Yamada, O.; Machida, M.; Houbraken, J.; et al. Aspergillus luchuensis, an industrially important black Aspergillus in East Asia. PLoS ONE 2013, 8, e63769. [Google Scholar] [CrossRef] [Green Version]
- Davolos, D.; Pietrangeli, B. A molecular and bioinformatic study on the ochratoxin A (OTA)-producing Aspergillus affinis (section Circumdati). Mycotox Res. 2014, 30, 113–122. [Google Scholar] [CrossRef]
- Frisvad, J.C.; Frank, M.J.; Houbraken, J.A.M.P.; Kuijpers, A.F.A.; Samson, R.A. New ochratoxin producing species in Aspergillus section Circumdati. Stud. Mycol. 2004, 50, 23–43. [Google Scholar]
- Samson, R.; Houbraken, J.; Kuijpers, A.; Frank, J.; Frisvad, J. New ochratoxin A or sclerotium producing species in Aspergillus section Nigri. Stud. Mycol. 2004, 50, 45–61. [Google Scholar]
- Palencia, E.R.; Hinton, D.M.; Bacon, C.W. The black Aspergillus species of maize and peanuts and their potential for mycotoxin production. Toxins 2010, 2, 300–416. [Google Scholar] [CrossRef] [PubMed]
- Larsen, T.O.; Svendsen, A.; Smedsgaard, J. Biochemical characterization of ochratoxin A-producing strains of the genus Penicillium. Appl. Environ. Microbiol. 2001, 67, 3630–3635. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.D.T.; McMullin, D.R.; Ponomareva, E.; Riley, R.; Pomraning, K.R.; Baker, S.E.; Seifert, K.A. Ochratoxin A production by Penicillium thymicola. Fungal Biol. 2016, 120, 1041–1049. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.J.; Tang, D.; Zhou, Y.Q.; Sun, B.D.; Li, X.J.; Wang, L.Z.; Gao, W.W. Identification of ochratoxin A producing fungi associated with fresh and dry liquorice. PLoS ONE 2013, 8, e78285. [Google Scholar] [CrossRef] [Green Version]
- Vega, F.E.; Posada, F.; Peterson, S.W.; Gianfagna, T.J.; Chaves, F. Penicillium species endophytic in coffee plants and ochratoxin A production. Mycologia 2006, 98, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Perrone, G.; Samson, R.A.; Frisvad, J.C.; Susca, A.; Gunde-Cimerman, N.; Epifani, F.; Houbraken, J. Penicillium salamii, a new species occurring during seasoning of dry-cured meat. Int. J. Food Microbiol. 2015, 19, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Stoev, S.D.; Dutton, M.; Njobeh, P.; Mosonik, J.; Steenkamp, P. Mycotoxic nephropathy in Bulgarian pigs and chickens: Complex aetiology and similarity to Balkan Endemic Nephropathy. Food Addit. Contam. A 2010, 27, 72–88. [Google Scholar] [CrossRef] [Green Version]
- Pardo, E.; Marın, S.; Ramos, A.J.; Sanchis, V. Effect of water activity and temperature on mycelial growth and ochratoxin A production by isolates of Aspergillus ochraceus on irradiated green coffee beans. J. Food Prot. 2005, 68, 133–138. [Google Scholar] [CrossRef]
- Scudamore, K.A. Prevention of ochratoxin A in commodities and likely effects of processing fractionation and animal feeds. Food Addit. Contam. A 2005, 22, 17–25. [Google Scholar] [CrossRef]
- Duarte, S.C.; Lino, C.M.; Pena, A. Mycotoxin food and feed regulation and the specific case of ochratoxin A: A review of the worldwide status. Food Addit. Contam. A 2010, 27, 1440–1450. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.V.; Naveen, K.; Reddy, I.B. Incidence and Molecular Detection Of Ochratoxigenic Fungi From Indian Cereal Grains. Int. J. Pharma Bio. Sci. 2013, 4, 31–40. [Google Scholar]
- Kudumija, N.; Vulić, A.; Lešić, T.; Vahčić, N.; Pleadin, J. Aflatoxins and ochratoxin A in dry-fermented sausages in Croatia, by LC-MS/MS. Food Addit. Contam. B 2020, 13, 225–232. [Google Scholar] [CrossRef]
- Zadravec, M.; Vahčić, N.; Brnić, D.; Markov, K.; Frece, J.; Beck, R.; Lešić, T.; Pleadin, J. A study of surface moulds and mycotoxins in Croatian traditional dry-cured meat products. Int. J. Food Microbiol. 2020, 317, 108459. [Google Scholar] [CrossRef] [PubMed]
- Guerre, P. Review: Worldwide Mycotoxins Exposure in Pig and Poultry Feed Formulations. Toxins 2016, 8, 350. [Google Scholar] [CrossRef] [PubMed]
- Commission of the European Communities (CEC). Commission recommendation 2006/576/EC of 17 August 2006 on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT-2 and fumonisins in products intended for animal feeding. Off. J. Eur. Union L 2006, 229, 7–9. [Google Scholar]
- Stoev, S.D. Foodborne mycotoxicoses, risk assessment and underestimated hazard of masked mycotoxins and joint mycotoxin effects or interaction. Environ. Toxicol. Pharmacol. 2015, 9, 794–809. [Google Scholar] [CrossRef]
- Zachariasova, M.; Dzuman, Z.; Veprikova, Z.; Hajkova, K.; Jiru, M.; Vaclavikova, M.; Hajslova, J. Occurrence of multiple mycotoxins in European feedingstuffs, assessment of dietary intake by farm animals. Anim. Feed Sci. Technol. 2014, 193, 124–140. [Google Scholar] [CrossRef]
