Climate Change and Effects on Molds and Mycotoxins
Abstract
:1. Introduction
2. Effect of Climate Change on Fungal Distribution
3. Effect of Climate Change on Mycotoxin Contamination
3.1. Aflatoxins
3.2. Ochratoxin A
3.3. Fumonisins
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Available online: https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM_final.pdf (accessed on 28 December 2021).
- Global Climate Change. Available online: https://climate.nasa.gov (accessed on 28 December 2021).
- Wheeler, T.; von Braun, J. Climate change impacts on global food security. Science 2013, 341, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Paterson, R.R.M. Identification and quantification of mycotoxigenic fungi by PCR. Process Biochem. 2006, 41, 1467–1474. [Google Scholar] [CrossRef] [Green Version]
- Gibson, A.M.; Baranyi, J.; Pitt, J.I.; Eyles, M.J.; Roberts, T.A. Predicting fungal growth: The effect of water activity on Aspergillus flavus and related species. Int. J. Food Microbiol. 1994, 23, 419–431. [Google Scholar] [CrossRef]
- Cuppers, H.G.; Oomes, S.; Brul, S. A model for the combined effects of temperature and salt concentration on growth rate of food spoilage molds. Appl. Environ. Microbiol. 1997, 63, 3764–3769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sautour, M.; Soares Mansur, C.; Divies, C.; Bensoussan, M.; Dantigny, P. Comparison of the effects of temperature and water activity on growth rate of food spoilage moulds. J. Ind. Microbiol. Biotechnol. 2002, 28, 311–315. [Google Scholar] [CrossRef]
- Gqaleni, N.; Smith, J.E.; Lacey, J.; Gettinby, G. Effects of Temperature, Water Activity, and Incubation Time on Production of Aflatoxins and Cyclopiazonic Acid by an Isolate of Aspergillus flavus in Surface Agar Culture. Appl. Environ. Microbiol. 1997, 63, 1048–1053. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Hadi, A.; Schmidt-Heydt, M.; Parra, R.; Geisen, R.; Magan, N. A systems approach to model the relationship between aflatoxin gene cluster expression, environmental factors, growth and toxin production by Aspergillus flavus. J. R. Soc. Interface 2012, 9, 757–767. [Google Scholar] [CrossRef] [Green Version]
- Mousa, W.; Ghazali, F.M.; Jinap, S.; Ghazali, H.M.; Radu, S. Modelling the effect of water activity and temperature on growth rate and aflatoxin production by two isolates of Aspergillus flavus on paddy. J. Appl. Microbiol. 2011, 111, 1262–1274. [Google Scholar] [CrossRef]
- Astoreca, A.; Vaamonde, G.; Dalcero, A.; Ramos, A.J.; Marin, S. Modelling the effect of temperature and water activity of Aspergillus flavus isolates from corn. Int. J. Food Microbiol. 2012, 156, 60–67. [Google Scholar] [CrossRef]
- Garcia, D.; Ramos, A.J.; Sanchis, V.; Marin, S. Modeling kinetics of aflatoxin production by Aspergillus flavus in maize-based medium and maize grain. Int. J. Food Microbiol. 2013, 162, 182–189. [Google Scholar] [CrossRef]
- Battilani, P.; Formenti, S.; Ramponi, C.; Rossi, V. Dynamic of water activity in maize hybrids is crucial for fumonisin contamination in kernels. J. Cereal Sci. 2011, 54, 467–472. [Google Scholar] [CrossRef]
- Magan, N.; Medina, A.; Aldred, D. Possible climate-change effects on mycotoxin contamination of food crops pre- and postharvest. Plant Pathol. 2011, 60, 150–163. [Google Scholar] [CrossRef]
