Physicochemical, Pharmacokinetic and Cytotoxicity of the Compounds Isolated from an Endophyte Fusarium oxysporum: In Vitro and In Silico Approaches
Abstract
:1. Introduction
2. Results
2.1. Morphological Identification of the Fungal Strain
2.2. Characterization of Compound 1 as 3β,5α-Dihydroxy-ergosta-7,22-diene-6-one
2.3. Characterization of Compound 2 as 3β,5α,9α-Trihydroxy-ergosta-7,22-diene-6-one
2.4. Characterization of Compound 3 as p-Hydroxybenzaldehyde
2.5. Characterization of Compound 4 as 3-(R)-7-Butyl-6,8-dihydroxy-3-pent-11-enylisochroman-1-one
2.6. Characterization of Compound 5 as Beauvericin
2.7. Trypan Blue Test
2.8. In Silico Prediction of Physicochemical and Pharmacological Properties
2.9. Physicochemical Properties
2.10. Bioactivity
2.11. Pharmacokinetic Properties
2.12. In Silico Analysis of Toxic Properties
2.13. In Silico Cell Line Toxicity
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Collection and Identification of the Plant Material
5.2. General Experimental Procedures
5.3. Isolation and Extraction of Fungal Material
5.4. Identification of the Selected Endophytic Fungus
5.5. Isolation of Compounds
5.6. Compound 1 (3β,5α-Dihydroxy-ergosta-7,22-dien-6-one)
5.7. Compound 2 (3β,5α,9α-Dihydroxy-ergosta-7,22-dien-6-one)
5.8. Compound 3 (p-Hydroxybenzaldehyde)
5.9. Compound 4 (3-(R)-7-Butyl-6,8-dihydroxy-3-pent-11-enylisochroman-1-one)
5.10. Compound 5 (Beauvericin)
5.11. In Vitro Cytotoxicity Analysis by Trypan Blue Assay
5.12. In Silico Analysis of Physicochemical, Bioactivity, Pharmacokinetic and Toxicity Properties
5.13. In Silico Cell Line Toxicity Analysis
5.14. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yan, X.N.; Sikora, I.R.; Zheng, J.W. Potential use of cucumber (Cucumis sativus L.) endophytic fungi as seed treatment agents against root-knot nematode Meloidogyne incognita. J. Zhejiang Univ. Sci. B. 2011, 12, 219–225. [Google Scholar] [CrossRef] [Green Version]
- Jayasinghe, L.; Abbas, H.K.; Jacob, M.R.; Herath, W.H.M.W.; Nanayakkara, N.P.D. N-methyl-4-hydroxy-2-pyridinone analogues from Fusarium oxysporum. J. Nat. Prod. 2006, 69, 439–442. [Google Scholar] [CrossRef] [Green Version]
- Schneider, P.; Misiek, M.; Hoffmeister, D. In vivo and in vitro production options for fungal natural products. Mol. Pharm. 2008, 5, 234–242. [Google Scholar] [CrossRef]
- Gelderblom, W.C.; Jaskiewicz, K.; Marasas, W.F.; Thiel, P.G.; Horak, R.M.; Vleggaar, R.; Kriek, N.P. Fumonisins-novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme. Appl. Environ. Microbiol. 1988, 54, 1806–1811. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.C.; Lee, Y.W. Sambutoxin, a new mycotoxin produced by toxic Fusarium isolates obtained from rotted potato tubers. Appl. Environ. Microbiol. 1994, 60, 4380–4386. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, M.A.; Cabrera, G.; Godeas, A. Cyclosporine a from a nonpathogenic Fusarium oxysporum suppressing Sclerotinia sclerotiorum. J. Appl. Microbiol. 2006, 100, 575–586. [Google Scholar] [CrossRef]
