Serum P-Cresyl Sulfate Level Is an Independent Marker of Peripheral Arterial Stiffness as Assessed Using Brachial-Ankle Pulse Wave Velocity in Patients with Non-Dialysis Chronic Kidney Disease Stage 3 to 5
Abstract
:1. Introduction
2. Results
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Patients
5.2. Anthropometric Analysis
5.3. Biochemical Investigations
5.4. Determination of Serum Total PCS Levels by High-Performance Liquid Chromatography–Mass Spectrometry
5.5. BaPWV Measurements
5.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Di Lullo, L.; House, A.; Gorini, A.; Santoboni, A.; Russo, D.; Ronco, C. Chronic kidney disease and cardiovascular complications. Heart Fail. Rev. 2015, 20, 259–272. [Google Scholar] [CrossRef] [PubMed]
- Jankowski, J.; Floege, J.; Fliser, D.; Böhm, M.; Marx, N. Cardiovascular disease in chronic kidney disease—Pathophysiological insights and therapeutic options. Circulation 2021, 143, 1157–1172. [Google Scholar] [CrossRef] [PubMed]
- Bonarjee, V.V.S. Arterial Stiffness: A prognostic marker in coronary heart disease. Available methods and clinical application. Front. Cardiovasc. Med. 2018, 5, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, S.; McEniery, C.M. Central versus peripheral artery stiffening and cardiovascular risk. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 1028–1033. [Google Scholar] [CrossRef] [PubMed]
- Opdebeeck, B.; Maudsley, S.; Azmi, A.; De Maré, A.; De Leger, W.; Meijers, B.; Verhulst, A.; Evenepoel, P.; D’Haese, P.C.; Neven, E. Indoxyl sulfate and p-cresyl sulfate promote vascular calcification and associate with glucose intolerance. J. Am. Soc. Nephrol. 2019, 30, 751–766. [Google Scholar] [CrossRef] [PubMed]
- Gryp, T.; Vanholder, R.; Vaneechoutte, M.; Glorieux, G. p-Cresyl Sulfate. Toxins 2017, 9, 52. [Google Scholar] [CrossRef] [Green Version]
- Glorieux, G.; Gryp, T.; Perna, A. Gut-derived metabolites and their role in immune dysfunction in chronic kidney disease. Toxins 2020, 12, 245. [Google Scholar] [CrossRef] [Green Version]
- Foudi, N.; Palayer, M.; Briet, M.; Garnier, A.S. Arterial remodelling in chronic kidney disease: Impact of uraemic toxins and new pharmacological approaches. J. Clin. Med. 2021, 10, 3803. [Google Scholar] [CrossRef]
- Lai, Y.H.; Wang, C.H.; Kuo, C.H.; Lin, Y.L.; Tsai, J.P.; Hsu, B.G. Serum p-cresyl sulfate is a predictor of central arterial stiffness in patients on maintenance hemodialysis. Toxins 2019, 12, 10. [Google Scholar] [CrossRef] [Green Version]
- Tomiyama, H.; Shiina, K. State of the art review: Brachial-ankle PWV. J. Atheroscler. Thromb. 2020, 27, 621–636. [Google Scholar] [CrossRef]
- Laurent, S.; Boutouyrie, P. Arterial stiffness and hypertension in the elderly. Front. Cardiovasc. Med. 2020, 7, 544302. [Google Scholar] [CrossRef] [PubMed]
- Tsai, J.P.; Hsu, B.G. Arterial stiffness: A brief review. Tzu Chi Med. J. 2020, 33, 115–121. [Google Scholar] [PubMed]
- Benetos, A.; Laurent, S.; Hoeks, A.P.; Boutouyrie, P.H.; Safar, M.E. Arterial alterations with aging and high blood pressure. A noninvasive study of carotid and femoral arteries. Arterioscler. Thromb. 1993, 13, 90–97. [Google Scholar] [CrossRef] [Green Version]