- Mizakova, A.; Pipova, M.; Turek, P. The occurrence of moulds in fermented raw meat products. Czech J. Food Sci. 2002, 3, 89–94. [Google Scholar] [CrossRef] [Green Version]
- Comi, G.; Orlic, S.; Redzepovic, S.; Urso, R.; Iacumin, L. Moulds isolated from Istrian dried ham at the pre-ripening and ripening level. Int. J. Food Microbiol. 2004, 96, 29–34. [Google Scholar] [CrossRef]
- Battilani, P.; Formenti, S.; Toscani, T.; Virgili, R. Influence of abiotic parameters on ochratoxin A production by Penicillium nordicum strain in dry-cured meat model systems. Food Control 2010, 21, 1739–1744. [Google Scholar] [CrossRef]
- Rodríguez, A.; Bernáldez, V.; Rodrígues, M.; Andrade, M.J.; Núñez, F.; Córdoba, J.J. Effect of selected protective cultures on ochratoxin A accumulation in dry cured Iberian ham during its ripening process. LWT Food Sci. Technol. 2015, 60, 923–928. [Google Scholar] [CrossRef]
- Rodríguez, A.; Capela, D.; Medina, Á.; Córdoba, J.J.; Magan, N. Relationship between ecophysiological factors, growth and ochratoxin A contamination of dry cured sausage-based matrices. Int. J. Food Microbiol. 2015, 194, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, M.; Magistà, D.; Lippolis, V.; Cervellieri, S.; Susca, A.; Perrone, G. Effect of Penicillium nordicum contamination rates on ochratoxin A accumulation in dry-cured salami. Food Control 2016, 67, 235–239. [Google Scholar] [CrossRef]
- Andrade, M.J.; Peromingo, B.; Rodríguez, M. Effect of cured meat product ingredients on the Penicillium verrucosum growth and ochratoxin A production. Food Control 2019, 96, 310–317. [Google Scholar] [CrossRef]
- Peromingo, B.; Sulyok, M.; Lemmens, M.; Rodríguez, A.; Rodríguez, M. Diffusion of mycotoxins and secondary metabolites in dry-cured meat products. Food Control 2019, 101, 144–150. [Google Scholar] [CrossRef]
- Meftah, S.; Abid, S.; Dias, T.; Rodrigues, P. Effect of dry-sausage starter culture and endogenous yeasts on Aspergillus westerdijkiae and Penicillium nordicum growth and OTA production. Food Sci. Technol. 2018, 87, 250–258. [Google Scholar] [CrossRef] [Green Version]
- Schmidt-Heydt, M.; Graf, E.; Batzler, J.; Geisen, R. The application of transcriptomics to understand the ecological reasons of ochratoxin A biosynthesis by Penicillium nordicum on sodium chloride rich dry cured food. Trends Food Sci. Technol. 2011, 22, 39–48. [Google Scholar] [CrossRef]
- Schmidt-Heydt, M.; Graf, E.; Stoll, D.; Geisen, R. The biosynthesis of ochratoxin A by Penicillium as one mechanism for adaptation to NaCl rich foods. Food Microbiol. 2012, 29, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Schmidt-Heydt, M.; Stoll, D.; Geisen, R. Fungicides effectively used for growth inhibition of several fungi could induce mycotoxin biosynthesis in toxigenic species. Int. J. Food Microbiol. 2013, 166, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Stoll, D.; Schmidt-Heydt, M.; Geisen, R. Differences in the regulation of ochratoxin A by the HOG pathway in Penicillium and Aspergillus in response to high osmolar environments. Toxins 2013, 19, 1282–1298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iacumin, L.; Milesi, S.; Pirani, S.; Comi, G.; Chiesa, L.M. Ochratoxigenic mold and ochratoxin a in fermented sausages from different areas in northern Italy: Occurrence, reduction or prevention with ozonated air. J. Food Saf. 2011, 31, 538–545. [Google Scholar] [CrossRef]
- Iacumin, L.; Manzano, M.; Andyanto, D.; Comi, G. Biocontrol of ochratoxigenic moulds (Aspergillus ochraceus and Penicillium nordicum) by Debaryomyces hansenii and Saccharomycopsis fibuligera during speck production. Food Microbiol. 2017, 62, 188–195. [Google Scholar] [CrossRef]
- Varga, J.; Kocsubé, S.; Tóth, B.; Frisvad, J.C.; Perrone, G.; Susca, A.; Meijer, M.; Samson, R.A. Aspergillus brasiliensis sp. nov., a biseriate black Aspergillus species with world-wide distribution. Int. J. Syst. Evol. Microbiol. 2007, 57, 1925–1932. [Google Scholar] [CrossRef] [PubMed]
- Núñez, F.; Lara, M.S.; Peromingo, B.; Delgado, J.; Sánchez-Montero, L.; Andrade, M.J. Selection and evaluation of Debaryomyces hansenii isolates as potential bioprotective agents against toxigenic penicillia in dry-fermented sausages. Food Microbiol. 2015, 46, 114–120. [Google Scholar] [CrossRef]
- Samson, R.A.; Hong, S.B.; Frisvad, J.C. Old and new concepts of species differentiation in Aspergillus. Med. Mycol. 2006, 44, 133–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonjak, S.; Licen, M.; Frisvad, J.C.; Gunde-Cimemrman, N. Salting of dry cured meat. A potential cause of contamination with the ochratoxin A-producing species Penicillium nordicum. Food Microbiol. 2011, 28, 1111–1116. [Google Scholar] [CrossRef] [PubMed]
