Mycotoxins’ Toxicological Mechanisms Involving Humans, Livestock and Their Associated Health Concerns: A Review
Abstract
:1. Introduction
2. Mycotoxins and Mycotoxicosis
3. Mycotoxins: Their Toxicological Mechanisms and Associated Health Concerns
3.1. Aflatoxins
3.1.1. Mechanisms of Action of Aflatoxins
3.1.2. Further Information about Ailments Caused by Aflatoxins
3.1.3. Aflatoxin and Child Growth Impairment
3.2. Ochratoxin A
3.2.1. Mechanisms of Action of Ochratoxin A
3.2.2. Toxicities of Ochratoxin A
3.3. Deoxynivalenol (DON)
3.3.1. Mechanisms of Action of Deoxynivalenol
3.3.2. Toxicities of Deoxynivalenol
3.4. Fumonisins
3.4.1. Mechanisms of Action of Fumonisins
3.4.2. Toxicities of Fumonisins
3.4.3. Neural Tube Defects and Fumonisins
3.5. Zearalenone (ZEA)
3.5.1. Mechanisms of Action of Zearalenone
3.5.2. Toxicities of Zearalenone
3.6. Other Essential Mycotoxins
3.6.1. Patulin
3.6.2. Citrinin
3.6.3. Ergot Alkaloids
3.6.4. Trichothecene Mycotoxins
T-2 Mycotoxin
Diacetoxyscirpenol (DAS)
Fusarenon X (FusX)
Nivalenol (NIV)
4. Some Mycotoxins Are Directly Involved in Some Types of Cancer
4.1. Breast Cancer
4.2. Liver Cancer (Hepatic Cancer)
4.3. Cervical Cancer
5. Actions of Mycotoxins on Human Cellular Genome: A Primer
6. Concluding Remarks and Future Prospects
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Turner, N.W.; Subrahmanyam, S.; Piletsky, S.A. Analytical methods for the determination of mycotoxins: A review. Anal. Chim. Acta 2009, 632, 168–180. [Google Scholar] [CrossRef] [PubMed]
- WHO. Mycotoxins. 2018. Available online: https://www.who.int/news-room/fact-sheets/detail/mycotoxins (accessed on 3 May 2021).
- Bulgaru, C.V.; Marin, D.E.; Pistol, G.C.; Taranu, I. Zearalenone and the Immune Response. Toxins 2021, 13, 248. [Google Scholar] [CrossRef] [PubMed]
- Claeys, L.; Romano, C.; De Ruyck, K.; Wilson, H.; Fervers, B.; Korenjak, M.; Zavadil, J.; Gunter, M.J.; De Saeger, S.; De Boevre, M.; et al. Mycotoxin exposure and human cancer risk: A systematic review of epidemiological studies. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1449–1464. [Google Scholar] [CrossRef] [PubMed]
- Awuchi, C.G.; Nwozo, S.; Salihu, M.; Odongo, G.A.; Sarvarian, M.; Okpala, C.O.R. Mycotoxins’ Toxicities—From Consumer Health Safety Concerns, to Mitigation/Treatment Strategies: A Perspective Review. J. Chem. Health Risks 2022. [Google Scholar] [CrossRef]
- Cornely, A.O. Aspergillus to Zygomycetes: The causes, risk factors, prevention, & treatment of invasive fungal infections. Infection 2008, 36, 296–313. [Google Scholar] [PubMed]
- Schaafsma, A.W.; Hooker, C.D. Climatic models to predict the occurrence of Fusarium toxins in wheat & maize. Int. J. Food Microbiol. 2007, 119, 116–125. [Google Scholar]
- Zhou, Q.; Tang, D. Recent advances in photoelectrochemical biosensors for analysis of mycotoxins in food. TrAC Trends Anal. Chem. 2020, 124, 115814. [Google Scholar] [CrossRef]
- Fox, E.M.; Howlett, B.J. Secondary metabolism: Regulation and role in fungal biology. Curr. Opin. Microbiol. 2008, 11, 481–487. [Google Scholar] [CrossRef]
- Chen, A.; Mao, X.; Sun, Q.; Wei, Z.; Li, J.; You, Y.; Zhao, J.; Jiang, G.; Wu, Y.; Wang, L.; et al. Alternaria Mycotoxins: An Overview of Toxicity, Metabolism, and Analysis in Food. J. Agric. Food Chem. 2021, 69, 7817–7830. [Google Scholar] [CrossRef]
- Iqbal, S.Z. Mycotoxins in food, recent development in food analysis and future challenges; a review. Curr. Opin. Food Sci. 2021, 42, 237–247. [Google Scholar] [CrossRef]
- Adeyeye, S.A.O. Aflatoxigenic fungi and mycotoxins in food: A review. Crit. Rev. Food Sci. Nutr. 2020, 60, 709–721. [Google Scholar] [CrossRef] [PubMed]
- Elkenany, R.M.; Awad, A. Types of Mycotoxins and different approaches used for their detection in foodstuffs. Mansoura Vet. Med. J. 2020, 21, 25–32. [Google Scholar] [CrossRef]
- Pierzgalski, A.; Bryła, M.; Kanabus, J.; Modrzewska, M.; Podolska, G. Updated Review of the Toxicity of Selected Fusarium Toxins and Their Modified Forms. Toxins 2021, 13, 768. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Qin, J.-A.; Fu, Y.-W.; Luo, J.-Y.; Lu, J.-H.; Logrieco, A.F.; Yang, M.-H. Modified mycotoxins in foodstuffs, animal feed, and herbal medicine: A systematic review on global occurrence, transformation mechanism and analysis methods. TrAC Trends Anal. Chem. 2020, 133, 116088. [Google Scholar] [CrossRef]
- Oliveira, M.; Vasconcelos, V. Occurrence of Mycotoxins in Fish Feed and Its Effects: A Review. Toxins 2020, 12, 160. [Google Scholar] [CrossRef] [Green Version]
- Ráduly, Z.; Szabó, L.; Madar, A.; Pócsi, I.; Csernoch, L. Toxicological and Medical Aspects of Aspergillus-Derived Mycotoxins Entering the Feed and Food Chain. Front. Microbiol. 2020, 10, 2908. [Google Scholar] [CrossRef] [Green Version]
- Awuchi, C.G.; Ondari, E.N.; Ogbonna, C.U.; Upadhyay, A.K.; Baran, K.; Okpala, C.O.R.; Korzeniowska, M.; Guiné, R.P.F. Mycotoxins Affecting Animals, Foods, Humans and Plants: Types, Occurrence, Toxicities, Action Mechanisms, Prevention and Detoxification Strategies—A Revisit. Foods 2021, 10, 1279. [Google Scholar] [CrossRef]
- Hussein, H.S.; Brasel, M.J. Toxicity, metabolism, & impact of mycotoxins on humans & animals. Toxicology 2001, 167, 101–134. [Google Scholar]
- Khaneghah, A.M.; Fakhri, Y.; Gahruie, H.H.; Niakousari, M.; Sant’Ana, A.S. Mycotoxins in cereal-based products during 24 years (1983–2017): A global systematic review. Trends Food Sci. Technol. 2019, 91, 95–105. [Google Scholar] [CrossRef]
- Holanda, D.M.; Kim, S.W. Mycotoxin Occurrence, Toxicity, and Detoxifying Agents in Pig Production with an Emphasis on Deoxynivalenol. Toxins 2021, 13, 171. [Google Scholar] [CrossRef]
- Keller, N.P.; Turner, G.; Bennett, W.J. Fungal secondary metabolism—From the biochemistry to the genomics. Nat. Rev. Microbiol. 2005, 3, 937–947. [Google Scholar] [CrossRef] [PubMed]
- Melina, R. Sex-Change Chicken: Gertie d Hen Becomes Bertie d Cockerel; Live Science: New York, NY, USA, 2020. [Google Scholar]
- Boonen, J.; Malysheva, S.; Taevernier, L.; Diana Di, M.J.; De Saeger, S.; De Spiegeleer, B. The human skin penetrations of selected model of mycotoxins. Toxicology 2012, 301, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.W.; Klich, M. Mycotoxins. Clin. Microbiol Rev. 2003, 16, 497–516. [Google Scholar] [CrossRef] [Green Version]
- Ashiq, S.; Hussain, M.; Ahmad, B. The natural occurrence of mycotoxin in medicinal plants: Review. Fungal Genet. Biol. 2014, 66, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Do, K.H.; An, J.T.; Oh, S.K.; Moon, Y. Nation-Based Occurrence & Endogenous Biological Reduction of Mycotoxins in Medicinal Herbs & Spices. Toxins 2015, 7, 4111–4130. [Google Scholar] [PubMed]
- Agriopoulou, S.; Stamatelopoulou, E.; Varzakas, T. Advances in Occurrence, Importance, and Mycotoxin Control Strategies: Prevention and Detoxification in Foods. Foods 2020, 9, 137. [Google Scholar] [CrossRef]