- Boutouyrie, P.; Laurent, S.; Benetos, A.; Girerd, X.J.; Hoeks, A.P.; Safar, M.E. Opposing effects of ageing on distal and proximal large arteries in hypertensives. J. Hypertens. Suppl. 1992, 10, S87–S91. [Google Scholar] [CrossRef]
- Mitchell, G.F.; Parise, H.; Benjamin, E.J.; Larson, M.G.; Keyes, M.J.; Vita, J.A.; Vasan, R.S.; Levy, D. Changes in arterial stiffness and wave reflection with advancing age in healthy men and women: The Framingham Heart Study. Hypertension 2004, 43, 1239–1245. [Google Scholar] [CrossRef] [Green Version]
- McEniery, C.M.; Yasmin, H.I.R.; Qasem, A.; Wilkinson, I.B.; Cockcroft, J.R.; ACCT Investigators. Normal vascular aging: Differential effects on wave reflection and aortic pulse wave velocity: The Anglo-Cardiff Collaborative Trial (ACCT). J. Am. Coll. Cardiol. 2005, 46, 1753–1760. [Google Scholar] [CrossRef] [Green Version]
- Logan, J.G.; Kang, H.; Kim, S.; Duprez, D.; Kwon, Y.; Jacobs, D.R., Jr.; Forbang, N.; Lobo, J.M.; Sohn, M.W. Association of obesity with arterial stiffness: The Multi-Ethnic Study of Atherosclerosis (MESA). Vasc. Med. 2020, 25, 309–318. [Google Scholar] [CrossRef]
- Dwivedi, A.K.; Dubey, P.; Cistola, D.P.; Reddy, S.Y. Association between obesity and cardiovascular outcomes: Updated evidence from meta-analysis studies. Curr. Cardiol. Rep. 2020, 22, 25. [Google Scholar] [CrossRef]
- Li, P.; Wang, L.; Liu, C. Overweightness, obesity and arterial stiffness in healthy subjects: A systematic review and meta-analysis of literature studies. Postgrad. Med. 2017, 129, 224–230. [Google Scholar] [CrossRef]
- Kim, H.L.; Ahn, D.W.; Kim, S.H.; Lee, D.S.; Yoon, S.H.; Zo, J.H.; Kim, M.A.; Jeong, J.B. Association between body fat parameters and arterial stiffness. Sci. Rep. 2021, 11, 20536. [Google Scholar] [CrossRef]
- Tang, B.; Luo, F.; Zhao, J.; Ma, J.; Tan, I.; Butlin, M.; Avolio, A.; Zuo, J. Relationship between body mass index and arterial stiffness in a health assessment Chinese population. Medicine 2020, 99, e18793. [Google Scholar] [CrossRef] [PubMed]
- Anser, F.; Dhrolia, M.; Nasir, K.; Qureshi, R.; Ahmad, A. Co-relation between calcium-phosphorus product and hypertension in end-stage renal disease patients. Cureus 2021, 13, e18885. [Google Scholar] [CrossRef] [PubMed]
- Blacher, J.; Guerin, A.P.; Pannier, B.; Marchais, S.J.; London, G.M. Arterial calcifications, arterial stiffness, and cardiovascular risk in end-stage renal disease. Hypertension 2001, 38, 938–942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellasi, A.; Kooienga, L.; Block, G.A.; Veledar, E.; Spiegel, D.M.; Raggi, P. How long is the warranty period for nil or low coronary artery calcium in patients new to hemodialysis? J. Nephrol. 2009, 22, 255–262. [Google Scholar] [PubMed]
- Shanahan, C.M.; Crouthamel, M.H.; Kapustin, A.; Giachelli, C.M. Arterial calcification in chronic kidney disease: Key roles for calcium and phosphate. Circ. Res. 2011, 109, 697–711. [Google Scholar] [CrossRef] [Green Version]