- Garyali, S.; Kumar, A.; Reddy, M.S. Taxol production by an endophytic fungus, Fusarium redolens, isolated from Himalayan yew. J. Microbiol. Biotechnol. 2013, 23, 1372–1380. [Google Scholar] [CrossRef] [Green Version]
- Ran, X.; Zhang, G.; Li, S.; Wang, J. Characterization and antitumor activity of camptothecin from endophytic fungus Fusarium solani isolated from Camptotheca acuminate. Afr. Health. Sci. 2017, 17, 566–574. [Google Scholar] [CrossRef] [Green Version]
- Nadeem, M.; Ram, M.; Alam, P.; Ahmad, M.M.; Mohammad, A.; Al-Qurainy, F.; Khan, S.; Abdin, M.Z. Fusarium solani, P1, a new endophytic podophyllotoxin-producing fungus from roots of Podophyllum hexandrum. Afr. J. Microbiol. Res. 2012, 6, 2493–2499. [Google Scholar]
- Kumar, A.; Patil, D.; Rajamohanan, P.R.; Ahmad, A. Isolation, purification and characterization of vinblastine and vincristine from endophytic fungus from Fusarium oxysporum isolated from Catharanthus roseus. PLoS ONE 2013, 8, e71805. [Google Scholar] [CrossRef] [Green Version]
- Miersch, O.; Bohlmann, H.; Wasternack, C. Jasmonates and related compounds from Fusarium oxysporum. Phytochemistry 1999, 50, 517–523. [Google Scholar] [CrossRef]
- Seo, J.A.; Kim, J.C.; Lee, Y.W. Isolation and characterization of two new type C fumonisins produced by Fusarium oxysporum. J. Nat. Prod. 1996, 59, 1003–1005. [Google Scholar] [CrossRef]
- McInnes, A.G.; Walter, J.A.; Smith, D.G.; Wright, J.L.; Vining, L.C. Biosynthesis of bikaverin in Fusarium oxysporum. Use of 13C NMR with homonuclear 13C decoupling to locate adjacent 13C labels. J. Antibiot. 1976, 29, 1050–1057. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.X.; Li, S.F.; Zhao, F.; Dai, H.Q.; Bao, L.; Ding, R.; Gao, H.; Zhang, L.X.; Wen, H.A.; Liu, H.W. Chemical constituents from endophytic fungus Fusarium oxysporum. Fitoterapia 2011, 82, 777–781. [Google Scholar] [CrossRef]
- Cantalejo, M.J.; Carrasco, J.M.; Hernández, E. Fusarin C production by Fusarium spp. from Spain. J. Food Prot. 1997, 60, 837–842. [Google Scholar] [CrossRef]
- Khan, M.I.H.; Sohrab, M.H.; Rony, S.R.; Tareq, F.S.; Hasan, C.M.; Mazid, M.A. Cytotoxic and antibacterial naphthoquinones from an endophytic fungus, Cladosporium sp. Toxicol. Rep. 2016, 3, 861–865. [Google Scholar] [CrossRef]
- Khan, N.; Afroz, F.; Begum, M.N.; Rony, S.R.; Sharmin, S.; Moni, F.; Hasan, C.M.; Shaha, K.; Sohrab, M.H. Endophytic Fusarium solani: A rich source of cytotoxic and antimicrobial napthoquinone and aza-anthraquinone derivatives. Toxicol. Rep. 2018, 5, 970–976. [Google Scholar] [CrossRef]
- Chowdhury, N.S.; Sohrab, M.H.; Rana, M.S.; Hasan, C.M.; Jamshidi, S.; Rahman, K.M. Cytotoxic naphthoquinone and azaanthraquinone derivatives from an endophytic Fusarium solani. J. Nat. Prod. 2017, 80, 1173–1177. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, N.S.; Sohrab, M.H.; Rony, S.R.; Sharmin, S.; Begum, M.N.; Rana, M.S.; Hasan, C.M. Identification and bioactive potential of endophytic fungi from Monochoria hastata (l.) Solms. Bangladesh J. Bot. 2016, 45, 187–193. [Google Scholar]