- Canel, R.S.; Wagner, J.R.; Stenglein, S.A.; Ludemann, V. Indigenous filamentous fungi on the surface of Argentinean dry fermented sausages produced in Colonia Caroya (Córdoba). Int. J. Food Microbiol. 2013, 164, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Costa, P.M.C. Identificação de Fungos Filamentosos e Quantificação de Ocratoxina A em Produtos Cárneos ao Longo do Período de Cura. Master’s Thesis, Instituto Politécnico de Bragança, Bragança, Portugal, 2014. [Google Scholar]
- Vila, G.S.; Pose, G.N.; Segura, J.A.; Ludemann, V. Diversidad de hongos filamentosos en el emplume de embutidos secos producidos en la región pampeana. SNS Servicio Nacional de Sanidad 2016, 10, 40–49. [Google Scholar]
- Vipotnik, Z.; Rodríguez, A.; Rodrigues, P. Aspergillus westerdijkiae as a major ochratoxin A risk in dry-cured ham based-media. Int. J. Food Microbiol. 2017, 241, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Iacumin, L.; Arnoldi, M.; Comi, G. Effect of a Debaryomyces hansenii and Lactobacillus buchneri Starter Culture on Aspergillus westerdijkiae Ochratoxin a Production and Growth during the Manufacture of Short Seasoned Dry-Cured Ham. Microorganisms 2020, 8, 1623. [Google Scholar] [CrossRef] [PubMed]
- Meftah, S.; Abid, S.; Dias, T.; Rodrigues, P. Mechanisms underlying the effect of commercial starter cultures and a native yeast on ochratoxin A production in meat products. LWT Food Sci. Technol. 2019, 117, 108611. [Google Scholar] [CrossRef]
- Rodríguez, A.; Medina, Á.; Córdoba, J.J.; Magan, N. The influence of salt (NaCl) on ochratoxin A biosynthetic genes, growth and ochratoxin A production by three strains of Penicillium nordicum on a dry-cured ham-based medium. Int. J. Food Microbiol. 2014, 178, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Cebrián, E.; Rodríguez, M.; Peromingo, B.; Bermúdez, E.; Núñez, N. Efficacy of the combined protective cultures of Penicillium chrysogenum and Debaryomyces hansenii for the control of ochratoxin A hazard in dry-cured ham. Toxins 2019, 11, 710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peromingo, B.; Núñez, F.; Rodríguez, A.; Alía, A.; Andrade, M.J. Potential of yeasts isolated from dry-cured ham to control ochratoxin A production in meat models. Int. J. Food Microbiol. 2018, 268, 73–80. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO); Food and Agriculture Organization (FAO). Ochratoxin A. In Safety Evaluation of Certain Mycotoxins in Food; WHO: Geneva, Switzerland, 2001; Volume 47, pp. 281–415. [Google Scholar]
- Tawakkol, W.N.; Khafaga, I. Fungal Contamination of Meat and Its Environment With Special Reference To The Strains Producing Aflatoxins, Ochratoxins, Proteinase and Lipase Enzymes. New Egypt. J. Microbiol. 2007, 17, 1–14. [Google Scholar] [CrossRef]
- Comi, G.; Manzano, M.; Brichese, R.; Iacumin, L. New case of spoilage in San Daniele Dry Cured Hams. J. Food Saf. 2014, 34, 263–269. [Google Scholar] [CrossRef]
- Scaramuzza, N.; Diaferia, C.; Berni, E. Monitoring the mycobiota of three plants manufacturing Culatello (a typical Italian meat product). Int. J. Food Microbiol. 2015, 16, 78–85. [Google Scholar] [CrossRef]
- Iacumin, L.; Chiesa, L.; Boscolo, D.; Manzano, M.; Cantoni, C.; Orlic, S.; Comi, G. Moulds and ochratoxin A on surfaces of artisanal and industrial dry sausages. Food Microbiol. 2009, 26, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Battilani, P.; Pietri, A.; Giorni, P.; Formenti, S.; Bertuzzi, T.; Toscani, T.; Virgili, R.; Kozakiewicz, Z. Penicillium populations in dry-cured ham manufacturing plants. J. Food Prot. 2007, 70, 975–980. [Google Scholar] [CrossRef] [PubMed]
- Castella, G.; Larsen, T.O.; Cabanes, J.; Schmidt, H.; Alberesi, A.; Niessen, L.; Farber, P.; Geisen, R. Molecular characterization of ochratoxin A producing strains of the genus Penicillium. Syst. Appl. Microbiol. 2002, 25, 74–83. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Opinion of the scientific panel on contaminants in the food chain on request from the commission related to ochratoxin A in food. EFSA J. 2006, 4, 365. [Google Scholar] [CrossRef]
- Bogs, C.; Battilani, P.; Geisen, R. Development of a molecular detection and differentiation system for ochratoxin A producing penicillium species and its application to analyse the occurrence of Penicillium nordicum in cured meats. Int. J. Food Microbiol. 2006, 107, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Dobson, A.D.W. Mycotoxins in cheese. In Cheese: Chemistry, Physics and Microbiology, 4th ed.; McSweeney, P.L.H., Fox, P.F., Cotter, P., Everett, D.W., Eds.; Elsevier: New York, NY, USA, 2017; pp. 595–601. [Google Scholar]
- Sørensen, L.M.; Jacobsen, T.; Nielsen, P.V.; Frisvad, J.C.; Koch, A.G. Mycobiota in the n processing areas of two different meat products. Int. J. Food Microb. 2008, 24, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Comi, G.; Chiesa, L.; Panseri, S.; Orlic, S.; Iacumin, L. Evaluation of different methods to prevent Penicillium nordicum growth on and ochratoxin A production in country-style sausages. World Mycotoxin J. 2013, 6, 411–418. [Google Scholar] [CrossRef]