- Pestka, J.J.; Yike, I.; Dearborn, G.D.; Ward, M.D.; Harkema, J.R. Stachybotrys chartarum, trichothecene mycotoxins, & damp building-related illness: New insights into public health enigma. Toxicol. Sci. 2008, 104, 4–26. [Google Scholar]
- Susan, S.L. Dog Keep Dying: Too Many Owners Remain Unaware of the Toxic Dog Food; Cornell University Chronicle: New York, NY, USA, 2006. [Google Scholar]
- Veprikova, Z.; Zachariasova, M.; Dzuman, Z.; Zachariasova, A.; Fenclova, M.; Slavikova, P.M.; Vaclavikova, M.; Mastovska, K.; Hengst, D.; Hajslova, J.K. Mycotoxins in Plant-Based Dietary Supplement: Hidden Health Risks for Consumers. J. Agric. Food Chem. 2015, 63, 6633–6643. [Google Scholar] [CrossRef]
- Bullerman, L.; Bianchini, A. Stability of mycotoxin during food processing. Int. J. Food Microbiol. 2007, 119, 140–146. [Google Scholar] [CrossRef]
- Kabak, B.; Dobson, A.D.; Var, I. The strategies to prevent mycotoxin contamination of food & animal feed: A review. Crit. Rev. Food Sci. Nutr. 2006, 46, 593–619. [Google Scholar]
- Lewis, L.; Mary, O.; Henry, N.; Helen, S.R.; George, L.; Stephanie, K.; Jack, N.; Lorraine, B.; Abdikher, M.D.; Ambrose, M.; et al. Aflatoxin contamination of commercial maize products during an outbreak of acute aflatoxicosis in eastern and central Kenya. Environ. Health Perspect. 2005, 113, 1763–1767. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, K.; Wagner, M.; Pauli, F.; Christ, J.; Reese, G. Knowledge and Behavioral Habits to Reduce Mycotoxin Dietary Exposure at Household Level in a Cohort of German University Students. Toxins 2021, 13, 760. [Google Scholar] [CrossRef] [PubMed]
- Jeswal, P.; Kumar, D. Mycobiota and Natural Incidence of Aflatoxin, Ochratoxin A, and Citrinin in Indian Spices Confirmed by LC-MS/MS. Int. J. Microbiol. 2015, 2015, 242486. [Google Scholar] [CrossRef] [Green Version]
- Desjardins, A.E.; Proctor, H.R. Molecular biology of Fusarium mycotoxins. Int. J. Food Microbiol. 2007, 119, 47–50. [Google Scholar] [CrossRef] [PubMed]
- Chinaza, G.A.; Clifford, I.O.; Chika, C.O.; Victory, S.I. Evaluation of Patulin Levels and impacts on the Physical Characteristics of Grains. Int. J. Adv. Acad. Res. 2019, 5, 10–25. [Google Scholar]
- Lombard, M.J. Mycotoxins exposure and infant and young child growth in Africa: What do we know? Ann. Nutr. Metab. 2014, 64 (Suppl. S2), 42–52. [Google Scholar] [CrossRef]
- Bayman, P.; Baker, L.J. Ochratoxins: A global perspective. Mycopathologia 2006, 162, 215–223. [Google Scholar] [CrossRef]
- Mateo, R.; Medina, A.; Mateo, M.E.; Mateo, F.; Jiménez, M. An overview of ochratoxin A in beer & wine. Int. J. Food Microbiol. 2007, 119, 79–83. [Google Scholar]
- Adam, M.A.A.; Tabana, Y.M.; Musa, K.B.; Sandai, D.A. Effects of different mycotoxins on humans, cell genome and their involvement in cancer (Review). Oncol. Rep. 2017, 37, 1321–1336. [Google Scholar] [CrossRef] [Green Version]
- Marasas, W.F.O.; Miller, J.D.; Riley, R.T.; Visconti, A. Environmental Health Criteria 219: Fumonisin B1; World Health Organization: Vammala, Finland, 2000; p. 9. ISBN 92-4-157219-1. [Google Scholar]
- Gelineau-van Waes, J.; Starr, L.; Maddox, J.R.; Aleman, F.; Voss, K.A.; Wilberding, J.; Riley, R.T. Maternal fumonisin exposure and risk for neural tube defects: Disruption of sphingolipid metabolism and folate transport in an in vivo mouse model. Birth Defects Res. A Clin. Mol. Teratol. 2005, 73, 487–497. [Google Scholar] [CrossRef]
- Sun, G.; Wang, S.; Hu, X.; Su, J.; Huang, T.; You, J.; Tang, L.; Gao, W.; Wang, J.-S. Fumonisin B1 contamination of home-grown corn in high-risk areas for esophageal and liver cancer in China. Food Addit. Contam. 2007, 24, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Renaud, J.B.R.; Kelman, M.J.; Qi, T.F.; Seifert, K.A.; Sumarah, M.W. Product ion filtering with rapid polarity switching for the detection of all fumonisins and AAL-toxins. Rapid Commun. Mass Spectrom. 2015, 29, 2131–2139. [Google Scholar] [CrossRef] [PubMed]
- Rogowska, A.; Pomastowski, P.; Sagandykova, G.; Buszewski, B. Zearalenone and its metabolites: Effect on human health, metabolism and neutralisation methods. Toxicon 2019, 162, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Yuan, G.; Wang, Y.; Yuan, X.; Zhang, T.; Zhao, J.; Huang, L.; Peng, S. T-2 toxin induces developmental toxicity and apoptosis in zebrafish embryos. J. Environ. Sci. 2014, 26, 917–925. [Google Scholar] [CrossRef]
- Wan, Q.; Wu, G.; He, Q.; Tang, H.; Wang, Y. The toxicity of acute exposure to T-2 toxin evaluated by the metabonomics technique. Mol. BioSystems 2015, 11, 882–891. [Google Scholar] [CrossRef]
- Adhikari, M.; Negi, B.; Kaushik, N.; Adhikari, A.; Al-Khedhairy, A.A.; Kaushik, N.K.; Choi, E.H. T-2 mycotoxin: Toxicological effects and decontamination strategies. Oncotarget 2017, 8, 33933–33952. [Google Scholar] [CrossRef] [Green Version]
- EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain); Knutsen, H.K.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M. Scientific Opinion on the risk to human and animal health related to the presence of 4,15-diacetoxyscirpenol in food and feed. EFSA J. 2018, 16, 5367. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Kuca, K.; Nepovimova, E.; Wu, W. Type A Trichothecene Diacetoxyscirpenol-Induced Emesis Corresponds to Secretion of Peptide YY and Serotonin in Mink. Toxins 2020, 12, 419. [Google Scholar] [CrossRef]
- Daud, N.; Currie, V.; Duncan, G.; Farquharson, F.; Yoshinari, T.; Louis, P.; Gratz, S.W. Prevalent Human Gut Bacteria Hydrolyse and Metabolise Important Food-Derived Mycotoxins and Masked Mycotoxins. Toxins 2020, 12, 654. [Google Scholar] [CrossRef]
- Wijnands, L.M.; van Leusden, F.M. An Overview of Adverse Health Effects Caused by Mycotoxins and Bioassays for Their Detection; Research for Man and Environment, RIVM Report 257852,004; Rijksinstituut voor Volksgezondheid en Milieu RIVM. 2000. Available online: http://rivm.openrepository.com/rivm/bitstream/10029/9410/1/257852004.pdf (accessed on 30 September 2021).
- Bony, S.; Olivier-Loiseau, L.; Carcelen, M.; Devaux, A. Genotoxic potential associated with low levels of the Fusarium mycotoxins nivalenol and fusarenon x in a human intestinal cell line. Toxicol Vitr. 2007, 21, 457–465. [Google Scholar] [CrossRef]
- Sabharwal, A.; Bibekananda, K.; Santiago, R.C.; Holmberg, S.R.; Kendall, B.L.; Cotter, R.P.; WareJoncas, Z.; Clark, K.J.; Ekker, S.C. The FusX TALE Base Editor (FusXTBE) for rapid mitochondrial DNA programming of human cells in vitro and zebrafish disease models in vivo. bioRxiv 2021. [CrossRef]
- Scientific Committee on Food. Opinion of the Scientific Committee on Food on Fusarium Toxins Part 41: Nivalenol; Scientific Committee on Food: Brussels, Belgium, 2000; pp. 2–6. Available online: https://ec.europa.eu/food/sites/food/files/safety/docs/cs_contaminants_catalogue_out74_en.pdf (accessed on 21 May 2021).