- Hoque, N.; Hasan, C.M.; Rana, M.S.; Varsha, A.; Sohrab, M.H.; Rahman, K.M. Fusaproliferin, a fungal mycotoxin shows cytotoxicity against pancreatic cancer cell lines. Molecules 2018, 23, 3288. [Google Scholar] [CrossRef] [Green Version]
- Leslie, J.F.; Summerell, B.A. The Fusarium Laboratory Manual, 1st ed.; Blackwell Publishing Professional: Ames, IA, USA, 2006; p. 212. [Google Scholar]
- Ishizuka, T.; Yaoita, Y.; Kikuchi, M. Sterol constituents from the fruit bodies of Grifola frondosa (Fr.) SF Gray. Chem. Pharm. Bull. 1997, 45, 1756–1760. [Google Scholar] [CrossRef] [Green Version]
- Valisolalao, J.; Luu, B.; Ourisson, G. Steroides cytotoxiques de polyporus versicolor. Tetrahedron 1983, 39, 2779–2785. [Google Scholar] [CrossRef]
- Nguyen, D.H.; Zhao, B.T.; Le, D.D.; Kim, K.Y.; Kim, Y.H.; Yoon, Y.H.; Ko, J.Y.; Woo, S.; Woo, M.H. Phenolic constituents and their anti-inflammatory activity from Echinochloa utilis grains. Nat. Prod. Sci. 2016, 22, 140–145. [Google Scholar] [CrossRef]
- Kongsaeree, P.; Prabpai, S.; Sriubolmas, N.; Vongvein, C.; Wiyakrutta, S. Antimalarial dihydroisocoumarins produced by geotrichum sp., an endophytic fungus of Crassocephalum crepidioides. J. Nat. Prod. 2003, 66, 709–711. [Google Scholar] [CrossRef]
- Campos, F.F.; Junior, P.A.S.; Romanha, A.J.; Araujo, M.S.S.; Siqueira, E.P.; Resende, J.M.; Alves, T.M.A.; Martins-Filho, O.A.; Santos, V.L.; Rosa, C.A.; et al. Bioactive endophytic fungi isolated from Caesalpinia echinata Lam. (Brazilwood) and identification of beauvericin as a trypanocidal metabolite from Fusarium sp. Memorias do Instituto Oswaldo Cruz 2015, 110, 65–74. [Google Scholar] [CrossRef]
- Wang, Y.; Xing, J.; Xu, Y.; Zhou, N.; Peng, J.; Xiong, Z.; Liu, X.; Luo, X.; Luo, C.; Chen, K.; et al. In silico ADME/T modelling for rational drug design. Q. Rev. Biophys. 2015, 48, 488–515. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, T.B.; Segretti, M.C.F.; Polli, M.C.; Parise-Filho, R. Analysis of the applicability and use of Lipinski’s rule for central nervous system drugs. Lett. Drug Des. Discov. 2016, 13, 999–1006. [Google Scholar] [CrossRef] [Green Version]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [Green Version]
- Jarrahpour, A.; Fathi, J.; Mimouni, M.; Hadda, T.B.; Sheikh, J.; Chohan, Z.; Parvez, A. Petra, Osiris and Molinspiration (POM) together as a successful support in drug design: Antibacterial activity and biopharmaceutical characterization of some azo Schiff bases. Med. Chem. Res. 2012, 21, 1984–1990. [Google Scholar] [CrossRef]
- Lagunin, A.A.; Dubovskaja, V.I.; Rudik, A.V.; Pogodin, P.V.; Druzhilovskiy, D.S.; Gloriozova, T.A.; Filimonov, D.A.; Sastry, N.G.; Poroikov, V.V. CLC-Pred: A freely available web-service for in silico prediction of human cell line cytotoxicity for drug-like compounds. PLoS ONE 2018, 13, e0191838. [Google Scholar] [CrossRef] [Green Version]
- Rayan, A.; Raiyn, J.; Falah, M. Nature is the best source of anticancer drugs: Indexing natural products for their anticancer bioactivity. PLoS ONE 2017, 12, e0187925. [Google Scholar] [CrossRef]