- Abdelfatah, A.B.; Motte, G.; Ducloux, D.; Chalopin, J.M. Determinants of mean arterial pressure and pulse pressure in chronic haemodialysis patients. J. Hum. Hypertens. 2001, 15, 775–779. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.J.; Pan, C.F.; Liu, H.L.; Chuang, C.K.; Jayakumar, T.; Wang, T.J.; Chen, H.H.; Wu, C.J. The role of protein-bound uremic toxins on peripheral artery disease and vascular access failure in patients on hemodialysis. Atherosclerosis 2012, 225, 173–179. [Google Scholar] [CrossRef]
- Jing, Y.J.; Ni, J.W.; Ding, F.H.; Fang, Y.H.; Wang, X.Q.; Wang, H.B.; Chen, X.N.; Chen, N.; Zhan, W.W.; Lu, L.; et al. p-Cresyl sulfate is associated with carotid arteriosclerosis in hemodialysis patients and promotes atherogenesis in apoE–/– mice. Kidney Int. 2016, 89, 439–449. [Google Scholar] [CrossRef] [Green Version]
- Opdebeeck, B.; D’Haese, P.C.; Verhulst, A. Molecular and cellular mechanisms that induce arterial calcification by indoxyl sulfate and p-cresyl sulfate. Toxins 2020, 12, 58. [Google Scholar] [CrossRef] [Green Version]
- Harlacher, E.; Wollenhaupt, J.; Baaten, C.C.F.M.J.; Noels, H. Impact of uremic toxins on endothelial dysfunction in chronic kidney disease: A systematic review. Int. J. Mol. Sci. 2022, 23, 531. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- National Kidney Foundation. K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am. J. Kidney Dis. 2003, 42, S1–S201. [Google Scholar] [CrossRef]
- Hsiao, C.H.; Chen, Y.C.; Wang, J.H.; Hsu, B.G. Serum angiopoietin-like protein 3 level is associated with peripheral arterial stiffness in patients with coronary artery disease. Medicina 2021, 57, 1011. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, A.; Tomiyama, H.; Maruhashi, T.; Matsuzawa, Y.; Miyoshi, T.; Kabutoya, T.; Kario, K.; Sugiyama, S.; Munakata, M.; Ito, H.; et al. Physiological diagnosis criteria for vascular failure committee. Physiological diagnostic criteria for vascular failure. Hypertension 2018, 72, 1060–1071. [Google Scholar] [CrossRef]
Characteristics | All Patients (n = 160) | Control Group (n = 106) | PAS Group (n = 54) | p Value |
---|---|---|---|---|
Age (years) | 66.90 ± 11.81 | 63.91 ± 11.19 | 72.78 ± 10.84 | <0.001 * |
Height (cm) | 158.37 ± 9.09 | 159.46 ± 9.40 | 156.22 ± 8.12 | 0.033 * |
Body weight (kg) | 65.33 ± 14.43 | 67.37 ± 14.99 | 61.34 ± 12.45 | 0.012 * |
Body mass index (kg/m2) | 25.92 ± 4.64 | 26.35 ± 4.75 | 25.06 ± 4.35 | 0.095 |
Left baPWV (m/s) | 16.68 ± 3.08 | 14.86 ± 1.72 | 20.24 ± 1.79 | <0.001 * |
Right baPWV (m/s) | 16.59 ± 2.93 | 15.07 ± 2.24 | 19.58 ± 1.42 | <0.001 * |
SBP (mmHg) | 143.23 ± 17.71 | 139.23 ± 18.19 | 151.07 ± 13.79 | <0.001 * |
DBP (mmHg) | 82.43 ± 10.85 | 80.83 ± 10.42 | 85.57 ± 11.06 | 0.008 * |
Total cholesterol (mg/dL) | 158.64 ± 39.99 | 159.94 ± 42.10 | 156.07 ± 35.72 | 0.564 |
Triglyceride (mg/dL) | 119.50 (90.00–163.50) | 119.00 (91.00–166.25) | 123.50 (83.00–152.25) | 0.854 |
LDL-C (mg/dL) | 89.55 ± 33.42 | 92.13 ± 35.03 | 84.48 ± 29.66 | 0.172 |
Fasting glucose (mg/dL) | 109.50 (98.00–135.75) | 106.00 (97.75–130.75) | 115.00 (98.75–139.00) | 0.498 |