- Gupta, R.C. Handbook of Toxicology of Chemical Warfare Agents; Academic Press: Cambridge, MA, USA, 2015; pp. 353–369. ISBN 9780128001592. [Google Scholar]
- Martins, M.L.; Martins, M.H.; Bernardo, F. Aflatoxins in spices marketed in Portugal. Food Addit. Contam. 2001, 18, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Awuchi, C.G.; Amagwula, I.O.; Priya, P.; Kumar, R.; Yezdani, U.; Khan, M.G. Aflatoxins in Foods and Feeds: A Review On Health Implications, Detection, And Control. Bull. Environ. Pharmacol. Life Sci. 2020, 9, 149–155. [Google Scholar]
- Wild, C.P.; Turner, P.C. The toxicology of aflatoxins as a basis for public health decisions. Mutagenesis 2002, 17, 471–481. [Google Scholar] [CrossRef] [PubMed]
- Urusov, A.E.; Zherdev, A.V.; Petrakova, A.V.; Sadykhov, E.G.; Koroleva, O.V.; Dzantiev, B.B. Rapid multiple immunoenzyme assay of mycotoxins. Toxins 2015, 7, 238–254. [Google Scholar] [CrossRef]
- Anfossi, L.; Giovannoli, C.; Baggiani, C. Mycotoxin detection. Curr. Opin. Biotechnol. 2016, 37, 120–126. [Google Scholar] [CrossRef]
- Qiu, J.; Dong, F.; Yu, M.; Xu, J.; Shi, J. Effect of preceding crop on Fusarium species and mycotoxin contamination of wheat grains. J. Sci. Food Agric. 2016, 96, 4536–4541. [Google Scholar] [CrossRef]
- Thelen, K.; Dressman, J.B. Cytochrome P450-mediated metabolism in the human gut wall. J. Pharm. Pharm. 2009, 61, 541–558. [Google Scholar] [CrossRef]
- Kamdem, L.K.; Meineke, I.; Gödtel-Armbrust, U.; Brockmöller, J.; Wojnowski, L. Dominant contribution of P450 3A4 to the hepatic carcinogenic activation of aflatoxin B. Chem. Res. Toxicol. 2006, 19, 577–586. [Google Scholar] [CrossRef]
- Awuchi, C.G.; Owuamanam, I.C.; Ogueke, C.C.; Hannington, T. The Impacts of Mycotoxins on the Proximate Composition and Functional Properties of Grains. Eur. Acad. Res. 2020, 8, 1024–1071. [Google Scholar]
- Wojnowski, L.; Turner, P.C.; Pedersen, B.; Hustert, E.; Brockmöller, J.; Mendy, M.; Whittle, H.C.; Kirk, G.; Wild, C.P. Increased levels of aflatoxin-albumin adducts are associated with CYP3A5 polymorphisms in The Gambia, West Africa. Pharmacogenetics 2004, 14, 691–700. [Google Scholar] [CrossRef] [PubMed]
- Turner, P.C.; Collinson, A.C.; Cheung, Y.B.; Gong, Y.Y.; Hall, A.J.; Prentice, A.M.; Wild, C.P. Aflatoxin exposure in utero causes growth faltering in Gambian infants. Int. J. Epidemiol. 2007, 36, 1119–1125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, S.P.; Schwank, J.; Staib, F.; Wang, X.W.; Harris, C.C. TP53 mutations and hepatocellular carcinoma: Insights into the etiology and pathogenesis of liver cancer. Oncogene 2007, 26, 2166–2176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 2002; Volume 82, ISBN 978-92-832-1582-0.
- Wild, C.P.; Gong, Y.Y. Mycotoxins and human disease: A largely ignored global health issue. Carcinogenesis 2010, 31, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Groopman, J.D.; Kensler, T.W.; Wild, C.P. Protective interventions to prevent aflatoxin-induced carcinogenesis in developing countries. Annu. Rev. Public Health 2008, 29, 187–203. [Google Scholar] [CrossRef] [Green Version]
- Guengerich, F.P.; Johnson, W.W.; Shimada, T.; Ueng, Y.-F.; Yamazaki, H.; Langouët, S. Activation and detoxication of aflatoxin B. Mutat. Res. 1998, 402, 121–128. [Google Scholar] [CrossRef]
- Johnson, D.N.; Egner, P.A.; Obrian, G.; Glassbrook, N.; Roebuck, B.D.; Sutter, T.R.; Payne, G.A.; Kensler, T.W.; Groopman, J.D. Quantification of urinary aflatoxin B1 dialdehyde metabolites formed by aflatoxin aldehyde reductase using isotope dilution tandem mass spectrometry. Chem. Res. Toxicol. 2008, 21, 752–760. [Google Scholar] [CrossRef]
- Hall, A.J.; Wild, C.P. Epidemiology of aflatoxin-related disease. In The Toxicology of Aflatoxins: Human Health, Veterinary, and Agricultural Significance; Eaton, D.L., Groopman, J.D., Eds.; Academic Press: San Diego, CA, USA, 1994; pp. 233–258. [Google Scholar]
- Azziz-Baumgartner, E.; Lindblade, K.; Gieseker, K.; Rogers, H.S.; Kieszak, S.; Njapau, H.; Schleicher, R.; McCoy, L.F.; Misore, A.; DeCock, K.; et al. Case-control study of an acute aflatoxicosis outbreak, Kenya, 2004. Environ. Health Perspect 2005, 113, 1779–1783. [Google Scholar] [CrossRef]
- McCoy, L.F.; Scholl, P.F.; Sutcliffe, A.E.; Kieszak, S.M.; Powers, C.D.; Rogers, H.S.; Gong, Y.Y.; Groopman, J.D.; Wild, C.P.; Schleicher, R.L. Human aflatoxin albumin adducts quantitatively compared by ELISA, HPLC with fluorescence detection, and HPLC with isotope dilution mass spectrometry. Cancer Epidemiol. Biomark. Prev. 2008, 17, 1653–1657. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.Y.; Hatch, M.; Chen, C.J.; Levin, B.; You, S.-L.; Lu, S.-N.; Wu, M.-H.; Wu, W.-P.; Wang, L.-W.; Wang, Q.; et al. Aflatoxin exposure and risk of hepatocellular carcinoma in Taiwan. Int. J. Cancer 1996, 67, 620–625. [Google Scholar] [CrossRef]
- Wu, H.C.; Wang, Q.; Yang, H.I.; Ahsan, H.; Tsai, W.-Y.; Wang, L.-Y.; Chen, S.-Y.; Chen, C.-J.; Santella, R.M. Aflatoxin Bexposure, hepatitis B virus infection, and hepatocellular carcinoma in Taiwan. Cancer Epidemiol. Biomark. Prev. 2009, 18, 846–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirk, G.D.; Lesi, O.A.; Mendy, M.; Szymañska, K.; Whittle, H.; Goedert, J.J.; Hainaut, P.; Montesano, R. 249(ser) TP53 mutation in plasma DNA, hepatitis B viral infection, and risk of hepatocellular carcinoma. Oncogene 2005, 24, 5858–5867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Omer, R.E.; Kuijsten, A.; Kadaru, A.M.; Kok, F.J.; Idris, M.O.; El Khidir, I.M.; van’t Veer, P. Population-attributable risk of dietary aflatoxins and hepatitis B virus infection with respect to hepatocellular carcinoma. Nutr. Cancer 2004, 48, 15–21. [Google Scholar] [CrossRef]
- Kuniholm, M.H.; Lesi, O.A.; Mendy, M.; Akano, A.O.; Sam, O.; Hall, A.J.; Whittle, H.; Bah, E.; Goedert, J.J.; Hainaut, P.; et al. Aflatoxin exposure and viral hepatitis in the etiology of liver cirrhosis in The Gambia, West Africa. Environ. Health Perspect. 2008, 116, 1553–1557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IARC. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Preamble. 2006. Available online: https://monographs.iarc.fr/wp-content/uploads/2018/06/CurrentPreamble.pdf (accessed on 12 December 2021).
- IARC. Agents classified by the IARC monographs, volumes 1–104. IARC Monogr. 2012, 1–25. [Google Scholar]
- IARC. Agents Classified by the IARC Monographs. Volumes 1–123. 2019. Available online: https://monographs.iarc.fr/agents-classified-by-the-iarc/ (accessed on 1 December 2021).
- IARC. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. 1987; Volume 10, p. 440. Available online: https://monographs.iarc.fr/iarc-monographs-on-the-evaluation-of-carcinogenic-risks-to-humans-80/ (accessed on 1 December 2021).
- IARC. Report of the Advisory Group to Recommend Priorities for IARC Monographs during 2020–2024. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 2019; p. 316. [Google Scholar] [CrossRef]
- IARC. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. 1993; Volume 56, p. 599. Available online: https://monographs.iarc.fr/iarc-monographs-on-the-evaluation-of-carcinogenic-risks-to-humans-65/ (accessed on 1 December 2021).
- IARC. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 1993; Volume 56, pp. 397–444.
- IARC. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans; IARC: Lyon, France, 1987; Volume 40, p. 452.