- Shaw, M.W.; Bearchell, S.J.; Fitt, B.D.L.; Fraaije, B.A. Long-term relationships between environment and abundance in wheat of Phaeosphaeria nodorum and Mycosphaerella graminicola. New Phytol. 2008, 177, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Medina, A.; Mateo, R.; Valle-Algarra, F.M.; Mateo, E.M.; Jimenez, M. Effect of carbendazim and physicochemical factors on the growth and ochratoxin A production of Aspergillus carbonarius isolated from grapes. Int. J. Food Microbiol. 2007, 119, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Leggieri, M.C.; Giorni, P.; Pietri, A.; Battilani, P. Aspergillus flavus and Fusarium verticilloides Interaction: Modelling the Umpact on Myctoxin Production. Front. Microbiol. 2019, 10, 2653. [Google Scholar] [CrossRef] [PubMed]
- Sorenson, W.G.; Hesseltine, C.W.; Shotwell, O.L. Effect of temperature on production of aflatoxin on rice by Aspergillus flavus. Mycopathol. Mycol. Appl. 1967, 33, 49–55. [Google Scholar] [CrossRef]
- Schmidt-Heydt, M.; Abdel-Hadi, A.; Magan, N.; Geisen, R. Complex regulation of the aflatoxin biosynthesis gene cluster of Aspergillus flavus in relation to various combinations of water activity and temperature. Int. J. Food Microbiol. 2009, 135, 231–237. [Google Scholar] [CrossRef] [Green Version]
- Magan, N.; Hope, R.; Cairns, V.; Aldred, D. Post-harvest fungal ecology: Impact of fungal growth and mycotoxin accumulation in stored grain. Eur. J. Plant Pathol. 2003, 109, 723–730. [Google Scholar] [CrossRef]
- Battilani, P.; Toscano, P.; Van der Fels-Klerx, H.J.; Moretti, A.; Camardo Leggieri, M.; Brera, C.; Rortais, A.; Goumperis, T.; Robinson, T. Aflatoxin B1 contamination in maize in Europe increases due to climate change. Sci. Rep. 2016, 6, 24328. [Google Scholar] [CrossRef] [Green Version]
- Paterson, R.R.M.; Lima, N. Further mycotoxin effects from climate change. Food Res. Int. 2011, 44, 2555–2566. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Cela, E.; Crespo-Sempere, A.; Ramos, A.J.; Sanchis, V.; Marin, S. Ecophysiological characterization of Aspergillus carbonarius, Aspergillus tubingensis and Aspergillus niger isolated from grapes in Spanish vineyards. Int. J. Food Microbiol. 2014, 173, 89–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damialis, A.; Mohammad, A.B.; Halley, J.M.; Gange, A.C. Fungi in a changing world: Growth rates will be elevated, but spore production may decrease in future climates. Int. J. Biometeorol. 2015, 59, 1157–1167. [Google Scholar] [CrossRef] [PubMed]
- Giorni, P.; Magan, N.; Pietri, A.; Bertuzzi, T.; Battilani, P. Studies on Aspergillus section Flavi isolated from maize in northern Italy. Int. J. Food Microbiol. 2007, 113, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Paterson, R.R.; Lima, N. Thermophilic Fungi to Dominate Aflatoxigenic/Mycotoxigenic Fungi on Food under Global Warming. Int. J. Environ. Res. Public Health 2017, 14, 199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailly, S.; Mahgubi, A.E.; Carvajal-Campos, A.; Lorber, S.; Puel, O.; Oswald, I.P.; Bailly, J.D.; Orlando, B. Occurrence and Identification of Aspergillus Section Flavi in the Context of the Emergence of Aflatoxins in French Maize. Toxins 2018, 10, 525. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, M.; Isaac, E.L.; Paterson, R.R.M.; Maslin, M.A. A Review of Potential Impacts of Climate Change on Coffee Cultivation and Mycotoxigenic Fungi. Microorganisms 2020, 8, 1625. [Google Scholar] [CrossRef]
- Leggieri, M.C.; Toscano, P.; Battilani, P. Predicted Aflatoxin B1 Increase in Europe Due to Climate Change: Actions and Reactions at Global Level. Toxins 2021, 13, 292. [Google Scholar] [CrossRef]
- Bellí, N.; Mitchell, D.; Marín, S.; Alegre, I.; Ramos, A.J.; Magan, N.; Sanchis, V. Ochratoxin A-producing fungi in Spanish wine grapes and their relationship with meteorological conditions. Eur. J. Plant Pathol. 2005, 113, 233–239. [Google Scholar] [CrossRef]
