Mycotoxin Metabolism by Edible Insects
Abstract
:1. Introduction
2. Edible Insects
2.1. Insects as an Alternative Protein Source for Humans
2.2. Insects as Animal Feed vs. Other Animal Feed
3. Metabolism of Mycotoxins by Edible Insects
3.1. Aflatoxins
3.2. Fumonisins
3.3. Zearalenones
3.4. Vomitoxins
3.5. Ochratoxins
3.6. Mycotoxin Mixture
4. Insects That Are Fed with Mycotoxin Contaminated Grains as Animal Feed or Human Food
5. Conclusions
- Mycotoxins in insect feed need to be further determined. Food waste could possibly be used as insect feed in order to reduce levels of food waste. Therefore, the mycotoxins in food waste need to be identified and quantified. This knowledge will identify which mycotoxins and at what concentration should be fed to edible insects to study their metabolism and their effect on insects. Currently the mycotoxins that have been studied include only aflatoxins, fumonisins, zearalenones, deoxynivalenol, and ochratoxins. There are possibly more types of mycotoxins in food waste and agricultural products.
- Further understanding of the effect of each mycotoxin on each edible insect needs to be provided. A larger range of mycotoxin concentrations in experimental insect feeding trials should be included to determine the toxicity threshold of each different insect. This knowledge could be an essential reference for determining the inclusion level of mycotoxin-contaminated food waste in an insect diet.
- The metabolites of each mycotoxin by each insect need to be identified. Information on this is currently very limited. Additional scientific research needs to be conducted for this purpose.
- Investigations on the toxicity of each metabolite must be carried out for food safety reasons.
- The metabolic pathway of each mycotoxin in each insect needs to be explored, and the enzymes involved in the breakdown of each mycotoxin could be determined and purified. These enzymes might be used in the food and feed industry for mitigating the mycotoxin problem.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bennett, J.W.; Klich, M. Mycotoxins. Clin. Microbiol. Rev. 2003, 16, 497–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camenzuli, L.; van Dam, R.; de Rijk, T.; Andriessen, R.; van Schelt, J.; van der Fels-Klerx, H. Tolerance and excretion of the mycotoxins aflatoxin B1, zearalenone, deoxynivalenol, and ochratoxin A by Alphitobius diaperinus and Hermetia illucens from contaminated substrates. Toxins 2018, 10, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Omotayo, O.P.; Omotayo, A.O.; Mwanza, M.; Babalola, O.O. Prevalence of mycotoxins and their consequences on human health. Toxicol. Res. 2019, 35, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ochoa Sanabria, C.; Hogan, N.; Madder, K.; Gillott, C.; Blakley, B.; Reaney, M.; Beattie, A.; Buchanan, F. Yellow mealworm larvae (Tenebrio molitor) fed mycotoxin-contaminated wheat—A possible safe, sustainable protein source for animal feed? Toxins 2019, 11, 282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gulsunoglu, Z.; Aravind, S.; Bai, Y.; Wang, L.; Kutcher, H.R.; Tanaka, T. Deoxynivalenol (DON) accumulation and nutrient recovery in black soldier fly larvae (Hermetia illucens) fed wheat infected with Fusarium spp. Fermentation 2019, 5, 83. [Google Scholar] [CrossRef] [Green Version]
- Farhan, Y.; Smith, J.L.; Limay-Rios, V.; Schaafsma, A.W. The effect of simulated lepidopteran ear feeding injury on mycotoxin accumulation in grain corn (Poales: Poaceae). J. Econ. Entomol. 2020, 113, 2187–2196. [Google Scholar] [CrossRef] [PubMed]