- WHO. Evaluation of Certain Mycotoxins in Food: Fifty-Sixth Report of the Joint FAO/WHO Expert Committee on Food Additives; WHO Technical Report Series, No. 906; World Health Organization: Geneva, Switzerland, 2002. [Google Scholar]
- Williams, J.H.; Phillips, T.D.; Jolly, P.E.; Stiles, J.K.; Jolly, C.M.; Aggarwal, D. Human aflatoxicosis in developing countries: A review of toxicology, exposure, potential health consequences, and interventions. Am. J. Clin. Nutr. 2004, 80, 1106–1122. [Google Scholar] [CrossRef]
- Turner, P.C.; Moore, S.E.; Hall, A.J.; Prentice, A.M.; Wild, C.P. Modification of immune function through exposure to dietary aflatoxin in Gambian children. Environ. Health Perspect. 2003, 111, 217–220. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Jolly, P.E.; Ellis, W.O.; Wang, J.-S.; Phillips, T.D.; Williams, J.H. Aflatoxin Balbumin adduct levels and cellular immune status in Ghanaians. Int. Immunol. 2005, 17, 807–814. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Jolly, P.E.; Preko, P.; Wang, J.-S.; Ellis, W.O.; Phillips, T.D.; Williams, J.H. Aflatoxin-related immune dysfunction in health and in human immunodeficiency virus disease. Clin. Dev. Immunol. 2008, 2008, 790309. [Google Scholar] [CrossRef]
- Hendrickse, R.G.; Coulter, J.B.; Lamplugh, S.M.; Macfarlane, S.B.; Williams, T.E.; Omer, M.I.; Suliman, G.I. Aflatoxins and kwashiorkor: A study in Sudanese children. Br. Med. J. (Clin. Res. Ed.) 1982, 285, 843–846. [Google Scholar] [CrossRef] [Green Version]
- De Vries, H.R.; Maxwell, S.M.; Hendrickse, R.G. Foetal and neonatal exposure to aflatoxins. Acta Paediatr. Scand. 1989, 78, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Okoth, S.A.; Ohingo, M. Dietary aflatoxin exposure and impaired growth in young children from Kisumu District, Kenya: Cross sectional study. Afr. JHealth Sci. 2004, 11, 43–54. [Google Scholar] [CrossRef] [Green Version]
- Gong, Y.Y.; Hounsa, A.; Egal, S.; Turner, P.C.; Sutcliffe, A.E.; Hall, A.J.; Cardwell, K.; Wild, C.P. Postweaning exposure to aflatoxin results in impaired child growth: A longitudinal study in Benin, West Africa. Environ. Health Perspect. 2004, 112, 1334–1338. [Google Scholar] [CrossRef] [PubMed]
- Black, R.E.; Morris, S.S.; Bryce, J. Where and why are 10 million children dying every year? Lancet 2003, 361, 2226–2234. [Google Scholar] [CrossRef]
- WHO. Safety Evaluation of Certain Food Additives and Contaminants: Prepared by the Sixty-Eighth Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA); WHO Food Additives Series, No. 59; World Health Organization: Geneva, Switzerland, 2008. [Google Scholar]
- Studer-Rohr, I.; Schlatter, J.; Dietrich, D.R. Kinetic parameters and intraindividual fluctuations of ochratoxin A plasma levels in humans. Arch. Toxicol. 2000, 74, 499–510. [Google Scholar] [CrossRef]
- Marin-Kuan, M.; Cavin, C.; Delatour, T.; Schilter, B. Ochratoxin A carcinogenicity involves a complex network of epigenetic mechanisms. Toxicon 2008, 52, 195–202. [Google Scholar] [CrossRef]
- Pfohl-Leszkowicz, A.; Manderville, R.A. Ochratoxin A: An overview on toxicity and carcinogenicity in animals and humans. Mol. Nutr. Food Res. 2007, 51, 61–99. [Google Scholar] [CrossRef]
- Mally, A.; Dekant, W. Mycotoxins and the kidney: Modes of action for renal tumor formation by ochratoxin A in rodents. Mol. Nutr. Food Res. 2009, 53, 467–478. [Google Scholar] [CrossRef]
- Mantle, P.G.; Faucet-Marquis, V.; Manderville, R.A.; Squillaci, B.; Pfohl-Leszkowicz, A. Structures of covalent adducts between DNA and ochratoxin A: A new factor in debate about genotoxicity and human risk assessment. Chem. Res. Toxicol. 2010, 23, 89–98. [Google Scholar] [CrossRef]
- Dietrich, D.R.; Heussner, A.H.; O’Brien, E. Ochratoxin A: Comparative pharmacokinetics and toxicological implications (experimental and domestic animals and humans). Food Addit. Contam. 2005, 22 (Suppl. S1), 45–52. [Google Scholar] [CrossRef]
- Bow, D.A.; Perry, J.L.; Simon, J.D.; Pritchard, J.B. The impact of plasma protein binding on the renal transport of organic anions. J. Pharm. Exp. 2006, 316, 349–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adler, M.; Müller, K.; Rached, E.; Dekant, W.; Mally, A. Modulation of key regulators of mitosis linked to chromosomal instability is an early event in ochratoxin A carcinogenicity. Carcinogenesis 2009, 30, 711–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arbillaga, L.; Vettorazzi, A.; Gil, A.G.; van Delft, J.H.M.; García-Jalón, J.A.; López de Cerain, A. Gene expression changes induced by ochratoxin A in renal and hepatic tissues of male F344 rat after oral repeated administration. Toxicol. Appl. Pharm. 2008, 230, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Cavin, C.; Delatour, T.; Marin-Kuan, M.; Fenaille, F.; Holzhäuser, D.; Guignard, G.; Bezençon, C.; Piguet, D.; Parisod, V.; Richoz-Payot, J.; et al. Ochratoxin A-mediated DNA and protein damage: Roles of nitrosative and oxidative stresses. Toxicol. Sci. 2009, 110, 84–94. [Google Scholar] [CrossRef] [Green Version]
- Mayer, S.; Curtui, V.; Usleber, E.; Gareis, M. Airborne mycotoxins in dust from grain elevators. Mycotoxin Res. 2007, 23, 94–100. [Google Scholar] [CrossRef]
- WHO. Safety Evaluation of Certain Contaminants in Food: Prepared by the Seventy-Second Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA); WHO Food Additives Series, No. 63; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Snijders, C.H.A. Breeding for resistance to Fusarium diseases in wheat and maize. In Mycotoxins in Grain: Compounds Other than Aflatoxin; Miller, J.D., Trenholm, H.L., Eds.; Eagan Press: St Paul, MN, USA, 1994; pp. 37–58. [Google Scholar]
- Oufensou, S.; Dessì, A.; Dallocchio, R.; Balmas, V.; Azara, E.; Carta, P.; Migheli, Q.; Delogu, G. Molecular Docking and Comparative Inhibitory Efficacy of Naturally Occurring Compounds on Vegetative Growth and Deoxynivalenol Biosynthesis in Fusarium culmorum. Toxins 2021, 13, 759. [Google Scholar] [CrossRef]
- Pestka, J.J. Mechanisms of deoxynivalenol-induced gene expression and apoptosis. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2008, 25, 1128–1140. [Google Scholar] [CrossRef]
- Pass, C.; MacRae, V.E.; Ahmed, S.F.; Farquharson, C. Inflammatory cytokines and the GH/IGF-I axis: Novel actions on bone growth. Cell Biochem. Funct. 2009, 27, 119–127. [Google Scholar] [CrossRef]
- Amuzie, C.J.; Pestka, J.J. Suppression of insulin-like growth factor acid-labile subunit expression–a novel mechanism for deoxynivalenol-induced growth retardation. Toxicol. Sci. 2010, 113, 412–421. [Google Scholar] [CrossRef]
- Pestka, J.J.; Smolinski, A.T. Deoxynivalenol: Toxicology and potential effects on humans. J. Toxicol. Environ. Health B Crit. Rev. 2005, 8, 39–69. [Google Scholar] [CrossRef]
- Gray, J.S.; Pestka, J.J. Transcriptional regulation of deoxynivalenol-induced IL-8 expression in human monocytes. Toxicol. Sci. 2007, 99, 502–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehrlich, V.; Darroudi, F.; Uhl, M.; Steinkellner, H.; Zsivkovits, M.; Knasmueller, S. Fumonisin B1 is genotoxic in human derived hepatoma (HepG2) cells. Mutagenesis 2002, 17, 257–260. [Google Scholar] [CrossRef] [PubMed]
- Illueca, F.; Vila-Donat, P.; Calpe, J.; Luz, C.; Meca, G.; Quiles, J.M. Antifungal Activity of Biocontrol Agents In Vitro and Potential Application to Reduce Mycotoxins (Aflatoxin B1 and Ochratoxin A). Toxins 2021, 13, 752. [Google Scholar] [CrossRef] [PubMed]