Blood urea nitrogen (mg/dL) | 31.00 (24.00–45.50) | 29.50 (23.75–44.00) | 32.50 (23.50–48.50) | 0.691 |
Creatinine (mg/dL) | 1.70 (1.40–2.58) | 1.70 (1.30–2.50) | 1.90 (1.40–2.93) | 0.320 |
eGFR (mL/min) | 33.75 ± 15.93 | 35.48 ± 15.52 | 30.38 ± 16.32 | 0.055 |
Albumin (g/dL) | 4.1 (3.9–4.4) | 4.1 (3.9–4.4) | 4.1 (3.7–4.3) | 0.059 |
Total calcium (mg/dL) | 8.93 ± 0.47 | 8.88 ± 0.39 | 9.03 ± 0.58 | 0.058 |
Phosphorus (mg/dL) | 3.81 ± 0.78 | 3.73 ± 0.70 | 3.96 ± 0.92 | 0.084 |
Ca × P product (mg2/dL2) | 34.00 ± 7.14 | 33.13 ± 6.14 | 35.71 ± 8.60 | 0.030 * |
Total p-cresyl sulfate (mg/L) | 18.86 (15.14–24.76) | 17.87 (14.91–23.26) | 21.60 (15.97–29.45) | 0.008 * |
Female, n (%) | 82 (51.3) | 53 (50.0) | 29 (53.7) | 0.658 |
Diabetes mellitus, n (%) | 68 (42.5) | 45 (42.5) | 23 (42.6) | 0.987 |
Hypertension, n (%) | 115 (71.9) | 70 (66.0) | 45 (83.3) | 0.021 * |
Glomerulonephritis, n (%) | 38 (23.8) | 24 (22.6) | 14 (25.9) | 0.644 |
Current smoking, n (%) | 24 (15.0) | 16 (15.1) | 8 (14.8) | 0.963 |
ARB use, n (%) | 86 (53.8) | 58 (54.7) | 28 (51.9) | 0.731 |
β-blocker use, n (%) | 40 (25.0) | 26 (24.5) | 14 (25.9) | 0.847 |
CCB use, n (%) | 77 (48.1) | 48 (45.3) | 29 (53.7) | 0.313 |
α-adrenergic blocker use, n (%) | 19 (11.9) | 11 (10.4) | 8 (14.8) | 0.412 |
Statin use, n (%) | 80 (50.0) | 57 (53.8) | 23 (42.6) | 0.181 |
Fibrate use, n (%) | 24 (15.0) | 16 (15.1) | 8 (14.8) | 0.963 |
CKD stage 3, n (%) | 89 (55.6) | 64 (60.4) | 25 (46.3) | 0.221 |
CKD stage 4, n (%) | 41 (25.8) | 25 (23.6) | 16 (29.6) | |
CKD stage 5, n (%) | 30 (18.8) | 17 (16.0) | 12 (24.1) |
Variables | Odds Ratio | 95% CI | p Value |
---|---|---|---|
Total p-cresyl sulfate (mg/L) | 1.098 | 1.029–1.171 | 0.005 * |
Age (years) | 1.105 | 1.055–1.159 | <0.001 * |
Diastolic blood pressure (mmHg) | 1.058 | 1.002–1.118 | 0.043 * |
Hypertension (present) | 0.723 | 0.212–2.466 | 0.604 |
Body mass index (kg/m2) | 0.923 | 0.838–1.107 | 0.106 |
Systolic blood pressure (mmHg) | 1.023 | 0.984–1.064 | 0.250 |
Ca × P product (mg2/dL2) | 1.067 | 0.987–1.153 | 0.105 |
eGFR (mL/min) | 1.032 | 0.996–1.069 | 0.080 |
Variables | Left Brachial-Ankle Pulse Wave (m/s) | ||||
---|---|---|---|---|---|
Simple Correlation | Multivariable Linear Regression | ||||
r | p Value | Beta | Adjusted R2 Change | p Value | |
Female | 0.053 | 0.502 | — | — | — |
Diabetes mellitus | −0.045 | 0.571 | — | — | — |
Hypertension | 0.258 | 0.001 * | — | — | — |
Age (years) | 0.413 | <0.001 * | 0.455 | 0.165 | <0.001 * |
Height (cm) | −0.192 | 0.015 * | — | — | — |
Body weight (kg) | −0.201 | 0.011 * | −0.134 | 0.013 | 0.038 * |
Body mass index (kg/m2) | −0.118 | 0.137 | — | — | — |
Systolic blood pressure (mmHg) | 0.403 | <0.001 * | — | — | — |
Diastolic blood pressure (mmHg) | 0.317 | <0.001 * | 0.380 | 0.155 | <0.001 * |
Total cholesterol (mg/dL) | 0.010 | 0.901 | — | — | — |
Log-triglyceride (mg/dL) | −0.014 | 0.863 | — | — | — |
LDL-C (mg/dL) | −0.038 | 0.634 | — | — | — |
Log-glucose (mg/dL) | 0.013 | 0.870 | — | — | — |
Log-BUN (mg/dL) | 0.002 | 0.983 | — | — | — |