- Niermans, K.; Woyzichovski, J.; Kröncke, N.; Benning, R.; Maul, R. Feeding study for the mycotoxin zearalenone in yellow mealworm (Tenebrio molitor) larvae—Investigation of biological impact and metabolic conversion. Mycotoxin Res. 2019, 35, 231–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez, B.; Munekata, P.E.S.; Zhu, Z.; Barba, F.J.; Toldrá, F.; Putnik, P.; Bursać Kovačević, D.; Lorenzo, J.M. Challenges and opportunities regarding the use of alternative protein sources: Aquaculture and insects. Adv. Food Nutr. Res. 2019, 89, 259–295. [Google Scholar]
- Orsi, L.; Voege, L.L.; Stranieri, S. Eating edible insects as sustainable food? Exploring the determinants of consumer acceptance in Germany. Food Res. Int. 2019, 125, 108573. [Google Scholar] [CrossRef]
- Pali-Schöll, I.; Binder, R.; Moens, Y.; Polesny, F.; Monsó, S. Edible insects—Defining knowledge gaps in biological and ethical considerations of entomophagy. Crit. Rev. Food Sci. Nutr. 2019, 59, 2760–2771. [Google Scholar] [CrossRef] [Green Version]
- Churchward-Venne, T.A.; Pinckaers, P.J.M.; van Loon, J.J.A.; van Loon, L.J.C. Consideration of insects as a source of dietary protein for human consumption. Nutr. Rev. 2017, 75, 1035–1045. [Google Scholar] [CrossRef]
- Kim, T.-K.; Yong, H.I.; Kim, Y.-B.; Kim, H.; Choi, Y.-S. Edible insects as a protein source: A review of public perception, processing technology, and research trends. Food Sci. Anim. Resour. 2019, 39, 521–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Payne, C.L.R.; Scarborough, P.; Rayner, M.; Nonaka, K. Are edible insects more or less ‘healthy’ than commonly consumed meats? A comparison using two nutrient profiling models developed to combat over- and undernutrition. Eur. J. Clin. Nutr. 2016, 70, 285–291. [Google Scholar] [CrossRef]
- Dabbou, S.; Gai, F.; Biasato, I.; Capucchio, M.T.; Biasibetti, E.; Dezzutto, D.; Meneguz, M.; Plachà, I.; Gasco, L.; Schiavone, A. Black soldier fly defatted meal as a dietary protein source for broiler chickens: Effects on growth performance, blood traits, gut morphology and histological features. J. Anim. Sci. Biotechnol. 2018, 9, 49. [Google Scholar] [CrossRef] [PubMed]
- Sogari, G.; Amato, M.; Biasato, I.; Chiesa, S.; Gasco, L. The potential role of insects as feed: A multi-perspective review. Animals 2019, 9, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moula, N.; Detilleux, J. A meta-analysis of the effects of insects in feed on poultry growth performances. Animals 2019, 9, 201. [Google Scholar] [CrossRef] [Green Version]
- Van Raamsdonk, L.W.D.; van der Fels-Klerx, H.J.; de Jong, J. New feed ingredients: The insect opportunity. Food Addit. Contam. Part A 2017, 34, 1384–1397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, G.; Johnson, R.M.; Berenbaum, M.R. Toxicity of mycotoxins to honeybees and its amelioration by propolis. Apidologie 2011, 42, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Niu, G. Toxicity of Mycotoxins to Inescts and Underlying Molecular and Biochemical Mechanisms. Ph.D. Thesis, University of Illinois, Urbana, IL, USA, 2010. [Google Scholar]
- Chen, P.P.; Wongsiri, S.; Jamyanya, T.; Rinderer, T.E.; Vongsamanode, S.; Matsuka, M.; Sylvester, H.A.; Oldroyd, B.P. Honey bees and other edible insects used as human food in Thailand. Am. Entomol. 1998, 44, 24–29. [Google Scholar] [CrossRef] [Green Version]
- Niu, G.; Siegel, J.; Schuler, M.A.; Berenbaum, M.R. Comparative toxicity of mycotoxins to navel orangeworm (Amyelois transitella) and corn earworm (Helicoverpa zea). J. Chem. Ecol. 2009, 35, 951–957. [Google Scholar] [CrossRef] [PubMed]
- Organic Corn Earworm Control. Available online: https://www.motherearthnews.com/organic-gardening/corn-earworm-control-zw0z1304zkin/ (accessed on 10 March 2022).
