Toxinologic and Pharmacological Investigation of Venomous Arthropods
Funding
Conflicts of Interest
References
- Lüddecke, T.; Herzig, V.; von Reumont, B.M.; Vilcinskas, A. The biology and evolution of spider venoms. Biol. Rev. 2022, 97, 163–178. [Google Scholar] [CrossRef] [PubMed]
- Haddad Junior, V.; Amorim, P.C.; Haddad Junior, W.T.; Cardoso, J.L. Venomous and poisonous arthropods: Identification, clinical manifestations of envenomation, and treatments used in human injuries. Rev. Soc. Bras. Med. Trop. 2015, 48, 650–657. [Google Scholar] [CrossRef] [PubMed]
- Erickson, T.B.; Cheema, N. Arthropod envenomation in North America. Emerg. Med. Clin. N. Am. 2017, 35, 355–375. [Google Scholar] [CrossRef] [PubMed]
- Klotz, S.A.; Schmidt, J.O. Humans and Arthropod Bites and Stings: Venom and Envenomation. Insects. 2022. Available online: https://www.mdpi.com/journal/insects/special_issues/Arthropod_Bites (accessed on 5 March 2022).
- Monge-Fuentes, V.; Arenas, C.; Galante, P.; Gonçalves, J.C.; Mortari, M.R.; Schwartz, E.F. Arthropod toxins and their antinociceptive properties: From venoms to painkillers. Pharmacol. Ther. 2018, 188, 176–185. [Google Scholar] [CrossRef]
- Shen, B.; Cao, Z.; Li, W.; Sabatier, J.M.; Wu, Y. Treating autoimmune disorders with venom-derived peptides. Expert Opin. Biol. Ther. 2017, 17, 1065–1075. [Google Scholar] [CrossRef]
- Ding, L.; Chen, J.; Hao, J.; Zhang, J.; Huang, X.; Hu, F.; Wu, Z.; Liu, Y.; Li, W.; Cao, Z.; et al. Discovery of three toxin peptides with Kv1.3 channel and IL-2 cytokine-inhibiting activities from Non-Buthidae scorpions, Chaerilus tricostatus and Chaerilus tryznai. Peptides 2017, 91, 13–19. [Google Scholar] [CrossRef]
- Cardoso, F.C. Multi-targeting sodium and calcium channels using venom peptides for the treatment of complex ion channels-related diseases. Biochem. Pharmacol. 2020, 181, 114107. [Google Scholar] [CrossRef]
- Chow, C.Y.; Absalom, N.; Biggs, K.; King, G.F.; Ma, L. Venom-derived modulators of epilepsy-related ion channels. Biochem. Pharmacol. 2020, 181, 114043. [Google Scholar] [CrossRef]
- Dodou Lima, H.V.; de Paula Cavalcante, C.S.; Rádis-Baptista, G. Antifungal in vitro activity of pilosulin- and ponericin-like peptides from the giant ant Dinoponera quadriceps and synergistic effects with antimycotic drugs. Antibiotics 2020, 9, 354. [Google Scholar] [CrossRef]
- Yacoub, T.; Rima, M.; Karam, M.; Sabatier, J.-M.; Fajloun, Z. Antimicrobials from venomous animals: An overview. Molecules 2020, 25, 2402. [Google Scholar] [CrossRef]
- Heep, J.; Skaljac, M.; Grotmann, J.; Kessel, T.; Seip, M.; Schmidtberg, H.; Vilcinskas, A. Identification and functional characterization of a novel insecticidal decapeptide from the myrmicine ant Manica rubida. Toxins 2019, 11, 562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, J.J.; Herzig, V.; King, G.F.; Alewood, P.F. The insecticidal potential of venom peptides. Cell. Mol. Sci. Life Sci. CMLS 2013, 70, 3665–3693. [Google Scholar] [CrossRef] [PubMed]
- Alberto-Silva, C.; Vieira Portaro, F.C.; Kodama, R.T.; Pantaleão, H.Q.; Inagaki, H.; Nihei, K.-I.; Konno, K. Comprehensive analysis and biological characterization of venom components from solitary scoliid wasp Campsomeriella annulata annulata. Toxins 2021, 13, 885. [Google Scholar] [CrossRef] [PubMed]
- Aili, S.R.; Touchard, A.; Hayward, R.; Robinson, S.D.; Pineda, S.S.; Lalagüe, H.; Mrinalini; Vetter, I.; Undheim, E.A.B.; Kini, R.M.; et al. An integrated proteomic and transcriptomic analysis reveals the venom complexity of the bullet ant Paraponera clavata. Toxins 2020, 12, 324. [Google Scholar] [CrossRef]