- Monda, E.; Masanga, J.; Alakonya, A. Variation in Occurrence and Aflatoxigenicity of Aspergillus flavus from Two Climatically Varied Regions in Kenya. Toxins 2020, 12, 34. [Google Scholar] [CrossRef] [Green Version]
- Kang’ethe, E.K.; Gatwiri, M.; Sirma, A.J.; Ouko, E.O.; Mburugu-Musoti, C.K.; Kitala, P.M.; Korhonen, H.J. Exposure of Kenyan population to aflatoxins in foods with special reference to Nandi and Makueni counties. Food Qual. Saf. 2017, 1, 131–137. [Google Scholar] [CrossRef] [Green Version]
- Baazeem, A.; Rodriguez, A.; Medina, A.; Magan, N. Impacts of Climate Change Interacting Abiotic Factors on Growth, aflD and aflR Gene Expression and Aflatoxin B1 Production by Aspergillus flavus Strains In Vitro and on Pistachio Nuts. Toxins 2021, 13, 385. [Google Scholar] [CrossRef] [PubMed]
- IARC. Some naturally occurring substances: Food items and constituents, heterocyclic aromatic amines and mycotoxins. IARC Monogr. Eval. Carcinog. Risk Chem. Hum. 1993, 56, 1–599. [Google Scholar]
- Klich, M.A. Environmental and developmental factors influencing aflatoxin production by Aspergillus flavus and Aspergillus parasiticus. Mycoscience 2007, 48, 71–80. [Google Scholar] [CrossRef]
- Jaime-Garcia, R.; Cotty, P.J. Aflatoxin contamination of commercial cottonseed in South Texas. Phytopathology 2003, 93, 1190–1200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, F.; Guo, Z.; Zhong, H.; Wang, S.; Yang, W.; Liu, Y.; Wang, S. RNA-Seq-based transcriptome analysis of aflatoxigenic Aspergillus flavus in response to water activity. Toxins 2014, 6, 3187–3207. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, M.K.; Medina, A.; Mack, B.M.; Lebar, M.D.; Rodriguez, A.; Bhatnagar, D.; Magan, N.; Obrian, G.; Payne, G. Carbon Dioxide Mediates the Response to Temperature and Water Activity Levels in Aspergillus flavus during Infection of Maize Kernels. Toxins 2017, 10, 5. [Google Scholar] [CrossRef] [Green Version]
- Medina, A.; Gilbert, M.K.; Mack, B.M.; GR, O.B.; Rodriguez, A.; Bhatnagar, D.; Payne, G.; Magan, N. Interactions between water activity and temperature on the Aspergillus flavus transcriptome and aflatoxin B1 production. Int. J. Food Microbiol. 2017, 256, 36–44. [Google Scholar] [CrossRef] [Green Version]
- Medina, A.; Rodríguez, A.; Sultan, Y.; Magan, N. Climate change factors and Aspergillus flavus: Effects on gene expression, growth and aflatoxin production. World Mycotoxin J. 2015, 8, 171–179. [Google Scholar] [CrossRef]
- O’Brian, G.R.; Georgianna, D.R.; Wilkinson, J.R.; Yu, J.; Abbas, H.K.; Bhatnagar, D.; Cleveland, T.E.; Nierman, W.; Payne, G.A. The effect of elevated temperature on gene transcription and aflatoxin biosynthesis. Mycologia 2007, 99, 232–239. [Google Scholar] [CrossRef]
- Yu, J.; Fedorova, N.D.; Montalbano, B.G.; Bhatnagar, D.; Cleveland, T.E.; Bennett, J.W.; Nierman, W.C. Tight control of mycotoxin biosynthesis gene expression in Aspergillus flavus by temperature as revealed by RNA-Seq. FEMS Microbiol. Lett. 2011, 322, 145–149. [Google Scholar] [CrossRef] [Green Version]
- European Food Safety Authority. Opinion of the Scientific Panel on Contaminants in the Food Chain on a request from the Commission related to aflatoxin B1 as undesirable substance in animal feed. EFSA J. 2004, 39, 1–27. [Google Scholar]
- Levic, J.; Gosic-Dondo, S.; Ivanovic, D.; Stankovic, S.; Krnjaja, V.; Bocarov-Stancic, A.; Stepanić, A. An outbreak of Aspergillus species in response to environmental conditions in Serbia. Pestic. Phytomed./Pestic. Fitomed. 2013, 28, 167–179. [Google Scholar] [CrossRef]