- Bosch, G.; Fels-Klerx, H.; Rijk, T.; Oonincx, D. Aflatoxin B1 tolerance and accumulation in black soldier fly larvae (Hermetia illucens) and yellow mealworms (Tenebrio molitor). Toxins 2017, 9, 185. [Google Scholar] [CrossRef] [PubMed]
- Janković-Tomanić, M.; Petković, B.; Todorović, D.; Vranković, J.; Perić-Mataruga, V. Physiological and behavioral effects of the mycotoxin deoxynivalenol in Tenebrio molitor larvae. J. Stored Prod. Res. 2019, 83, 236–242. [Google Scholar] [CrossRef]
- Van Broekhoven, S.; Gutierrez, J.M.; de Rijk, T.C.; de Nijs, W.C.M.; van Loon, J.J.A. Degradation and excretion of the Fusarium toxin deoxynivalenol by an edible insect, the Yellow mealworm (Tenebrio molitor L.). World Mycotoxin J. 2017, 10, 163–169. [Google Scholar] [CrossRef]
- Abado-Becognee, K.; Fleurat-Lessard, F.; Creppy, E.E.; Melcion, D. Effects of fumonisin B1 on growth and metabolism of larvae of the yellow mealworm, Tenebrio molitor. Entomol. Exp. Appl. 1998, 86, 135–143. [Google Scholar] [CrossRef]
- Park, D.L. Effect of processing on aflatoxin. Mycotoxins Food Saf. 2002, 1, 173–179. [Google Scholar]
- Marchese, S.; Polo, A.; Ariano, A.; Velotto, S.; Costantini, S.; Severino, L. Aflatoxin B1 and M1: Biological properties and their involvement in cancer development. Toxins 2018, 10, 214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robens, J.F.; Richard, J.L. Aflatoxins in animal and human health. In Reviews of Environmental Contamination and Toxicology; Springer: New York, NY, USA, 1992; Volume 127, pp. 69–94. [Google Scholar]
- Lee, S.-E.; Campbell, B.C. In vitro metabolism of aflatoxin B1 by larvae of navel orangeworm, Amyelois transitella (Walker) (Insecta, Lepidoptera, Pyralidae) and codling moth, Cydia pomonella (L.) (Insecta, Lepidoptera, Tortricidae). Arch. Insect Biochem. Physiol. 2000, 45, 166–174. [Google Scholar] [CrossRef]
- Norred, W.P. Fumonisins-mycotoxins produced by Fusarium moniliforme. J. Toxicol. Environ. Health 1993, 38, 309–328. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.-L.; Feng, Y.-L.; Song, J.-L.; Zhou, X.-S. Zearalenone: A mycotoxin with different toxic effect in domestic and laboratory animals’ granulosa cells. Front. Genet. 2018, 9, 667. [Google Scholar] [CrossRef] [Green Version]
- Kuiper-Goodman, T.; Scott, P.M.; Watanabe, H. Risk assessment of the mycotoxin zearalenone. Regul. Toxicol. Pharmacol. 1987, 7, 253–306. [Google Scholar] [CrossRef]
- Katzenellenbogen, B.S.; Korach, K.S. Editorial: A new actor in the estrogen receptor drama—Enter ER-β. Endocrinology 1997, 138, 861–862. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Li, Y.; de Boevre, M.; de Saeger, S.; Zhou, J.; Li, Y.; Zhang, H.; Sun, F. Toxicokinetics of α-zearalenol and its masked form in rats and the comparative biotransformation in liver microsomes from different livestock and humans. J. Hazard. Mater. 2020, 393, 121403. [Google Scholar] [CrossRef] [PubMed]
- Trenholm, H.L.; Thompson, B.K.; Martin, K.E.; Greenhalgh, R.; McAllister, A.J. Ingestion of vomitoxin (deoxynivalenol)-contaminated wheat by nonlactating dairy cows. J. Dairy Sci. 1985, 68, 1000–1005. [Google Scholar] [CrossRef]
- Rotter, B.A. Invited review: Toxicology of deoxynivalenol (vomitoxin). J. Toxicol. Environ. Health 1996, 48, 1–34. [Google Scholar] [CrossRef]
- Bui-Klimke, T.R.; Wu, F. Ochratoxin A and human health risk: A review of the evidence. Crit. Rev. Food Sci. Nutr. 2015, 55, 1860–1869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heussner, A.; Bingle, L. Comparative ochratoxin toxicity: A review of the available data. Toxins 2015, 7, 4253–4282. [Google Scholar] [CrossRef] [Green Version]