Log-creatinine (mg/dL) | 0.056 | 0.482 | — | — | — |
eGFR (mL/min) | −0.121 | 0.126 | — | — | — |
Log-albumin (g/dL) | −0.077 | 0.333 | |||
Total calcium (mg/dL) | 0.121 | 0.128 | — | — | — |
Phosphorus (mg/dL) | 0.131 | 0.098 | — | — | — |
Ca × P product (mg2/dL2) | 0.163 | 0.039 * | — | — | — |
Log-PCS (mg/L) | 0.289 | <0.001 * | 0.204 | 0.045 | 0.002 * |
Variables | Right Brachial-Ankle Pulse Wave (m/s) | ||||
---|---|---|---|---|---|
Simple Correlation | Multivariable Linear Regression | ||||
r | p Value | Beta | Adjusted R2 Change | p Value | |
Female | 0.061 | 0.445 | — | — | — |
Diabetes mellitus | −0.058 | 0.464 | — | — | — |
Hypertension | 0.264 | 0.001 * | — | — | — |
Age (years) | 0.446 | <0.001 * | 0.478 | 0.193 | <0.001 * |
Height (cm) | −0.205 | 0.009 * | — | — | — |
Body weight (kg) | −0.222 | 0.005 * | −0.149 | 0.018 | 0.021 * |
Body mass index (kg/m2) | −0.139 | 0.080 | — | — | — |
Systolic blood pressure (mmHg) | 0.384 | <0.001 * | — | — | — |
Diastolic blood pressure (mmHg) | 0.272 | <0.001 * | 0.342 | 0.126 | <0.001 * |
Total cholesterol (mg/dL) | 0.047 | 0.556 | — | — | — |
Log-triglyceride (mg/dL) | −0.018 | 0.821 | — | — | — |
LDL-C (mg/dL) | −0.012 | 0.880 | — | — | — |
Log-glucose (mg/dL) | 0.003 | 0.970 | — | — | — |
Log-BUN (mg/dL) | 0.015 | 0.852 | — | — | — |
Log-creatinine (mg/dL) | 0.050 | 0.526 | — | — | — |
eGFR (mL/min) | −0.134 | 0.092 | — | — | — |
Log-albumin (g/dL) | −0.123 | 0.121 | |||
Total calcium (mg/dL) | 0.117 | 0.139 | — | — | — |
Phosphorus (mg/dL) | 0.163 | 0.040 * | — | — | — |
Ca × P product (mg2/dL2) | 0.192 | 0.015 * | — | — | — |
Log-PCS (mg/L) | 0.411 | <0.001 * | 0.198 | 0.042 | 0.002 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, Y.-C.; Lin, Y.-L.; Lai, Y.-H.; Wang, C.-H.; Hsu, B.-G. Serum P-Cresyl Sulfate Level Is an Independent Marker of Peripheral Arterial Stiffness as Assessed Using Brachial-Ankle Pulse Wave Velocity in Patients with Non-Dialysis Chronic Kidney Disease Stage 3 to 5. Toxins 2022, 14, 287. https://doi.org/10.3390/toxins14040287
Chang Y-C, Lin Y-L, Lai Y-H, Wang C-H, Hsu B-G. Serum P-Cresyl Sulfate Level Is an Independent Marker of Peripheral Arterial Stiffness as Assessed Using Brachial-Ankle Pulse Wave Velocity in Patients with Non-Dialysis Chronic Kidney Disease Stage 3 to 5. Toxins. 2022; 14(4):287. https://doi.org/10.3390/toxins14040287
Chicago/Turabian StyleChang, Yu-Chi, Yu-Li Lin, Yu-Hsien Lai, Chih-Hsien Wang, and Bang-Gee Hsu. 2022. "Serum P-Cresyl Sulfate Level Is an Independent Marker of Peripheral Arterial Stiffness as Assessed Using Brachial-Ankle Pulse Wave Velocity in Patients with Non-Dialysis Chronic Kidney Disease Stage 3 to 5" Toxins 14, no. 4: 287. https://doi.org/10.3390/toxins14040287
APA StyleChang, Y. -C., Lin, Y. -L., Lai, Y. -H., Wang, C. -H., & Hsu, B. -G. (2022). Serum P-Cresyl Sulfate Level Is an Independent Marker of Peripheral Arterial Stiffness as Assessed Using Brachial-Ankle Pulse Wave Velocity in Patients with Non-Dialysis Chronic Kidney Disease Stage 3 to 5. Toxins, 14(4), 287. https://doi.org/10.3390/toxins14040287