- Domijan, A.M.; Zeljezić, D.; Kopjar, N.; Peraica, M. Standard and Fpg-modified comet assay in kidney cells of ochratoxin A- and fumonisin B-treated rats. Toxicology 2006, 222, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Stockmann-Juvala, H.; Savolainen, K. A review of the toxic effects and mechanisms of action of fumonisin B. Hum. Exp. Toxicol. 2008, 27, 799–809. [Google Scholar] [CrossRef] [PubMed]
- Gelderblom, W.C.A.; Marasas, W.F.O.; Lebepe-Mazur, S.; Swanevelder, S.; Abel, S. Cancer initiating properties of fumonisin Bin a short-term rat liver carcinogenesis assay. Toxicology 2008, 250, 89–95. [Google Scholar] [CrossRef]
- Desai, K.; Sullards, M.C.; Allegood, J.; Wang, E.; Schmelz, E.M.; Hartl, M.; Humpfd, H.-U.; Liottae, D.C.; Peng, Q.; Merrill, A.H. Fumonisins and fumonisin analogs as inhibitors of ceramide synthase and inducers of apoptosis. Biochim. Biophys. Acta (BBA)—Mol. Cell Biol. Lipids 2002, 1585, 188–192. [Google Scholar] [CrossRef]
- Sharma, R.P.; Riley, R.T.; Voss, K.A. Cytokine involvement in fumonisin-induced cellular toxicity. In Mycotoxins and Phytoxins in Perspective at the Turn of the Millenium; DeKoe, W.J., Samson, R.A., van Egmond, H.P., Gilbert, J., Sabino, M., Eds.; IUPAC: Symposium, The Netherlands, 2000; pp. 223–230. [Google Scholar]
- Gelderblom, W.C.A.; Riedel, S.; Burger, H.-M.; Abel, S.; Marasas, W.F.O. Carcinogenesis by the fumonisins: Mechanisms, risk analyses, and implications. In Food Contaminants: Mycotoxins and Food Allergens; ACS Symposium Series, No. 1001; Sianta, D.P., Trucksess, M.W., Scott, P.M., Herman, E.M., Eds.; American Chemical Society: Washington, DC, USA, 2008; pp. 80–95. [Google Scholar]
- Taranu, I.; Marin, D.E.; Bouhet, S.; Pascale, F.; Bailly, J.-D.; Miller, J.D.; Pinton, P.; Oswald, I.P. Mycotoxin fumonisin B1 alters the cytokine profile and decreases the vaccinal antibody titer in pigs. Toxicol. Sci. 2005, 84, 301–307. [Google Scholar] [CrossRef] [Green Version]
- Marasas, W.F. Discovery and occurrence of the fumonisins: A historical perspective. Environ. Health Perspect. 2001, 109 (Suppl. S2), 239–243. [Google Scholar]
- Qiu, M.F.; Liu, X.M. Determination of sphinganine, sphingosine and Sa/So ratio in urine of humans exposed to dietary fumonisin B. Food Addit. Contam. 2001, 18, 263–269. [Google Scholar] [CrossRef]
- Kozieł, M.J.; Ziaja, M.; Piastowska-Ciesielska, A.W. Intestinal Barrier, Claudins and Mycotoxins. Toxins 2021, 13, 758. [Google Scholar] [CrossRef] [PubMed]
- Nikièma, P.N.; Worrillow, L.; Traoré, A.S.; Wild, C.P.; Turner, P.C. Fumonisin contamination of maize in Burkina Faso, West Africa. Food Addit. Contam. 2004, 21, 865–870. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Cai, Q.; Tang, L.; Wang, S.; Hu, X.; Su, J.; Sun, G.; Wang, J.-S. Evaluation of fumonisin biomarkers in a cross-sectional study with two high-risk populations in China. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2010, 27, 1161–1169. [Google Scholar] [CrossRef] [PubMed]
- Van der Westhuizen, L.; Shephard, G.S.; Rheeder, J.P.; Burger, H.-M. Individual fumonisin exposure and sphingoid base levels in rural populations consuming maize in South Africa. Food Chem. Toxicol. 2010, 48, 1698–1703. [Google Scholar] [CrossRef] [PubMed]
- Gelderblom, W.C.; Marasas, W.F.; Lebepe-Mazur, S.; Swanevelder, S.; Vessey, C.J.; Hall, P.d.l.M. Interaction of fumonisin B1 and aflatoxin B1 in a short-term carcinogenesis model in rat liver. Toxicology 2002, 171, 161–173. [Google Scholar] [CrossRef]
- Carlson, D.B.; Williams, D.E.; Spitsbergen, J.M.; Ross, P.F.; Bacon, C.W.; Meredith, F.I.; Riley, R.T. Fumonisin B1 promotes aflatoxin B1 and N-methyl-N′-nitro-nitrosoguanidine-initiated liver tumors in rainbow trout. Toxicol. Appl. Pharm. 2001, 172, 29–36. [Google Scholar] [CrossRef]
- Li, F.-Q.; Yoshizawa, T.; Kawamura, O.; Luo, X.-Y.; Li, Y.-W. Aflatoxins and fumonisins in corn from the high-incidence area for human hepatocellular carcinoma in Guangxi, China. J. Agric. Food Chem. 2001, 49, 4122–4126. [Google Scholar] [CrossRef]
- Sadler, T.W.; Merrill, A.H., Jr.; Stevens, V.L.; Sullards, M.C.; Wang, E.; Wang, P. Prevention of fumonisin B1-induced neural tube defects by folic acid. Teratology 2002, 66, 169–176. [Google Scholar] [CrossRef]
- Marasas, W.F.O.; Riley, R.T.; Hendricks, K.A.; Stevens, V.L.; Sadler, T.W.; Waes, J.G.; Missmer, S.A.; Cabrera, J.; Torres, O.; Gelderblom, W.C.A.; et al. Fumonisins disrupt sphingolipid metabolism, folate transport, and neural tube development in embryo culture and in vivo: A potential risk factor for human neural tube defects among populations consuming fumonisin-contaminated maize. J. Nutr. 2004, 134, 711–716. [Google Scholar] [CrossRef]
- Gelineau-van Waes, J.; Voss, K.A.; Stevens, V.L.; Speer, M.C.; Riley, R.T. Maternal fumonisin exposure as a risk factor for neural tube defects. Adv. Food Nutr. Res. 2009, 56, 145–181. [Google Scholar] [CrossRef]
- Zinedine, A.; Soriano, J.M.; Moltó, J.C.; Mañes, J. Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: An oestrogenic mycotoxin. Food Chem. Toxicol. 2007, 45, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Wu, W.; Pan, J.; Long, M. Detoxification Strategies for Zearalenone Using Microorganisms: A Review. Microorganisms 2019, 7, 208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Safety Evaluation of Certain Mycotoxins in Food: Prepared by the Fifty-Sixth Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA); WHO Food Additives Series, No. 47; World Health Organization: Geneva, Switzerland, 2001. [Google Scholar]
- Zheng, W.; Feng, N.; Wang, Y.; Noll, L.; Xu, S.; Liu, X.; Lu, N.; Zou, H.; Gu, J.; Yuan, Y.; et al. Effects of zearalenone and its derivatives on the synthesis and secretion of mammalian sex steroid hormones: A review. Food Chem. Toxicol. 2019, 126, 262–276. [Google Scholar] [CrossRef]
- Fink-Gremmels, J.; Malekinejad, H. Clinical effects and biochemical mechanisms associated with exposure to the mycoestrogen zearalenone. Anim. Feed Sci. Technol. 2007, 137, 326–341. [Google Scholar] [CrossRef]
- Ding, X.; Lichti, K.; Staudinger, J.L. The mycoestrogen zearalenone induces CYP3A through activation of the pregnane X receptor. Toxicol. Sci. 2006, 91, 448–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rai, A.; Das, M.; Tripathi, A. Occurrence and toxicity of a fusarium mycotoxin, zearalenone. Crit. Rev. Food Sci. Nutr. 2020, 60, 2710–2729. [Google Scholar] [CrossRef]
- Richard, J.L. Some major mycotoxins and their mycotoxicoses—An overview. Int. J. Food Microbiol. 2007, 119, 3–10. [Google Scholar] [CrossRef]
- Ouanes, Z.; Abid, S.; Ayed, I.; Anane, R.; Mobio, T.; Creppy, E.E.; Bacha, H. Induction of micronuclei by Zearalenone in vero monkey kidney cells and in bone marrow cells of mice: Protective effect of Vitamin E. Mutat. Res. 2003, 538, 63–70. [Google Scholar] [CrossRef]
- Schoental, R. Letter: Role of podophyllotoxin in the bedding and dietary zearalenone on incidence of spontaneous tumors in laboratory animals. Cancer Res. 1974, 34, 2419–2420. [Google Scholar]
- Tkaczyk, A.; Jedziniak, P.; Zielonka, Ł.; Dąbrowski, M.; Ochodzki, P.; Rudawska, A. Biomarkers of Deoxynivalenol, Citrinin, Ochratoxin A and Zearalenone in Pigs after Exposure to Naturally Contaminated Feed Close to Guidance Values. Toxins 2021, 13, 750. [Google Scholar] [CrossRef]