- Bittner, A.; Cramer, B.; Humpf, H.U. Matrix binding of ochratoxin A during roasting. J. Agric. Food Chem. 2013, 61, 12737–12743. [Google Scholar] [CrossRef] [PubMed]
- Kőszegi, T.; Poór, M. Ochratoxin A: Molecular Interactions, Mechanisms of Toxicity and Prevention at the Molecular Level. Toxins 2016, 8, 111. [Google Scholar] [CrossRef]
- Dahal, S.; Lee, H.J.; Gu, K.; Ryu, D. Heat stability of ochratoxin A in an aqueous buffered model system. J. Food Protect. 2016, 79, 1748–1752. [Google Scholar] [CrossRef] [PubMed]
- Sueck, F.; Hemp, V.; Specht, J.; Torres, O.; Cramer, B.; Humpf, H.U. Occurrence of the Ochratoxin a Degradation Product 2’R-Ochratoxin A in Coffee and Other Food: An Update. Toxins 2019, 11, 329. [Google Scholar] [CrossRef] [Green Version]
- Pleadin, J.; Perši, N.; Kovačević, D.; Vulić, A.; Frece, J.; Markov, K. Ochratoxin A reduction in meat sausages using processing methods practiced in households. Food Addit. Contam. B 2014, 7, 239–246. [Google Scholar] [CrossRef]
- Di Stefano, V.; Pitonzo, R.; Avellone, G. Effect of gamma irradiation on aflatoxins and ochratoxin a reduction in almond samples. J. Food Res. 2014, 3, 113–118. [Google Scholar] [CrossRef] [Green Version]
- Ouf, S.A.; Basher, A.H.; Mohamed, A.A. Inhibitory effect of double atmospheric pressure argon cold plasma on spores and mycotoxin production of Aspergillus niger contaminating date palm fruits. J. Sci. Food Agric. 2015, 95, 3204–3210. [Google Scholar] [CrossRef]
- Leitao, A.L. Occurrence of Ochratoxin A in Coffee: Threads and Solutions-A Mini-Review. Beverages 2019, 5, 36. [Google Scholar] [CrossRef] [Green Version]
- Marin, D.E.; Taranu, I. Ochratoxin A and its effects on immunity. Toxin Rev. 2015, 34, 11–20. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Q.; Yan, Z.; Tan, Y.; Zhu, R.; Yu, D.; Yang, H.; Wu, A. Occurrence and Quantitative Risk Assessment of Twelve Mycotoxins in Eggs and Chicken Tissues in China. Toxins 2018, 10, 477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heussner, A.H.; Bingle, L.E. Comparative Ochratoxin Toxicity: A Review of the Available Data. Toxins 2015, 7, 4253–4282. [Google Scholar] [CrossRef] [Green Version]
- Bondy, G.S.; Caldwell, D.S.; Aziz, S.A.; Coady, L.C.; Armstrong, C.L.; Curran, I.H.; Koffman, R.L.; Kapal, K.; Lefebvre, D.E.; Mehta, R. Effects of chronic ochratoxin A exposure on p53 heterozygous and p53 homozygous mice. Toxicol. Pathol. 2015, 43, 715–729. [Google Scholar] [CrossRef] [PubMed]
- Bondy, G.S.; Coady, L.; Ross, N.; Caldwell, D.; Gannon, A.M.; Kwong, K.; Hayward, S.; Lefebvre, D.E.; Liston, V.; Raju, J.; et al. A reproductive and developmental screening study of the fungal toxin ochratoxin A in Fischer rats. Mycotoxin Res. 2018, 34, 241–255. [Google Scholar] [CrossRef]
- Enciso, J.M.; López de Certain, A.; Pastor, L.; Azqueta, A.; Vettorazzi, A. Is oxidative stress involved in the sex-dependent response to ochratoxin A renal toxicity? Food Chem. Toxicol. 2018, 116, 379–387. [Google Scholar] [CrossRef]
- Rached, E.; Hard, G.C.; Blumbach, K.; Weber, K.; Draheim, R.; Lutz, W.K.; Ozden, S.; Steger, U.; Dekant, W.; Mally, A. Ochratoxin A: 13-week oral toxicity and cell proliferation in male F344/N rats. Toxicol. Sci. 2007, 97, 288–298. [Google Scholar] [CrossRef] [Green Version]
- Mally, A.; Pepe, G.; Ravoori, S.; Fiore, M.; Gupta, R.C.; Dekant, W.; Mosesso, P. Ochratoxin A causes DNA damage and cytogenetic effects but no DNA adducts in rats. Chem. Res. Toxicol. 2005, 18, 1253–1261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cariddi, L.N.; Escobar, F.M.; Sabini, M.C.; Campra, N.A.; Bagnis, G.; Decote-Ricardo, D.; Freire-de-Lima, C.G.; Mañas, F.; Sabini, L.I.; Dalcero, A.M. Phenolic acid protects of renal damage induced by ochratoxin A in a 28-days-oral treatment in rats. Environ. Toxicol. Pharmacol. 2016, 43, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Arbillaga, L.; Azqueta, A.; Ezpeleta, O.; López de Certain, A. Oxidative DNA damage induced by Ochratoxin A in the HK-2 human kidney cell line: Evidence of the relationship with cytotoxicity. Mutagenesis 2007, 22, 35–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdu, S.; Ali, A.; Ansari, S. Cytotoxic effect of ochratoxin A on the renal corpuscles of rat kidney: Could ochratoxin A cause kidney failure? Histol. Histopathol. 2011, 26, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Pastor, L.; Vettorazzi, A.; Enciso, J.M.; González-Peñas, E.; García-Jalón, J.A.; Monreal, J.I.; López de Certain, A. Sex differences in ochratoxin a toxicity in F344 rats after 7 and 21 days of daily oral administration. Food Chem. Toxicol. 2018, 111, 363–373. [Google Scholar] [CrossRef] [Green Version]