- Dobolyi, C.; Sebok, F.; Varga, J.; Kocsube, S.; Szigeti, G.; Baranyi, N.; Szécsi, Á.; Tóth, B.; Varga, M.; Kriszt, B.; et al. Occurrence of aflatoxin producing Aspergillus flavus isolates in maize kernel in Hungary. Acta Aliment. 2013, 42, 451–459. [Google Scholar] [CrossRef]
- European Food Safety Authority. Opinion of the Scientific Panel on Contaminants in the Food Chain on a request from the Commission related to the potential increase of consumer health risk by a possible increase of the existing maximum levels for aflatoxins in almonds, hazelnuts and pistachios and derived products. EFSA J. 2007, 446, 1–127. [Google Scholar]
- Van der Fels-Klerx, H.J.; Vermeulen, L.C.; Gavai, A.K.; Liu, C. Climate change impacts on aflatoxin B1 in maize and aflatoxin M1 in milk: A case study of maize grown in Eastern Europe and imported to The Netherlands. PLoS ONE 2019, 14, e0218956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Fels-Klerx, H.J.; Camenzuli, L. Effects of Milk Yield, Feed Composition, and Feed Contamination with Aflatoxin B1 on the Aflatoxin M1 Concentration in Dairy Cows’ Milk Investigated Using Monte Carlo Simulation Modelling. Toxins 2016, 8, 290. [Google Scholar] [CrossRef] [Green Version]
- Prandini, A.; Tansini, G.; Sigolo, S.; Filippi, L.; Laporta, M.; Piva, G. On the occurrence of aflatoxin M1 in milk and dairy products. Food Chem. Toxicol. 2009, 47, 984–991. [Google Scholar] [CrossRef]
- Battilani, P.; Barbano, C.; Piva, G. Aflatoxin B1 contamination in maize related to the aridity index in North Italy. World Mycotoxin J. 2008, 1, 449–456. [Google Scholar] [CrossRef]
- Udovicki, B.; Audenaert, K.; De Saeger, S.; Rajkovic, A. Overview on the Mycotoxins Incidence in Serbia in the Period 2004–2016. Toxins 2018, 10, 279. [Google Scholar] [CrossRef] [Green Version]
- Kos, J.; Janic Hajnal, E.; Saric, B.; Jovanov, P.; Mandic, A.; Duragic, O.; Kokic, B. Aflatoxins in maize harvested in the Republic of Serbia over the period 2012–2016. Food Addit. Contam. Part B Surveill. 2018, 11, 246–255. [Google Scholar] [CrossRef]
- Gagiu, V.; Mateescu, E.; Armeanu, I.; Dobre, A.A.; Smeu, I.; Cucu, M.E.; Oprea, O.A.; Iorga, E.; Belc, N. Post-Harvest Contamination with Mycotoxins in the Context of the Geographic and Agroclimatic Conditions in Romania. Toxins 2018, 10, 533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruber-Dorninger, C.; Jenkins, T.; Schatzmayr, G. Global Mycotoxin Occurrence in Feed: A Ten-Year Survey. Toxins 2019, 11, 375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratnavathi, C.V.; Komala, V.V.; Kumar, B.S.V.; Das, I.K.; Patil, J.V. Natural occurrence of aflatoxin B1 in sorghum grown in different geographical regions of India. J. Sci. Food Agric. 2012, 92, 2416–2420. [Google Scholar] [CrossRef]
- Bennett, J.W.; Klich, M. Mycotoxins. Clin. Microbiol. Rev. 2003, 16, 497–516. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.B.; Magan, N. Impact of environment and interspecific interactions between spoilage fungi and Aspergillus ochraceus on growth and ochratoxin production in maize grain. Int. J. Food Microbiol. 2000, 61, 11–16. [Google Scholar] [CrossRef]
- Pardo, E.; Marin, S.; Sanchis, V.; Ramos, A.J. Prediction of fungal growth and ochratoxin A production by Aspergillus ochraceus on irradiated barley grain as influenced by temperature and water activity. Int. J. Food Microbiol. 2004, 95, 79–88. [Google Scholar] [CrossRef]
- Hocking, A.D.; Leong, S.L.; Kazi, B.A.; Emmett, R.W.; Scott, E.S. Fungi and mycotoxins in vineyards and grape products. Int. J. Food Microbiol. 2007, 119, 84–88. [Google Scholar] [CrossRef]