- Pfohl-Leszkowicz, A.; Chekir-Ghedira, L.; Bacha, H. Genotoxicity of zearalenone, an estrogenic mycotoxin: DNA adduct formation in female mouse tissues. Carcinogenesis 1995, 16, 2315–2320. [Google Scholar] [CrossRef]
- Moss, O.M. “fungi”, quality & safety issues in fresh fruits & vegetables. J. Appl. Microbiol. 2008, 104, 1239–1243. [Google Scholar] [PubMed]
- Schothorst, R.C.; van Egmond, H.P. Report from SCOOP task 3.2.10 ‘collection of occurrence data of Fusarium toxins in food and assessment of dietary intake by the population of Eu member states’. Subtask: Trichothecenes. Subtask: Trichothecenes. Toxicol. Lett. 2004, 153, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Trucksess, M.W.; Scott, M.P. Mycotoxins in botanicals & dried fruits: A review. Food Addit. Contam. 2008, 25, 181–192. [Google Scholar]
- Schumacher, D.M.; Metzler, M.; Lehmann, L. Mutagenicity of the mycotoxin patulin in cultured Chinese hamster V79 cells, and its modulation by intracellular glutathione. Arch. Toxicol. 2005, 79, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Mahfoud, R.; Maresca, M.; Garmy, N.; Fantini, J. The mycotoxin patulin alters the barrier function of the intestinal epithelium: Mechanism of action of the toxin and protective effects of glutathione. Toxicol. Appl. Pharm. 2002, 181, 209–218. [Google Scholar] [CrossRef]
- Matossian, M.K. Poisons of the Past: Molds, Epidemics, and History. Yale University Press, New Haven and London, 1989. Arch. Nat. Hist. 2010, 18, 145. [Google Scholar] [CrossRef]
- Bhat, R.; Rai, R.V.; Karim, A.A. Mycotoxins in food and feed: Present status and future concerns. Compr. Rev. Food Sci. Food Saf. 2010, 9, 57–81. [Google Scholar] [CrossRef]
- Wojtacha, P.; Trybowski, W.; Podlasz, P.; Żmigrodzka, M.; Tyburski, J.; Polak-Śliwińska, M.; Jakimiuk, E.; Bakuła, T.; Baranowski, M.; Żuk-Gołaszewska, K.; et al. Effects of a Low Dose of T-2 Toxin on the Percentage of T and B Lymphocytes and Cytokine Secretion in the Porcine Ileal Wall. Toxins 2021, 13, 277. [Google Scholar] [CrossRef]
- Mackei, M.; Orbán, K.; Molnár, A.; Pál, L.; Dublecz, K.; Husvéth, F.; Neogrády, Z.; Mátis, G. Cellular Effects of T-2 Toxin on Primary Hepatic Cell Culture Models of Chickens. Toxins 2020, 12, 46. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, H.; Zhang, M.; Wang, J.; Zhang, Z.; Wang, Y.; Sun, Y.; Zhang, Z. Protective effect of selenomethionine on T-2 toxin-induced liver injury in New Zealand rabbits. BMC Vet. Res. 2021, 17, 153. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yang, Y.; Dong, R.; Zhang, Z.; Jia, F.; Yu, H.; Wang, Y.; Zhang, Z. Protective effect of selenomethionine on intestinal injury induced by T-2 toxin. Res. Vet. Sci. 2020, 132, 439–447. [Google Scholar] [CrossRef]
- Gupta, R.C. (Ed.) Veterinary Toxicology: Basic and Clinical Principles; Academic Press: Cambridge, MA, USA, 2018. [Google Scholar] [CrossRef]
- Ma, A.C.; McNulty, M.S.; Poshusta, T.L.; Campbell, J.M.; Martínez-Gálvez, G.; Argue, D.P.; Lee, H.B.; Urban, M.D.; Bullard, C.E.; Blackburn, P.R.; et al. FusX: A Rapid One-Step Transcription Activator-Like Effector Assembly System for Genome Science. Hum. Gene Ther. 2016, 27, 451–463. [Google Scholar] [CrossRef] [Green Version]
- Deshmaneand, S.L.; Kremlev, S.; Amini, S.; Sawaya, B.E. Monocyte Chemoattractant Protein-1 (MCP-1): An Overview. J. Interferon Cytokine Res. 2009, 29, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Nagashima, H.; Nakagawa, H.; Kushiro, M. Environ Toxicol Pharmacol. Environ. Toxicol. Pharmacol. 2012, 34, 1014–1017. [Google Scholar] [CrossRef]
- Minervini, F.; Fornelli, F.; Flynn, K.M. Toxicity and apoptosis induced by the mycotoxins nivalenol, deoxynivalenol and fumonisin B1 in a human erythroleukemia cell line. Toxicol. Vitr. 2004, 18, 21–28. [Google Scholar] [CrossRef]
- Taranu, I.; Marin, D.E.; Burlacu, R.; Pinton, P.; Damian, V.; Oswald, I.P. Comparative aspects of in vitro proliferation of human and porcine lymphocytes exposed to mycotoxins. Arch. Anim. Nutr. 2010, 64, 383–393. [Google Scholar] [CrossRef]
- Pillay, D.; Chuturgoon, A.A.; Nevines, E.; Manickum, T.; Deppe, W.; Dutton, M.F. The quantitative analysis of zearalenone and its derivatives in plasma of patients with breast and cervical cancer. Clin. Chem. Lab. Med. 2002, 40, 946–951. [Google Scholar] [CrossRef]
- Belhassen, H.; Jimenez-Diaz, I.; Arrebola, J.P.; Ghali, R.; Ghorbel, H.; Olea, N.; Hedili, A. Zearalenone and its metabolites in urine and breast cancer risk: A case–control study in Tunisia. Chemosphere 2015, 128, 1–6. [Google Scholar] [CrossRef]
- Stephany, R.W. Hormonal growth promoting agents in food producing animals. In Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2009; pp. 355–367. [Google Scholar]
- Knutsen, H.K.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Edler, L.; Grasl-Kraupp, B.; Hogstrand, C.; et al. Appropriateness to set a group health based guidance value for nivalenol and its modified forms. EFSA J. 2017, 15, e04751. [Google Scholar] [CrossRef] [Green Version]
- IARC Monographs Priorities Group. Advisory Group recommendations on priorities for the IARC monographs. Lancet Oncol. 2019, 20, 763–764. [Google Scholar] [CrossRef]
- Forner, A.; Llovet, J.; Bruix, J. Diet, Nutrition, Physical Activity and Liver Cancer. 2015, p. 49. Available online: https://www.wcrf.org/sites/default/files/Liver-cancer-report.pdf (accessed on 3 September 2021).
- Knutsen, H.K.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Edler, L.; Grasl-Kraupp, B.; et al. Effect on public health of a possible increase of the maximum level for ‘aflatoxin total’ from 4 to 10 μg/kg in peanuts and processed products thereof, intended for direct human consumption or use as an ingredient in foodstuffs. EFSA J. 2018, 16, e05175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bbosa, G.S.; Kitya, D.; Lubega, A.; Ogwal-Okeng, J.; Anokbonggo, W.W.; Kyegombe, D.B. Review of the biological and health effects of aflatoxins on body organs and body systems. Aflatoxins-Recent Adv. Future Prospect. 2013, 12, 239–265. [Google Scholar] [CrossRef] [Green Version]
- FAO/WHO Expert Committee on Food Additives. Evaluation of Certain Contaminants in Food. 2017. Available online: http://www.who.int/bookorders (accessed on 20 May 2021).
- Huang, M.N.; Yu, W.; Teoh, W.W.; Ardin, M.; Jusakul, A.; Ng, A.W.T.; Boot, A.; Abedi-Ardekani, B.; Villar, S.; Myint, S.S.; et al. Genome-scale mutational signatures of aflatoxin in cells, mice, and human tumors. Genome Res. 2017, 27, 1475–1486. [Google Scholar] [CrossRef] [Green Version]
- McCullough, A.K.; Lloyd, R.S. Mechanisms underlying aflatoxin-associated mutagenesis—Implications in carcinogenesis. DNA Repair 2019, 77, 76–86. [Google Scholar] [CrossRef]
- Turner, P.C.; Sylla, A.; Diallo, M.S.; Castegnaro, J.-J.; Hall, A.J.; Wild, C.P. The role of aflatoxins and hepatitis viruses in the etiopathogenesis of hepatocellular carcinoma: A basis for primary prevention in Guinea-Conakry, West Africa. J. Gastroenterol. Hepatol. 2002, 17, S441–S448. Available online: http://www.ncbi.nlm.nih.gov/pubmed/12534775 (accessed on 30 December 2021). [CrossRef]
- IARC. Mycotoxin control in low- and middle-income countries. In Working Group Report; Wild, C.P., Miller, J.D., Groopman, J.D., Eds.; IARC: Lyon, France, 2015. Available online: https://publications.iarc.fr/Book-And-Report-Series/Iarc-Working-Group-Reports/Mycotoxin-Control-In-Low--And-Middle-income-Countries-2015 (accessed on 3 September 2021).