- Maroli, N.; Jayakrishnan, A.; Ramalingam Manoharan, R.; Kolandaivel, P.; Krishna, K. Combined Inhibitory Effects of Citrinin, Ochratoxin-A, and T-2 Toxin on Aquaporin-2. J. Phys. Chem. B 2019, 123, 5755–5768. [Google Scholar] [CrossRef]
- Stoev, S.D.; Gundasheva, D.; Zarkov, I.; Mircheva, T.; Zapryanova, D.; Denev, S.; Mitev, Y.; Daskalov, H.; Dutton, M.; Mwanza, M.; et al. Experimental mycotoxic nephropathy in pigs provoked by a mouldy diet containing ochratoxin A and fumonisin B1. Exp. Toxicol. Pathol. 2012, 64, 733–741. [Google Scholar] [CrossRef] [PubMed]
- Stoev, S.D.; Denev, S.; Dutton, M.; Njobeh, P.; Mosonik, J.; Steenkamp, P.; Petkov, I. Complex etiology and pathology of mycotoxic nephropathy in South African pigs. Mycotox. Res. 2010, 26, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Shen, X.L.; Chen, W.; Liao, X.; Yang, J.; Wang, Y.; Zou, Y.; Fang, C. Advances in research of nephrotoxicity and toxic antagonism of Ochratoxin, A. Toxin Rev. 2017, 36, 39–44. [Google Scholar] [CrossRef]
- Tanchev, Y.; Evstatiev, Z.; Dorossiev, D.; Pencheva, J.; Tzvetkova, G.S. Studies on the nephritides in the District of Vratza. Savremena Med. 1956, 7, 14–29. [Google Scholar]
- World Health Organization; International Agency for Research on Cancer. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Some Naturally; IARC: Lyon, France, 1993; pp. 489–521. [Google Scholar]
- Pfohl-Leszkowicz, A.; Vrabcheva, T.; Petkova-Bocharova, T.; Garren, L.; Grosso, F.; Nikolov, I.; Dragacci, S.; Chernozemsky, I.N.; Castegnaro, M. Analysis of Ochratoxin a in Serum, Urine and Food Consumed by Inhabitants from an Area with Balkan Endemic Nephropathy: A One Month Follow-up Study. In Mycotoxins and Phycotoxins: Advances in Determination, Toxicology and Exposure Management, Proceedings of the XIth International Symposium on Mycotoxins and Phytotoxins, Wageningen, The Netherlands, 17–21 May 2006; Njapau, H., Trujillo, C., van Egmond, H.P., Park, L.D., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands; Bethesda, MD, USA, 2006. [Google Scholar]
- Staneva, R.; Rukova, B.; Hadjidekova, S.; Nesheva, D.; Antonova, O.; Dimitrov, P.; Simeonov, V.; Stamenov, G.; Cukuranovic, R.; Cukuranovic, J.; et al. Whole genome methylation array analysis reveals new aspects in Balkan endemic nephropathy etiology. BMC Nephrol. 2013, 16, 225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kocic, G.; Cukuranovic, J.; Stoimenov, T.J.; Cukuranovic, R.; Djordjevic, V.; Bogdanovic, D.; Stefanovic, V. Global and specific histone acetylation pattern in patients with Balkan endemic nephropathy, a worldwide disease. Ren. Fail. 2014, 36, 1078–1082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoev, D.S. Balkan Endemic Nephropathy—Still continuing enigma, risk assessment and underestimated hazard of joint mycotoxin exposure of animals or humans. Chem. Biol. Interact. 2017, 261, 63–79. [Google Scholar] [CrossRef] [PubMed]
- Grollman, A.P. Aristolochic acid nephropathy: Harbinger of a global iatrogenic disease. Environ. Mol. Mutagen. 2013, 54, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Gifford, F.J.; Gifford, R.M.; Eddleston, M.; Neeraj, D. Endemic nephropathy around the world. Kidney Int. Rep. 2017, 2, 282–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jadot, I.; Decleves, A.-E.; Nortier, J.; Caron, N. An integrated view of aristolochic acid nephropathy: Update of the literature. Int. J. Mol. Sci. 2017, 18, 297. [Google Scholar] [CrossRef] [Green Version]
- Maaroufi, K.; Achour, A.; Hammami, M. Ochratoxin A in human blood in relation to nephropathy in Tunisia. Hum. Exp. Toxicol. 1995, 14, 609–614. [Google Scholar] [CrossRef] [PubMed]
- Palabiyik, S.S.; Erkekoglu, P.; Zeybek, N.D.; Kızılgun, M.; Sahin, G.; Giray, B.K. Ochratoxin A causes oxidative stress and cell death in rat liver. World Mycotoxin J. 2012, 5, 377–384. [Google Scholar] [CrossRef]
- Rašić, D.; Micek, V.; Klarić, M.; Peraica, M. Oxidative stress as a mechanism of combined OTA and CTN toxicity in rat plasma, liver and kidney. Hum. Exp. Toxicol. 2019, 38, 434–445. [Google Scholar] [CrossRef] [PubMed]
- Van Dorp, D.R.; Malleis, J.M.; Sullivan, B.P.; Klein, M.D. Teratogens inducing congenital abdominal wall defects in animal models. Pediatr. Surg. Int. 2010, 26, 127–139. [Google Scholar] [CrossRef]
- Galtier, P. Pharmacokinetics of ochratoxin A in Animals. IARC Sci. Publ. 1991, 115, 187–200. [Google Scholar]
- Singapore Food Agency (SFA). Maximum Residue Limits Established for Mercury, Bromate and Mycotoxins in Food. Available online: https://www.sfa.gov.sg/docs/default-source/default-document-library/circular---maximum-residue-limits-for-mercury-bromate-and-mycotoxins.pdf (accessed on 12 January 2021).