- Nilanonta, C.; Isaka, M.; Kittakoop, P.; Trakulnaleamasai, S.; Tanticharoen, M.; Thebtaranonth, Y. Precursor-directed biosynthesis of beauvericin analogs by the insect pathogenic fungus Paecilomyces tenuipes BCC 161. Tetrahedron 2002, 58, 3355–3360. [Google Scholar] [CrossRef]
- Calo, L.; Fornelli, F.; Ramires, R.; Nenna, S.; Tursi, A.; Caiaffa, M.F.; Macchia, L. Cytotoxic effects of the mycotoxin beauvericin to human cell lines of myeloid origin. Pharmacol. Res. 2004, 49, 73–77. [Google Scholar] [CrossRef]
- Zhan, J.; Burns, A.M.; Liu, M.X.; Faeth, S.H.; Gunatilaka, A.A. Search for cell motility and angiogenesis inhibitors with potential anticancer activity: Beauvericin and other constituents of two endophytic strains of Fusarium oxysporum. J. Nat. Prod. 2007, 70, 227–232. [Google Scholar] [CrossRef] [Green Version]
- Jow, G.; Chou, C.; Chen, B.; Tsai, J. Beauvericin induces cytotoxic effects in human acute lymphoblastic leukemia cells through cytochrome C release, caspase 3 activation: The causative role of calcium. Cancer Lett. 2004, 216, 165–173. [Google Scholar] [CrossRef]
- Lin, H.; Lee, Y.; Chen, B.; Tsai, M.; Lu, J.; Chou, C.; Jow, G. Involvement of Bc1-2 family, cytochrome C and caspase 3 in induction of apoptosis by beauvericin in human non-small cell lung cancer cells. Cancer Lett. 2005, 230, 248–259. [Google Scholar] [CrossRef]
- Cheng, C.; Chang, K.; Lee, Y. Antiproliferative effect of beauvericin on retinoblastoma. Fu-Jen J. Med. 2009, 7, 161–169. [Google Scholar]
- Shirouzu, Y.; Ryschich, E.; Salnikova, O.; Kerkadze, V.; Schmidt, J.; Engelmann, G. Rapamycin inhibits proliferation and migration of hepatoma cells in vitro. J. Surg. Res. 2010, 159, 705–713. [Google Scholar] [CrossRef]
- Heuer, M.; Benkoe, T.; Cicinnati, V.R.; Kaiser, G.M.; Sotiropoulos, G.C.; Baba, H.A.; Treckmann, J.W.; Broelsch, C.E.; Paul, A. Effect of low-dose rapamycin on tumor growth in two human hepatocellular cancer cell lines. Transplant. Proc. 2009, 41, 359–365. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, J.; Chen, X.; Guo, S.; Lin, H.; Ding, B.; Huang, H.; Tao, Y. Potent anticancer activities of beauvericin against KB cells in vitro by inhibiting the expression of ACAT10 and exploring binding affinity. Anti-Cancer Agents Med. Chem. 2021, 22, 897–904. [Google Scholar] [CrossRef]
- Strober, W. Trypan blue exclusion test of cell viability. Curr. Protoc. Immunol. 2001, 21, A.3B.1–A.3B.2. [Google Scholar] [CrossRef]
- Wilson, C.H.; Ali, E.S.; Scrimgeour, N.; Martin, A.M.; Hua, J.; Tallis, G.A.; Rychkov, G.Y.; Barritt, G.J. Steatosis inhibits liver cell store-operated Ca2+ entry and reduces ER Ca2+ through a protein kinase C-dependent mechanism. Biochem. J. 2015, 466, 379–390. [Google Scholar] [CrossRef]
- Berry, M.N.; Barritt, G.J.; Edwards, A.M. Isolated hepatocytes: Preparation, properties and applications. In Laboratory Techniques in Biochemistry and Molecular Biology, 1st ed.; Burdon, R.H., Van Knippenberg, P.H., Eds.; Elsevier: Amsterdam, NY, USA, 1991; Volume 21, Available online: https://www.elsevier.com/books/978-0-444-81302-2 (accessed on 16 February 2022).