- Rheeder, J.P.; Marasas, W.F.; Vismer, H.F. Production of fumonisin analogs by Fusarium species. Appl. Environ. Microbiol. 2002, 68, 2101–2105. [Google Scholar] [CrossRef] [Green Version]
- Kouadio, J.H.; Mobio, T.A.; Baudrimont, I.; Moukha, S.; Dano, S.D.; Creppy, E.E. Comparative study of cytotoxicity and oxidative stress induced by deoxynivalenol, zearalenone or fumonisin B1 in human intestinal cell line Caco-2. Toxicology 2005, 213, 56–65. [Google Scholar] [CrossRef]
- Howard, P.C.; Eppley, R.M.; Stack, M.E.; Warbritton, A.; Voss, K.A.; LorentZEA, R.J.; Kovach, R.M.; Bucci, T.J. Fumonisin b1 carcinogenicity in a two-year feeding study using F344 rats and B6C3F1 mice. Environ. Health Perspect. 2001, 109 (Suppl. S2), 277–282. [Google Scholar] [CrossRef] [Green Version]
- Riley, R.T.; Torres, O.; Matute, J.; Gregory, S.G.; Ashley-Koch, A.E.; Showker, J.L.; Mitchell, T.; Voss, K.A.; Maddox, J.R.; Waes, J.B.G. Evidence for fumonisin inhibition of ceramide synthase in humans consuming maize- based foods and living in high exposure communities in Guatemala. Mol. Nutr. Food Res. 2015, 59, 2209–2224. [Google Scholar] [CrossRef] [Green Version]
- Gardner, N.M.; Riley, R.T.; Showker, J.L.; Voss, K.A.; Sachs, A.J.; Maddox, J.R.; Gelineau-van Waes, J.B. Elevated nuclear sphingoid base-1-phosphates and decreased histone deacetylase activity after fumonisin B1 treatment in mouse embryonic fibroblasts. Toxicol. Appl. Pharmacol. 2016, 298, 56–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Persson, E.C.; Sewram, V.; Evans, A.A.; London, W.T.; Volkwyn, Y.; Shen, Y.-J.; van Zyl, J.A.; Cheng, G.; Lin, W.; Shephard, G.S.; et al. Fumonisin B1 and risk of hepatocellular carcinoma in two Chinese cohorts. Food Chem. Toxicol. 2012, 50, 679–683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shephard, G.S.; Van Der WesthuiZEA, L.; Sewram, V. Biomarkers of exposure to fumonisin mycotoxins: A review. Food Addit. Contam. 2007, 24, 1196–1201. [Google Scholar] [CrossRef] [PubMed]
- Vidal, A.; Claeys, L.; Mengelers, M.; Vanhoorne, V.; Vervaet, C.; Huybrechts, B.; De Saeger, S.; De Boevre, M. Humans significantly metabolize and excrete the mycotoxin deoxynivalenol and its modified form deoxynivalenol-3-glucoside within 24 hours. Sci. Rep. 2018, 8, 5255. [Google Scholar] [CrossRef] [Green Version]
- Frangiamone, M.; Cimbalo, A.; Alonso-Garrido, M.; Vila-Donat, P.; Manyes, L. In vitro and in vivo evaluation of AFB1 and OTA-toxicity through immunofluorescence and flow cytometry techniques: A systematic review. Food Chem. Toxicol. 2021, 112798. [Google Scholar] [CrossRef]
- Jarvis, B.B.; Miller, J.D. Mycotoxins as harmful indoor air contaminants. Appl. Microbiol. Biotechnol. 2005, 66, 367–372. [Google Scholar] [CrossRef]
- Serra, R.; Braga, A.; Venâncio, A. Mycotoxin-producing and other fungi isolated from grapes for wine production, with particular emphasis on Ochratoxin A. Res Microbiol. 2005, 156, 515–521. [Google Scholar] [CrossRef] [Green Version]
- Chinaza, G.A.; Erick, N.O.; Hannington, T.; Victory, S.I.; Ikechukwu, O.A. Aflatoxin B1 Production, Toxicity, Mechanism of Carcinogenicity, Risk Management, and Regulations. Arch. Anim. Poult. Sci. 2021, 1, 555568. [Google Scholar]
- He, X.Y.; Tang, L.; Wang, S.L.; Cai, Q.S.; Wang, J.S.; Hong, J.Y. Efficient activation of aflatoxin B1 by cytochrome P450 2A13, an enzyme predominantly expressed in human respiratory tract. Int. Cancer 2006, 118, 2665–2671. [Google Scholar] [CrossRef]
- Eaton, D.L.; Groopman, J.D. Toxicology of Aflatoxins: Human Health, Veterinary, and Agricultural Significance; Academic Press Inc.: San Diego, CA, USA, 2013; p. 544, ASIN: 0122282558. [Google Scholar]
- Yates, M.S.; Kwak, M.-K.; Egner, P.A.; Groopman, J.D.; Bodreddigari, S.; Sutter, T.R.; Baumgartner, K.J.; Roebuck, B.D.; Liby, K.T.; Yore, M.M.; et al. Potent protection against aflatoxin-induced tumorigenesis through induction of Nrf2-regulated pathways by the triterpenoid 1-[2-cyano-3-,12-dioxooleana-1,9(11)-dien-28-oyl] imidazole. Cancer Res. 2006, 66, 2488–2494. [Google Scholar] [CrossRef] [Green Version]
- Wichmann, G.; Herbarth, O.; Lehmann, I. The mycotoxins citrinin, gliotoxin, and patulin affect interferon-γ rather than interleukin-4 production in human blood cells. Environ. Toxicol 2002, 17, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Dönmez-Altuntas, H.; Dumlupinar, G.; Imamoglu, N.; Hamurcu, Z.; Liman, B.C. Effects of the mycotoxin citrinin on micro- nucleus formation in a cytokinesis-block genotoxicity assay in cultured human lymphocytes. J. Appl. Toxicol. 2007, 27, 337–341. [Google Scholar] [CrossRef]
- Flajs, D.; Peraica, M. Toxicological properties of citrinin. Arh. Hig. Rada Toksikol. 2009, 60, 457–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, Y.-M.; Jeon, J.-J.; Yea, S.-J.; Kim, Y.-H.; Yun, S.-H.; Lee, Y.-W.; Kim, K.H. Double-stranded RNA mycovirus from Fusarium graminearum. Appl. Environ. Microbiol. 2002, 68, 2529–2534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gelderblom WC, A.; Smuts, C.M.; Abel, S.; Snyman, S.D.; Cawood, M.E.; Van der Westhuizen, L.; Swanevelder, S. Effect of fumonisin B1 on protein and lipid synthesis in primary rat hepatocytes. Food Chem. Toxicol. 1996, 34, 361–369. [Google Scholar] [CrossRef]
- Missmer, S.; Hendricks, K.; Suarez, L.; Larsen, R.; Rothman, I. Fumonisins and neural tube defects. Epidemiology 2000, 11, 183–184. [Google Scholar]
- Awuchi, C.G.; Ondari, E.N.; Ofoedu, C.E.; Chacha, J.S.; Rasaq, W.A.; Morya, S.; Okpala, C.O.R. Grain Processing Methods’ Effectiveness to Eliminate Mycotoxins: An Overview. Asian J. Chem. 2021, 33, 2267–2275. [Google Scholar] [CrossRef]
- Rocha, O.; Ansari, K.; Doohan, F.M. Effects of trichothecene mycotoxins on eukaryotic cells: A review. Food Addit. Contam. 2005, 22, 369–378. [Google Scholar] [CrossRef]
- Diamond, M.; Reape, T.J.; Rocha, O.; Doyle, S.M.; Kacprzyk, J.; Doohan, F.M.; McCabe, P.F. The fusarium mycotoxin deoxynivalenol can inhibit plant apoptosis-like programmed cell death. PLoS ONE 2013, 8, e69542. [Google Scholar] [CrossRef]
- Desmond, O.J.; Manners, J.M.; Stephens, A.E.; Maclean, D.J.; Schenk, P.M.; Gardiner, D.M.; Munn, A.L.; Kazan, K. The Fusarium mycotoxin deoxynivalenol elicits hydrogen peroxide production, programmed cell death and defence responses in wheat. Mol. Plant Pathol. 2008, 9, 435–445. [Google Scholar] [CrossRef] [Green Version]
Objectives of Literature Review | Key Sections | References |
---|---|---|
This review discussed mycotoxin toxicities from the perspective of consumer health safety concerns, as well as mitigation/treatment strategies | Toxicology, consumer health safety concerns, and actions of mycotoxins; toxic effects of combined mycotoxins exposure; major mycotoxin effects on infants and children; complications/risks of mycotoxin exposure at various stages of human life; consumer health implications of mycotoxin exposure; mitigation/removal strategies of mycotoxin toxicities | Awuchi, Nwozo, et al. [5] |
This review introduced the natural occurrence of Alternaria mycotoxins, as well as their toxicity, metabolism, and analytical methods | Toxicity of Alternaria mycotoxins, metabolism of Alternaria mycotoxins, Alternaria mycotoxin analysis | Chen, Mao, et al. [10] |
This review revisited how mycotoxins affect animals, foods, humans, and plants, specific to types, toxicity, prevention measures, and strategies for detoxification and removal | Major groups of mycotoxins: occurrence, production, and toxicities; mycotoxin prevention, decontamination, and detoxification approaches | Awuchi, Ondari, et al. [18] |
This review discussed the co-occurrence of masked mycotoxins, as well as their sampling and extraction, and the suitability of LC–MS/MS for accurate and precise analysis/detection | Recent challenges in the analysis of mycotoxins; analytical techniques and extraction of mycotoxins from food samples | Iqbal [11] |
This review summarized the occurrence of mycotoxins, their toxic effects, and the detoxifying agents with emphasis on deoxynivalenol in pig production | Mycotoxin occurrence; mycotoxin toxicity; mycotoxin-detoxifying agents | Holanda and Kim [21] |
This study reviewed the information reported on the toxic effects of the most relevant/studied Fusarium toxins and their modified forms over the last few year | Metabolism of DON, T-2, HT-2, and ZEN toxins, as well as their modified forms | Pierzgalski et al. [14] |
This review comprehensively summarized the latest (target and nontarget) knowledge of qualitative and quantitative analysis for modified mycotoxins, elucidating their major transformation mechanisms | Status of global mycotoxin contamination; transformation of the modified mycotoxins; analysis strategy of modified mycotoxins and metabolites; challenges in modified mycotoxins | Lu, Qin, et al. [15] |
This review summarized the occurrence and toxicological aspects of major Aspergillus-derived mycotoxins | Food toxicology and molecular mechanism of mycotoxins; occurrence of Aspergillus-derived mycotoxins in the feed and food chain; prevention strategies of mycotoxicoses; medical aspects of Aspergillus-derived mycotoxins | Ráduly, Szabó, et al. [17] |
This review provided the most important mycotoxins in crops/finished fish feed, i.e., aflatoxins, fumonisins, ochratoxins, trichothecenes, and zearalenone | Mycotoxin contamination of fish feed; aflatoxins and their precursors; fumonisins; ochratoxin; trichothecenes; zearalenone; co-contamination by different mycotoxins | Oliveira and Vasconcelos [16] |
This review summarized the most predominant types of mycotoxins, the factors affecting their production, and the methods used for their extraction and cleanup from foodstuffs | Types of mycotoxins; factors affecting mycotoxin production; detection of mycotoxins | Elkenany and Awad [13] |