- Commission Regulation (EU). 2015/1137 of 13 July 2015 amending Regulation (EC) No 1881/2006 as regards the maximum level of Ochratoxin A in Capsicum spp. spices. Off. J. Eur. Union 2015, 185, 11–12. [Google Scholar]
- Meulenberg, E.P. Immunochemical Methods for Ochratoxin a Detection: A Review. Toxins 2012, 4, 244–266. [Google Scholar] [CrossRef]
- Sørensen, L.M.; Mogensen, J.; Nielsen, K.F. Simultaneous determination of ochratoxin A, mycophenolic acid and fumonisin B(2) in meat products. Anal. Bioanal. Chem. 2010, 398, 1535–1542. [Google Scholar] [CrossRef]
- Duarte, S.C.; Lino, C.M.; Pena, A. Novel IAC-LC-ESI-MS(2) analytical set-up for ochratoxin A determination in pork. Food Chem. 2013, 138, 1055–1061. [Google Scholar] [CrossRef] [PubMed]
- Guillamont, E.M.; Lino, C.M.; Baeta, M.L.; Pena, A.S.; Silveira, M.I.N.; Vinuesa, J.M. A comparative study of extraction apparatus in HPLC analysis of ochratoxin A in muscle. Anal. Bioanal. Chem. 2005, 383, 570–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pietri, A.; Bertuzzi, T.; Gualla, A.; Piva, G. Occurrence of ochratoxin a in raw ham muscles and in pork products from Northern Italy. Ital. J. Food Sci. 2006, 18, 99–106. [Google Scholar]
- Giacomo, L.; Michele, V.; Guido, F.; Danilo, M.; Luigi, I.; Valentina, M. Determination of ochratoxin A in pig tissues using enzymatic digestion coupled with high-performance liquid chromatography with a fluorescence detector. MethodsX 2016, 3, 171–177. [Google Scholar] [CrossRef] [PubMed]
- De Santis, B.; Gregori, E.; Debegnach, F.; Moracci, G.; Saitta, C.; Brera, C. Determination of ochratoxin A in pork meat products: Single laboratory validation method and preparation of homogeneous batch materials. Mycotoxin Res. 2020, 36, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Polovinski-Horvatovic, M.; Radovic, I.; Glamocic, D.; Jajic, I.; Krstovic, S.; Mirkov, M.; Vasiljevic, V. The occurrence of ochratoxin A in kidneys of healthy pigs from Vojvodina province, Serbia. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Proceedings of the 60th International Meat Industry Conference MEATCON2019, Kopaonik, Serbia, 22–25 September 2019; Volume 333, p. 012095. [Google Scholar]
- Rodrigues, P.; Silva, D.; Costa, P.; Abrunhosa, L.; Venâncio, A.; Teixeira, A. Mycobiota and mycotoxins in Portuguese pork, goat and sheep dry-cured hams. Mycotoxin Res. 2019, 35, 405–412. [Google Scholar] [CrossRef] [Green Version]
- Vulić, A.; Vahčić, N.; Hengl, B.; Gross-Bošković, A.; Jurković, M.; Kudumija, N.; Pleadin, J. Assessment of possible human exposure to ochratoxin A in Croatia due to the consumption of dry-cured and fermented meat products. Food Addit. Contam. A 2016, 33, 1428–1434. [Google Scholar] [CrossRef]
- Pleadin, J.; Perši, Ν.; Kovačević, D.; Vahčić, N.; Scortichini, G.; Milone, S.; Perši, N.; Kovačević, D.; Vahčić, N.; Scortichini, G.; et al. Ochratoxin A in traditional dry-cured meat products produced from sub-chronic-exposed pigs. Food Addit. Contam. A 2013, 30, 1827–1836. [Google Scholar] [CrossRef] [PubMed]
- Luci, G.; Intorre, L.; Ferruzzi, G.; Mani, D.; Giuliotti, L.; Pretti, C.; Tognetti, R.; Bertini, S.; Meucci, V. Determination of ochratoxin A in tissues of wild boar (Sus scrofa L.) by enzymatic digestion (ED) coupled to high-performance liquid chromatography with a fluorescence detector (HPLC-FLD). Mycotoxin Res. 2018, 34, 1–8. [Google Scholar] [CrossRef]
- Pietri, A.; Gualla, A.; Rastelli, S.; Bertuzzi, T. Enzyme-assisted extraction for the HPLC determination of ochratoxin A in pork and dry-cured ham. Food Addit. Contam. A 2011, 28, 1717–1723. [Google Scholar] [CrossRef] [Green Version]
- Luan, C.; Wang, L.; Chen, F.; Wang, S.; Zhao, L.; Shao, L. Determination of Ochratoxin A in Pig Muscle Using Dispersive Liquid-liquid Microextraction Combined with High-Performance Liquid Chromatography. Food Anal. Methods 2016, 9, 1490–1494. [Google Scholar] [CrossRef]
- Chen, D.; Cao, X.; Tao, Y.; Wu, Q.; Pan, Y.; Huang, L.; Wang, X.; Wang, Y.; Peng, D.; Liu, Z.; et al. Development of a sensitive and robust liquid chromatography coupled with tandem mass spectrometry and a pressurized liquid extraction for the determination of aflatoxins and ochratoxin A in animal derived foods. J. Chromatogr. A 2012, 1253, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Li, X.; Li, J.; Niu, Y.; Shi, L.; Fang, Z.; Zhang, T.; Ding, H. Quantitative determination of carcinogenic mycotoxins in human and animal biological matrices and animal-derived foods using multi-mycotoxin and analyte-specific high performance liquid chromatography-tandem mass spectrometric methods. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2018, 15, 191–200. [Google Scholar] [CrossRef]
- De Saeger, S.; Dumoulin, F.; Van Peteghem, C. Quantitative determination of ochratoxin A in kidneys by liquid chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 2004, 18, 2661–2668. [Google Scholar] [CrossRef]
- Brera, C.; Pannunzi, E.; Guarino, C.; Debegnach, F.; Gregori, E.; De Santis, B. Ochratoxin A Determination in Cured Ham By High Performance Liquid Chromatography Fluorescence Detection And Ultra Performance Liquid Chromatography Tandem Mass Spectrometry: A Comparative Study. J. Liq. Chromatogr. Relat. 2014, 37, 2036–2045. [Google Scholar] [CrossRef]