- Rahman, M.A.; Uddin, S.B.; Wilcock, C.C. Indigenous knowledge of herbal medicine in Bangladesh-Treatment of jaundice by tribal communities of the Hill tract Districts. Hamdard Med. 2003, 64, 25–28. [Google Scholar]
- Rahmatullah, M.; Rani, S.P.K.; Imran, M.A.; Jahan, R. The Khasia tribe of Sylhet District, Bangladesh, and their fast-disappearing knowledge of medicinal plants. J. Altern. Complement. Med. 2013, 19, 599–606. [Google Scholar]
- Nath, A.; Maiti, G.G. Shuktani-a new ethno-medico recipe among the Sylheti Bengali community of Barak valley, Southern Assam, India. Indian, J. Tradit. Knowl. 2012, 11, 156–160. [Google Scholar]
- Roy, A.; Biswas, S.K.; Chowdhury, A.; Shill, M.C.; Raihan, S.Z.; Muhit, A. Phytochemical screening, cytotoxicity and anti-bacterial activities of two Bangladeshi medicinal plants. Pak. J. Biol. Sci. 2011, 14, 905–908. [Google Scholar]
Parameter | Compound 1 | Compound 2 | Compound 3 | Compound 4 | Compound 5 |
---|---|---|---|---|---|
Physicochemical properties | |||||
Molecular Weight, MW | 428.65 | 444.65 | 122.12 | 304.38 | 783.95 |
Fraction Csp3 | 0.82 | 0.82 | 0.00 | 0.50 | 0.47 |
Num. rotational bonds | 4 | 4 | 1 | 6 | 9 |
Molar refractivity, MR | 129.35 | 130.55 | 33.85 | 87.57 | 228.14 |
TPSA | 57.53 | 77.76 | 37.30 | 66.76 | 139.83 |
Num. H-bond acceptors | 3 | 4 | 2 | 4 | 9 |
Num. H-bond acceptors | 2 | 3 | 1 | 2 | 0 |
Lipophilicity, LogPO/W: iLogP XLogP3 MLogP WLogP SILICOS-IT Consensus value | 4.36 5.93 4.52 5.70 5.66 5.24 | 4.02 4.48 3.67 4.82 5.17 4.43 | 0.99 1.35 0.79 1.20 1.52 1.17 | 3.45 5.29 2.97 3.88 4.40 4.00 | 5.30 8.42 3.14 3.77 5.43 5.21 |
Water solubility: | |||||
Log S (ESOL) | Moderately soluble | Moderately soluble | Very soluble | Moderately soluble | Poorly soluble |
Log S (SILICOS-IT) | Moderately soluble | Moderately soluble | Soluble | Moderately soluble | Insoluble |
Log S (Ali) | Poorly soluble | Moderately soluble | Very soluble | Poorly soluble | Insoluble |
Drug-likeness: | |||||
Lipinski’s filter | No violation | No violation | No violation | No violation | 2 violations (MW > 500; N or O > 10) |
Ghose filter | 2 violations (WLogP > 5.6; atom num. > 70) | 2 violations (MR > 130; atom num. > 70) | 3 violations (MW < 160, MR < 40; atom num. < 20) | No violation | 3 violations (MW > 480; MR > 130; atom num. > 70) |
Veber’s filter | No violation | No violation | No violation | No violation | No violation |
Egan’s filter | No violation | No violation | No violation | No violation | 1 violation (TPSA > 131.6) |
Muegge’s filter | 1 violation (XLogP3 > 5) | No violation | 1 violation (MW < 200) | 1 violation (XLogP3 > 5) | 2 violations (MW > 600; XLogP3 > 5) |
Bioactivity | |||||
GPCR ligand | 0.11 | 0.16 | −2.38 | 0.23 | −1.70 |
Nuclear receptor ligand | 0.75 | 0.91 | −1.93 | 0.49 | −2.60 |
Kinase inhibitor | −0.44 | −0.41 | −2.37 | −0.25 | −2.58 |
Protease inhibitor | 0.02 | 0.12 | −2.80 | −0.02 | −1.07 |
Enzyme inhibitor | 0.51 | 0.59 | −1.75 | 0.45 | −2.23 |
Ion channel modulator | 0.07 | 0.17 | −1.51 | 0.07 | −2.98 |
Pharmacokinetic properties | |||||
GI absorption | High | High | High | High | Low |