This study assessed the presence of aflatoxigenic fungi and mycotoxins in foods, as well as their occurrence, control, and socioeconomic and health implications, from a food safety and quality perspective | Uses of fungi; cultured foods; types of aflatoxigenic fungi; mycotoxins produced by aflatoxigenic fungi; major groups of mycotoxins in foods; health implications of eaten foods contaminated by mycotoxins; economic implications of mycotoxins in foods; prevention and control of mycotoxins in foods | Adeyeye [12] |
Mycotoxin | Description | Foods Mostly Found | Toxicities | References |
---|---|---|---|---|
Aflatoxins (aflatoxins B1, B2, G1, G2, M1, M2) | They are produced by several species of Aspergillus, especially Aspergillus parasiticus and Aspergillus flavus, in many commodities | Cereals (wheat, sorghum, rice, acha, millet, guinea corn, corn, etc.), tree nuts (almond, pistachio, coconut, walnut, etc.), oilseeds (peanut, sunflower, cotton seeds, soybean, and sesame), spices (garlic, black pepper, coriander, turmeric, ginger, and chili peppers), etc. | Most aflatoxins are genotoxic, hepatotoxic, mutagenic, etc. and can retard growth in children. AFB1 is most toxic of all and also a very carcinogenic toxin which has been linked directly to many health problems, including liver cancer, in several animals. The understanding of induction of mutations, DNA damage, and metabolism in individuals with dietary exposure to aflatoxins contributes to the general evaluation of their adverse effects on human and animal health. A cross-sectional study conducted on children within the age of 1 to 5 years reported a striking inverse relationship between growth and the level of aflatoxin–albumin adduct. | [2,39] |
Ochratoxin A | Ochratoxin A (OTA) is a toxic mycotoxin produced by A. niger, A. ochraceus, Penicillium verrucosum, and A. carbonarius | Cereals (especially wheat and barley) and their products, dry vine fruits, spices, licorice, coffee beans, wine, grape juice, roots, meat, (particularly pork, from animals that consumed infected grains), etc. | OTA is a nephrotoxin and a carcinogen, and it has been directly linked to tumors in the human urinary tract, although the IARC still considers it a possible carcinogen to humans. It is also implicated in various health conditions. | [40,41] |
Deoxynivalenol (DON) | DON is a trichothecene mycotoxin produced by fungal species such as Fusarium graminearum in cereals | Grains (such as wheat and beans), spices, etc. | DON has been shown to cause acute toxicities in humans, with the main symptom being severe GI toxicity. Consumption of DON-contaminated cereals was linked to several incidents of poisoning in China and at least one outbreak in India. | [42] |
Fumonisins (fumonisins B1, B2, B3, B4) | They are mycotoxins produced by Fusarium species, including the section Liseola; structurally, they are strongly similar to sphinganine, the sphingolipid backbone precursor; over 15 fumonisins have been described to date | Grains (such as maize, wheat, and beans), spices, etc. | Both fumonisin and F. verticillioides contamination in maize positively correlates with cancer of the esophagus in rats, as indicated by studies. Exposure to fumonisins can result in neural tube defects, most likely via disrupting the biosynthesis of sphingolipids and subsequent sphingolipid depletion, which are important for the functions of lipid rafts, particularly folate processing through folate transporters with high affinity. | [43,44,45,46] |
Zearalenone (ZEA), also known as F-2 mycotoxin | It is a nonsteroidal estrogenic metabolite produced by some Fusarium and Gibberella species, such as Fusarium graminearum; zearalenone is distributed globally | Grains (especially maize, rice, millet, sorghum, rye, oats, barley, wheat, etc.), spices, etc. | Zearalenone can cause an increase in the incidence of pituitary tumors and liver cell in mice, in line with the hormonal mode of carcinogenic actions. Elevated serum levels of α-zearalenol and ZEA are associated with early puberty. ZEA’s ability to induce hyperkeratotic papilloma in the rat esophageal squamous epithelium forestomach suggests its involvement in tumor development in the gastrointestinal tract. ZEA has been shown to be genotoxic and also has the ability to cause hepatocellular adenomas in mice. | [3,47] |
Patulin | It is produced by P. expansum, Penicillium, Paecilomyces, and Aspergillus species | Many fruits, vegetables, and grains, especially apple, rotting maize, peanuts, fig, acha, etc. | The acute symptoms of patulin include liver, kidney toxicity, spleen damage and toxicity, and immune toxicity. In humans, gastrointestinal (GI) disturbances, vomiting, and nausea are usually reported. Patulin is genotoxic, but its potential for carcinogenicity is yet to be reported. | [38,42] |
Citrinin | It is a mycotoxin first reported in the mold Penicillium citrinum; it has been reported in more than 12 Penicillium species and numerous Aspergillus species | Agricultural crops, such as barley, oats, rye, rice, corn, and wheat, as well foods colored using the Monascus pigment | Citrinin is associated with the yellowed rice disease reported in Japan and also acts as nephrotoxin in animal species. | [42] |
Ergot alkaloids | The ergot alkaloids are chemical substances released as toxic mixtures of alkaloids in the sclerotia of Claviceps species that are known pathogenic microbes of many species of grass | Agricultural crops, such as barley, oats, rye, rice, corn, and wheat | Ergot sclerotia ingestion from infected cereals, commonly in the form of bread made from contaminated flour, results in ergotism, a human disease known as St. Anthony’s fire. | [25] |
T-2 | T-2 is a trichothecene mycotoxin | Grains (such as maize, rice, millet, sorghum, rye, oats, barley, and wheat), spices, etc. | T-2 has lymphocytic, carcinogenic, cytotoxic, and immunosuppressive actions against mammalian cells. T-2 toxin induced apoptosis and developmental toxicity in zebrafish embryos. | [48,49,50] |
Diacetoxyscirpenol (DAS) or 4,15-diacetoxyscirpenol (DAS), also referred to as anguidine | It is a trichothecene mycotoxin secondary metabolite produced by the Fusarium genus | Grains (such as wheat, maize, rice, millet, sorghum, soybean, rye, oats, and barley), potato, coffee, etc. | DAS inhibits the production of Ig in the human lymphocytes stimulated by mitogen and can cause esophageal hyperplasia. The major adverse effects following repeated and acute exposure were hematotoxicity and emesis, respectively. | [51,52,53] |
Fusarenon X (FusX) | FusX is one of the trichothecenes capable of causing cytotoxicity, carcinogenicity, and immunosuppressive response in animal models and possibly in humans | Oats, cassava, rye, bananas, wheat, maize, rice, millet, sorghum, soybean, mangoes, etc. | In vitro and in vivo, FusX initiates apoptosis in mouse thymocytes, which may be hypothetically applicable to humans. It is very cytotoxic to many cells, and it is believed to have chromosomal effects and to be teratogenic. Fusarenon X has been shown to be carcinogenic, especially to animals. | [54,55,56] |
Nivalenol (NIV) | NIV is a trichothecene mycotoxin, which, in nature, is mostly produced by species of Fusarium | Cereals and their products, legumes, etc. | Nivalenol, T-2 toxin, and DON were used as bioweapons in some places such as Laos, Cambodia, and Afghanistan, and they were all detected in the vegetation at affected sites, while T-2 toxin was also detected in the blood and urine samples of victims. NIV can increase the rate of induced cancer and mutation, and it is potentially genotoxic. It causes damage in the DNA of colon, jejunum, stomach, bone marrow, and kidney. | [57,58] |
IARC Classification | Mycotoxin (IARC, 2012) | IARC Monograph Reference Year |
---|---|---|
Group 1: classified as carcinogenic to human | Aflatoxins B1, B2, G1, G2, M1 | [84,85,86] |
Group 2A: classified as probably carcinogenic to human | Not seen as at the time this study was conducted | |
Group 2B: classified as possibly carcinogenic to human | Ochratoxin A, fumonisin B1, fumonisin B2, fusarin C, sterigmatocystin | [71,87,88,89,90] |
Group 3: not classifiable as carcinogenic to human | Deoxynivalenol, patulin, citrinin, zearalenone, fusarenone X | [89,91] |
Group 4: probably not carcinogenic to human | Not seen as at the time this study was conducted |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awuchi, C.G.; Ondari, E.N.; Nwozo, S.; Odongo, G.A.; Eseoghene, I.J.; Twinomuhwezi, H.; Ogbonna, C.U.; Upadhyay, A.K.; Adeleye, A.O.; Okpala, C.O.R. Mycotoxins’ Toxicological Mechanisms Involving Humans, Livestock and Their Associated Health Concerns: A Review. Toxins 2022, 14, 167. https://doi.org/10.3390/toxins14030167
Awuchi CG, Ondari EN, Nwozo S, Odongo GA, Eseoghene IJ, Twinomuhwezi H, Ogbonna CU, Upadhyay AK, Adeleye AO, Okpala COR. Mycotoxins’ Toxicological Mechanisms Involving Humans, Livestock and Their Associated Health Concerns: A Review. Toxins. 2022; 14(3):167. https://doi.org/10.3390/toxins14030167
Chicago/Turabian StyleAwuchi, Chinaza Godseill, Erick Nyakundi Ondari, Sarah Nwozo, Grace Akinyi Odongo, Ifie Josiah Eseoghene, Hannington Twinomuhwezi, Chukwuka U. Ogbonna, Anjani K. Upadhyay, Ademiku O. Adeleye, and Charles Odilichukwu R. Okpala. 2022. "Mycotoxins’ Toxicological Mechanisms Involving Humans, Livestock and Their Associated Health Concerns: A Review" Toxins 14, no. 3: 167. https://doi.org/10.3390/toxins14030167
APA StyleAwuchi, C. G., Ondari, E. N., Nwozo, S., Odongo, G. A., Eseoghene, I. J., Twinomuhwezi, H., Ogbonna, C. U., Upadhyay, A. K., Adeleye, A. O., & Okpala, C. O. R. (2022). Mycotoxins’ Toxicological Mechanisms Involving Humans, Livestock and Their Associated Health Concerns: A Review. Toxins, 14(3), 167. https://doi.org/10.3390/toxins14030167