- Duarte, S.C.; Lino, C.M.; Pena, A. Ochratoxin A in feed of food-producing animals: An undesirable mycotoxin with health and performance effects. Vet. Microbiol. 2011, 154, 1–13. [Google Scholar] [CrossRef]
- Leni, G.; Cirlini, M.; Jacobs, J.; Depraetere, S.; Gianotten, N.; Sforza, S.; Dall’Asta, C. Impact of naturally contaminated substrates on alphitobius diaperinus and Hermetia illucens: Uptake and excretion of mycotoxins. Toxins 2019, 11, 476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muhialdin, B.J.; Saari, N.; Meor Hussin, A.S. Review on the biological detoxification of mycotoxins using lactic acid bacteria to enhance the sustainability of foods supply. Molecules 2020, 25, 2655. [Google Scholar] [CrossRef]
- Schrögel, P.; Wätjen, W. Insects for food and feed-safety aspects related to mycotoxins and metals. Foods 2019, 8, 288. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Döll, K.; Dastjerdi, R.; Karlovsky, P.; Dehne, H.-W.; Altincicek, B. Effect of fungal colonization of wheat grains with fusarium spp. on food choice, weight gain and mortality of meal beetle larvae (Tenebrio molitor). PLoS ONE 2014, 9, e100112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Insect | Mycotoxin (s) | Metabolites | Enzymes | Detoxification Mechanism | References |
---|---|---|---|---|---|
Apis mellifera (Honeybee, human food) | AFB1 a | -- | P450 b | -- | [18,19,20] |
Helicoverpa zea (Corn earworm, feed for chickens) | AFB1 | AFP1 c | P450 CYP321A1 | Metabolic activity enhanced by phytochemicals (xanthotoxin, coumarin) | [19,21,22] |
Tenebrio molitor (Yellow mealworm, human food and animal feed) | ZEN d | α-, β-ZEL e | -- | Metabolic degradation and rapid excretion No sulfonation occurs | [7] |
AFB1 | AFM1 f | P450 | Gut contents play a role in metabolic degradation Rapid excretion | [23] | |
DON g | 3-acetyl-DON NIV h | Phase II enzymes SOD i GST j | Acetylation by midgut and gut bacterial enzymes Detoxification of reactive oxygen species Rapid excretion | [4,24,25] | |
FB1 k | -- | -- | Immobilization within fat storages, excretion, or metabolic degradation | [26] | |
Hermetia illucens (Black soldier fly, animal feed) | AFB1 | AFL | P450 | Metabolic degradation Rapid excretion | [2,23] |
DON | -- | -- | Metabolic degradation by gut bacteria Rapid excretion | [2,5] | |
OTA l | -- | -- | Metabolic degradation and excretion | [2] | |
ZEN | α-, β-ZEL | -- | Over 50% of ZEN converted to its metabolites Excretion | [2] | |
Alphitobius diaperinus (Lesser mealworm, animal feed) | AFB1 | AFL m AFM1 | -- | Limited AFB1 metabolism Rapid excretion | [2] |
DON | -- | -- | Metabolic degradation and rapid excretion | ||
OTA | -- | -- | Excretion | ||
ZEN | α-, β-ZEL | -- | Limited ZEN metabolism Rapid excretion |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Evans, N.M.; Shao, S. Mycotoxin Metabolism by Edible Insects. Toxins 2022, 14, 217. https://doi.org/10.3390/toxins14030217
Evans NM, Shao S. Mycotoxin Metabolism by Edible Insects. Toxins. 2022; 14(3):217. https://doi.org/10.3390/toxins14030217
Chicago/Turabian StyleEvans, Natasha Marie, and Suqin Shao. 2022. "Mycotoxin Metabolism by Edible Insects" Toxins 14, no. 3: 217. https://doi.org/10.3390/toxins14030217
APA StyleEvans, N. M., & Shao, S. (2022). Mycotoxin Metabolism by Edible Insects. Toxins, 14(3), 217. https://doi.org/10.3390/toxins14030217