BBB permeant | No | No | Yes | Yes | No |
Skin permeation, log Kp (cm/s) | −4.7 | −5.83 | −6.09 | −4.4 | −5.1 |
P-gp substrate | No | Yes | No | No | Yes |
Bioavailability | 0.55 | 0.55 | 0.55 | 0.55 | 0.17 |
CYP1A2 inhibitor | No | No | No | Yes | No |
CYP2C19 inhibitor | No | No | No | No | No |
CYP2C9 inhibitor | No | No | No | Yes | No |
CYP2D6 inhibitor | No | No | No | No | No |
CYP3A4 inhibitor | No | No | No | No | No |
Toxic properties | |||||
Mutagenic effect | Absent | Absent | Highly present | Moderately present | Absent |
Tumorigenic effect | Absent | Absent | Absent | Absent | Absent |
Irritant effect | Absent | Absent | Highly present | Absent | Absent |
Reproductive effect | Absent | Absent | Absent | Absent | Absent |
Max. tolerated dose in human, Log (mg/kg/day) | −0.389 | −0.414 | 1.246 | −0.318 | 0.188 |
Hepatotoxicity | Yes | Yes | No | No | Yes |
hERG I inhibitor | No | No | No | No | No |
hERG II inhibitor | No | No | No | Yes | Yes |
Compounds | Cell Line | Pa | Pi |
---|---|---|---|
Compound 1 | Colon adenocarcinoma (HCC 2998) Ovarian adenocarcinoma (OVCAR-5) Lung carcinoma (DMS-114) | 0.633 0.616 0.610 | 0.009 0.013 0.009 |
Compound 2 | Lung carcinoma (DMS-114) Small cell lung carcinoma (NCI-H187) Colon adenocarcinoma (HCC 2998) | 0.584 0.501 0.476 | 0.012 0.014 0.024 |
Embryonic lung fibroblast (WI-38 VA13) | 0.413 | 0.033 | |
Compound 3 | Oligodendroglioma (Hs 683) Small cell lung carcinoma (NCI-H187) Non-small cell lung carcinoma (HOP-18) | 0.664 0.592 0.431 | 0.014 0.005 0.022 |
Compound 4 | Melanoma (A2058) Small cell lung carcinoma (NCI-H187) Lung carcinoma (DMS-114) | 0.499 0.488 0.448 | 0.014 0.017 0.072 |
Compound 5 | Glioblastoma (SF-268) Breast adenocarcinoma (MDA-MB-231) Pancreatic carcinoma (MIA PaCa-2) | 0.661 0.553 0.533 | 0.008 0.020 0.007 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoque, N.; Afroz, F.; Khatun, F.; Rony, S.R.; Hasan, C.M.; Rana, M.S.; Sohrab, M.H. Physicochemical, Pharmacokinetic and Cytotoxicity of the Compounds Isolated from an Endophyte Fusarium oxysporum: In Vitro and In Silico Approaches. Toxins 2022, 14, 159. https://doi.org/10.3390/toxins14030159
Hoque N, Afroz F, Khatun F, Rony SR, Hasan CM, Rana MS, Sohrab MH. Physicochemical, Pharmacokinetic and Cytotoxicity of the Compounds Isolated from an Endophyte Fusarium oxysporum: In Vitro and In Silico Approaches. Toxins. 2022; 14(3):159. https://doi.org/10.3390/toxins14030159
Chicago/Turabian StyleHoque, Nazia, Farhana Afroz, Farjana Khatun, Satyajit Roy Rony, Choudhury Mahmood Hasan, Md. Sohel Rana, and Md. Hossain Sohrab. 2022. "Physicochemical, Pharmacokinetic and Cytotoxicity of the Compounds Isolated from an Endophyte Fusarium oxysporum: In Vitro and In Silico Approaches" Toxins 14, no. 3: 159. https://doi.org/10.3390/toxins14030159
APA StyleHoque, N., Afroz, F., Khatun, F., Rony, S. R., Hasan, C. M., Rana, M. S., & Sohrab, M. H. (2022). Physicochemical, Pharmacokinetic and Cytotoxicity of the Compounds Isolated from an Endophyte Fusarium oxysporum: In Vitro and In Silico Approaches. Toxins, 14(3), 159. https://doi.org/10.3390/toxins14030159