- Hou, Y.; Zhou, J.; Li, Y.; Xie, J.; Zhou, L.; Lv, F. Determination of Ochratoxin A in Pig Kidneys by Immunoaffinity Cleanup and Ultra-High Performance Liquid Chromatography. J. AOAC Int. 2015, 98, 1566–1570. [Google Scholar] [CrossRef]
- Taleuzzaman, M.; Ali, S.; Gilani, S.J.; Imam, S.S.; Hafeez, A. Ultra Performance Liquid Chromatography (UPLC)—A Review. Austin J. Anal. Pharm. Chem. 2015, 2, 1056. [Google Scholar]
- Delgado, J.; Rondán, J.J.; Núñez, F.; Rodríguez, A. Influence of an industrial dry-fermented sausage processing on ochratoxin A production by Penicillium nordicum. Int. J. Food Microbiol. 2021, 339, 109016. [Google Scholar] [CrossRef]
- Stoev, S.D.; Paskalev, M.; MacDonald, S.; Mantle, P.G. Experimental one year ochratoxin A toxicosis in pigs. Exp. Toxicol. Pathol. 2002, 53, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Tkaczyk, A.; Jedziniak, P. Mycotoxin Biomarkers in Pigs-Current State of Knowledge and Analytics. Toxins 2021, 13, 586. [Google Scholar] [CrossRef] [PubMed]
- Curtui, V.G.; Gareis, M.; Usleber, E.; Märtlbauer, E. Survey of Romanian slaughtered pigs for the occurrence of mycotoxins ochratoxins A and B, and zearalenone. Food Addit. Contam. 2001, 18, 730–738. [Google Scholar] [CrossRef] [PubMed]
- Curtui, V.G.; Gareis, M. A simple HPLC method for the determination of the mycotoxins ochratoxin A and B in blood serum of swine. Food Addit. Contam. 2001, 18, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Frohlich, A.A.; Marquardt, R.R.; Ominski, K.H. Ochratoxin A as a contaminant in the human food chain: A Canadian perspective. IARC Sci. Publ. 1991, 115, 139–143. [Google Scholar]
- Milićević, D.; Jurić, V.; Stefanović, S.; Jovanović, M.; Janković, S. Survey of Slaughtered Pigs for Occurrence of Ochratoxin A and Porcine Nephropathy in Serbia. Int. J. Mol. Sci. 2008, 9, 2169–2183. [Google Scholar] [CrossRef] [Green Version]
- Skarkova, J.; Ostry, V.; Malir, F.; Roubal, T. Determination of Ochratoxin A in Food by High Performance Liquid Chromatography. Anal. Lett. 2013, 46, 1495–1504. [Google Scholar] [CrossRef]
- Tangni, E.K.; Masquelier, J.; Van Hoeck, E. Determination of ochratoxin A in edible pork offal: Intra-laboratory validation study and estimation of the daily intake via kidney consumption in Belgium. Mycotoxin Res. 2021, 37, 79–87. [Google Scholar] [CrossRef]
- Toscani, T.; Moseriti, A.; Dossena, A.; Dall’Asta, C.; Simoncini, N.; Virgili, R. Determination of ochratoxin A in dry-cured meat products by a HPLC-FLD quantitative method. J. Chromatogr. B 2007, 855, 242–248. [Google Scholar] [CrossRef]
- Tam, J.; Pantazopoulos, P.; Scott, P.M.; Moisey, J.; Dabeka, R.W.; Richard, I.D. Application of isotope dilution mass spectrometry: Determination of ochratoxin A in the Canadian Total Diet Study. Food Addit. Contam. A 2011, 28, 754–761. [Google Scholar] [CrossRef]
- Petkova-Bocharova, T.; Adlouni, C.; Faucet, V.; Pfohl-Leszkowicz, A.; Mantle, P. Analysis for DNA adducts, ochratoxin a content and enzyme expression in kidneys of pigs exposed to mild experimental chronic ochratoxicosis. Facta Univ. Med. Biol. 2003, 10, 111–115. [Google Scholar]
- Malagutti, L.; Zannotti, M.; Scampini, A.; Sciaraffia, F. Effects of ochratoxin A on heavy pig production. Anim. Res. 2005, 54, 179–184. [Google Scholar] [CrossRef]
- Raja, A.V.; Saikumar, G.; Rinku, S.; Dwivedi, P. Ochratoxicosis in Swine: Clinical and pathological changes following prolonged exposure to Ochratoxin A. Indian J. Anim. Sci. 2008, 78, 922–928. [Google Scholar]
- Bertuzzi, V.; Gualla, A.; Morlacchini, M.; Pietri, A. Direct and indirect contamination with ochratoxin A of ripened pork products. Food Control 2013, 34, 79–83. [Google Scholar] [CrossRef]
- Pleadin, J.; Kudumija, N.; Kovačević, D.; Scortichini, G.; Milone, S.; Kmetič, I. Comparison of ochratoxin A levels in edible pig tissues and in biological fluids after exposure to a contaminated diet. Mycotoxin Res. 2016, 32, 145–151. [Google Scholar] [CrossRef]
- Stoev, S.D.; Stoeva, J.; Anguelov, G.; Hald, B.; Creppy, E.E.; Radic, B. Haematological, biochemical and toxicological investigations in spontaneous cases with different frequency of porcine nephropathy in Bulgaria. J. Vet. Intern. 1998, 45, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Stoev, S.D.; Hald, B.; Mantle, P. Porcine nephropathy in Bulgaria: A progressive syndrome of complex of uncertain (mycotoxin) etiology. Vet. Rec. 1998, 142, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Dragacci, S.; Grosso, F.; Bire, R.; Fremy, J.M.; Coulon, S. A French monitoring programme for determining ochratoxin A occurrence in pig kidneys. Nat. Toxins 1999, 7, 167–173. [Google Scholar] [CrossRef]
- Gareis, M.; Scheuer, R. Ochratoxin A in meat and meat products. Archiv. Fur. Lebensmittelhyg. 2000, 51, 102–104. [Google Scholar]
- Jørgensen, K.; Petersen, A. Content of ochratoxin A in paired kidney and meat samples from healthy Danish slaughter pigs. Food Addit. Contam. 2002, 19, 562–567. [Google Scholar] [CrossRef] [PubMed]
- Monaci, L.; Tantillo, G.; Palmisano, F. Determination of ochratoxin A in pig tissues by liquid-liquid extraction and clean-up and high-performance liquid chromatography. Anal. Bioanal. Chem. 2004, 378, 1777–1782. [Google Scholar] [CrossRef] [PubMed]