- Rádis-Baptista, G.; Dodou, H.V.; Prieto-da-Silva, Á.R.B.; Zaharenko, A.J.; Kazuma, K.; Nihei, K.I.; Inagaki, H.; Mori-Yasumoto, K.; Konno, K. Comprehensive analysis of peptides and low molecular weight components of the giant ant Dinoponera quadriceps venom. Biol. Chem. 2020, 401, 945–954. [Google Scholar] [CrossRef]
- Kazuma, K.; Masuko, K.; Konno, K.; Inagaki, H. Combined venom gland transcriptomic and venom peptidomic analysis of the predatory ant Odontomachus monticola. Toxins 2017, 9, 323. [Google Scholar] [CrossRef]
- von Reumont, B.M.; Campbell, L.I.; Jenner, R.A. Quo vadis venomics? A roadmap to neglected venomous invertebrates. Toxins 2014, 6, 3488–3551. [Google Scholar] [CrossRef]
- von Reumont, B.M.; Campbell, L.I.; Richter, S.; Hering, L.; Sykes, D.; Hetmank, J.; Jenner, R.A.; Bleidorn, C. A polychaete’s powerful punch: Venom gland transcriptomics of Glycera reveals a complex cocktail of toxin homologs. Genome Biol. Evol. 2014, 6, 2406–2423. [Google Scholar] [CrossRef]
- Rádis-Baptista, G.; Konno, K. Arthropod venom components and their potential usage. Toxins 2020, 12, 82. [Google Scholar] [CrossRef] [Green Version]
- Kimura, T. Stability and safety of inhibitor cystine knot peptide, GTx1-15, from the tarantula spider Grammostola rosea. Toxins 2021, 13, 621. [Google Scholar] [CrossRef]
- Krämer, J.; Lüddecke, T.; Marner, M.; Maiworm, E.; Eichberg, J.; Hardes, K.; Schäberle, T.F.; Vilcinskas, A.; Predel, R. Antimicrobial, insecticidal and cytotoxic activity of linear venom peptides from the pseudoscorpion Chelifer cancroides. Toxins 2022, 14, 58. [Google Scholar] [CrossRef] [PubMed]
- Lopes, P.H.; Fukushima, C.S.; Shoji, R.; Bertani, R.; Tambourgi, D.V. Sphingomyelinase D activity in Sicarius tropicus venom: Toxic potential and clues to the evolution of SMases D in the Sicariidae family. Toxins 2021, 13, 256. [Google Scholar] [CrossRef] [PubMed]
- Correia, L.I.V.; Azevedo, F.V.P.d.V.; Amorim, F.G.; Cirilo Gimenes, S.N.; Polloni, L.; Zoia, M.A.P.; Costa, M.S.; Rodrigues, J.P.; Yoneyama, K.A.G.; Santos, J.C.; et al. Shedding lights on crude venom from solitary foraging predatory ant Ectatomma opaciventre: Initial toxinological investigation. Toxins 2022, 14, 37. [Google Scholar] [CrossRef] [PubMed]
- Moraes, J.A.; Rodrigues, G.; Guimarães-Bastos, D.; Nascimento-Silva, V.; Svensjö, E.; Renovato-Martins, M.; Berger, M.; Guimarães, J.; Barja-Fidalgo, C. Effect of Lonomia obliqua venom on human neutrophils. Toxins 2021, 13, 908. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Navarro, M.; Bolívar, P.; Andrés, M.F.; Gómez-Muñoz, M.T.; Martínez-Díaz, R.A.; Valcárcel, F.; García-París, M.; Bautista, L.M.; González-Coloma, A. Antiparasitic effects of potentially toxic beetles (Tenebrionidae and Meloidae) from steppe zones. Toxins 2021, 13, 489. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rádis-Baptista, G.; Konno, K. Toxinologic and Pharmacological Investigation of Venomous Arthropods. Toxins 2022, 14, 283. https://doi.org/10.3390/toxins14040283
Rádis-Baptista G, Konno K. Toxinologic and Pharmacological Investigation of Venomous Arthropods. Toxins. 2022; 14(4):283. https://doi.org/10.3390/toxins14040283
Chicago/Turabian StyleRádis-Baptista, Gandhi, and Katsuhiro Konno. 2022. "Toxinologic and Pharmacological Investigation of Venomous Arthropods" Toxins 14, no. 4: 283. https://doi.org/10.3390/toxins14040283
APA StyleRádis-Baptista, G., & Konno, K. (2022). Toxinologic and Pharmacological Investigation of Venomous Arthropods. Toxins, 14(4), 283. https://doi.org/10.3390/toxins14040283