- Matrella, R.; Monaci, L.; Milillo, M.A.; Palmisano, F.; Tantillo, M.G. Ochratoxin A determination in paired kidneys and muscle samples from swines slaughtered in southern Italy. Food Control 2006, 17, 114–117. [Google Scholar] [CrossRef]
- Ceci, E.; Bozzo, G.; Bonerba, E.; Di Pinto, A.; Tantillo, M.G. Ochratoxin A detection by HPLC in target tissues of swine and cytological and histological analysis. Food Chem 2007, 105, 364–368. [Google Scholar] [CrossRef]
- Jørgensen, K. Survey of pork, poultry, coffee, beer and pulses for ochratoxin A. Food Addit. Contam. 1998, 15, 550–554. [Google Scholar] [CrossRef] [PubMed]
- Armorini, S.; Altafini, A.; Zaghini, A.; Roncada, P. Ochratoxin A in artisan salami produced in Veneto (Italy). Food Addit. Contam. B 2016, 9, 9–14. [Google Scholar] [CrossRef]
- Mitchell, N.J.; Chen, C.; Palumbo, J.D.; Bianchini, A.; Cappozzo, J.; Stratton, J.; Ryu, D.; Wu, F. A risk assessment of dietary Ochratoxin a in the United States. Food Chem. Toxicol. 2017, 100, 265–273. [Google Scholar] [CrossRef] [Green Version]
- Expert Committee on Food Additives (JECFA); Food and Agriculture Organization (FAO); World health Organization (WHO). Safety Evaluation of Certain Mycotoxins in Food; Food Additive Series 47; FAO: Rome, Italy, 2001; pp. 281–415. [Google Scholar]
- Alapont, C.; López-Mendoza, M.C.; Gil, J.V.; Martínez-Culebras, P.V. Mycobiota and toxigenic Penicillium species on two Spanish dry-cured ham manufacturing plants. Food Addit. Contam. A 2014, 31, 93–104. [Google Scholar] [CrossRef] [PubMed]
- SCOOP-Task 3.2.2.; European Commission. Assessment of Dietary Intake of Ochratoxin A by the Population in EU Member States, Report EUR 17523 EN 1997, Risk Assessment of Aflatoxin, 1997. Available online: https://orbit.dtu.dk/en/publications/assessment-of-dietary-intake-of-ochratoxin-a-by-the-population-of (accessed on 26 January 2021).
- SCOOP-Task 3.2.7. Scientific Co-Operation on Question Relating to Food. (Directive 93/5/EEC). Assessment of Dietary Intake of Ochratoxin Aby the Population of EU Member States, 2002. Available online: https://ec.europa.eu/food/system/files/2016-10/cs_contaminants_catalogue_ochratoxin_task_3-2-7_en.pdf (accessed on 26 January 2021).
- Chiavaro, E.; Lepiani, A.; Colla, F.; Bettoni, P.; Pari, E.; Spotti, E. Ochratoxin A determination in ham by immunoaffinity clean-up and a quick fluorimetric method. Food Adict. Contam. 2002, 19, 575–579. [Google Scholar] [CrossRef]
- Monaci, L.; Palmisano, F.; Matrella, R.; Tantillo, G. Determination of ochratoxin A at part-per-trillion level in Italian salami by immunoaffinity clean-up and high-performance liquid chromatography with fluorescence detection. J. Chromatogr. A 2005, 1090, 184–187. [Google Scholar] [CrossRef] [PubMed]
- Merla, C.; Andreoli, G.; Garino, C.; Vicari, N.; Tosi, G.; Guglielminetti, M.L.; Moretti, A.; Biancardi, A.; Arlorio, M.; Fabbi, M. Monitoring of ochratoxin A and ochratoxin-producing fungi in traditional salami manufactured in Northern Italy. Mycotoxin Res. 2018, 34, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, A.M.; López de Cerain, A.; Gonzalez-Peñas, E.; Bello, J. Determination of ochratoxin A in pig liver-derived pâtés by high-performance liquid chromatography. Food Addit. Contam. 2001, 18, 559–563. [Google Scholar] [CrossRef]
- Frank, H.K. Food contamination by ochratoxin A in Germany. IARC Sci. Publ. 1991, 115, 77–81. [Google Scholar]
- Expert Committee on Food Additives (JECFA); Food and Agriculture Organization (FAO); World Health Organization (WHO). Safety Evaluation of Certain Food Additives and Contaminants; Food Additives Series 59; FAO: Genova, Italy, 2008; pp. 357–426. [Google Scholar]
- European Food Safety Authority (EFSA). Scientific Opinion Statement on Recent Scientific Information on the Toxicity of Ochratoxin A. EFSA J. 2010, 8, 162. [Google Scholar]
- Boon, P.E.; Bakker, M.I.; van Klaveren, J.D.; van Rossum, C.T.M. RIVM Report 350070002/2009: Risk Assessment of the Dietary Exposure to Contaminants and Pesticide Residues in Young Children in The Netherlands. Available online: https://www.rivm.nl/bibliotheek/rapporten/350070002.pdf (accessed on 20 October 2021).
- Jorgensen, K. Occurrence of ochratoxin A in commodities and processed food—A review of EU occurrence data. Food Addit. Contam. 2005, 22, 26–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Food Safety Authority (EFSA). Opinion of the Scientific Panel on Contaminants in Food Chain on a Request from the Commission Related to Ochratoxin A (OTA) as Undesirable Substance in Animal Feed. EFSA J. 2004, 101, 1–36. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vlachou, M.; Pexara, A.; Solomakos, N.; Govaris, A. Ochratoxin A in Slaughtered Pigs and Pork Products. Toxins 2022, 14, 67. https://doi.org/10.3390/toxins14020067
Vlachou M, Pexara A, Solomakos N, Govaris A. Ochratoxin A in Slaughtered Pigs and Pork Products. Toxins. 2022; 14(2):67. https://doi.org/10.3390/toxins14020067
Chicago/Turabian StyleVlachou, Mikela, Andreana Pexara, Nikolaos Solomakos, and Alexander Govaris. 2022. "Ochratoxin A in Slaughtered Pigs and Pork Products" Toxins 14, no. 2: 67. https://doi.org/10.3390/toxins14020067
APA StyleVlachou, M., Pexara, A., Solomakos, N., & Govaris, A. (2022). Ochratoxin A in Slaughtered Pigs and Pork Products. Toxins, 14(2), 67. https://doi.org/10.3390/toxins14020067