- Medina, A.; Jimenez, M.; Mateo, R.; Magan, N. Efficacy of natamycin for control of growth and ochratoxin A production by Aspergillus carbonarius strains under different environmental conditions. J. Appl. Microbiol. 2007, 103, 2234–2239. [Google Scholar] [CrossRef]
- Pardo, E.; Marin, S.; Ramos, A.J.; Sanchis, V. Effect of water activity and temperature on mycelial growth and ochratoxin A production by isolates of Aspergillus ochraceus on irradiated green coffee beans. J. Food Prot. 2005, 68, 133–138. [Google Scholar] [CrossRef]
- Tassou, C.C.; Natskoulis, P.I.; Panagou, E.Z.; Spiropoulos, A.E.; Magan, N. Impact of water activity and temperature on growth and ochratoxin A production of two Aspergillus carbonarius isolates from wine grapes in Greece. J. Food Prot. 2007, 70, 2884–2888. [Google Scholar] [CrossRef]
- Batista, L.R.; Chalfoun, S.M.; Prado, G.; Schwan, R.F.; Wheals, A.E. Toxigenic fungi associated with processed (green) coffee beans (Coffea arabica L.). Int. J. Food Microbiol. 2003, 85, 293–300. [Google Scholar] [CrossRef]
- Silva, C.F.; Schwan, R.F.; Dias, S.; Wheals, A.E. Microbial diversity during maturation and natural processing of coffee cherries of Coffea arabica in Brazil. Int. J. Food Microbiol. 2000, 60, 251–260. [Google Scholar] [CrossRef]
- Paterson, R.R.M.; Lima, N.; Taniwaki, M.H. Coffee, mycotoxins and climate change. Food Res. Int. 2014, 61, 1–15. [Google Scholar] [CrossRef]
- Koh, I.; Garrett, R.; Janetos, A.; Mueller, N.D. Climate risks to Brazilian coffee production. Environ. Res. Lett. 2020, 15, 104015. [Google Scholar] [CrossRef]
- Cervini, C.; Gallo, A.; Piemontese, L.; Magista, D.; Logrieco, A.F.; Ferrara, M.; Solfrizzo, M.; Perrone, G. Effects of temperature and water activity change on ecophysiology of ochratoxigenic Aspergillus carbonarius in field-simulating conditions. Int. J. Food Microbiol. 2020, 315, 108420. [Google Scholar] [CrossRef]
- Cervini, C.; Verheecke-Vaessen, C.; Ferrara, M.; Garcia-Cela, E.; Magista, D.; Medina, A.; Gallo, A.; Magan, N.; Perrone, G. Interacting climate change factors (CO2 and temperature cycles) effects on growth, secondary metabolite gene expression and phenotypic ochratoxin A production by Aspergillus carbonarius strains on a grape-based matrix. Fungal Biol. 2021, 125, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Oueslati, S.; Lasram, S.; Ramos, A.J.; Marin, S.; Mliki, A.; Sanchis, V.; Ghorbel, A. Alternating temperatures and photoperiod effects on fungal growth and Ochratoxin A production by Aspergillus carbonarius isolated from Tunisian grapes. Int. J. Food Microbiol. 2010, 139, 210–213. [Google Scholar] [CrossRef]
- Garcia-Cela, E.; Ramos, A.J.; Sanchis, V.; Marin, S. Ochratoxigenic moulds and effectiveness of grape field antifungals in a climatic change scenario. J. Sci. Food Agric. 2012, 92, 1455–1461. [Google Scholar] [CrossRef]
- Akbar, A.; Medina, A.; Magan, N. Impact of climate change factors on growth and ochratoxin A production by Aspergillus sections Circumdati and Nigri species on coffee. World Mycotoxin J. 2016, 9, 863–874. [Google Scholar] [CrossRef] [Green Version]
- Summerell, B.A. Resolving Fusarium: Current status of the genus. Annu. Rev. Phytopathol. 2019, 57, 323–339. [Google Scholar] [CrossRef]
- Bertero, A.; Moretti, A.; Spicer, L.J.; Caloni, F. Fusarium molds and mycotoxins: Potential species-specific effects. Toxins 2018, 10, 244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markey, B.; Leonard, F.; Archambault, M.; Cullinane, A.; Mcguire, D. Introduction to the pathogenic fungi. In Clinical Veterinary Microbiology, 2nd ed.; Mosby: London, UK, 2013; pp. 457–470. [Google Scholar]
- Panwar, V.; Aggarwal, A.; Surinder, P.; Virender, S.; Singh, P.K.; Sharma, D.; Saharan, M.S. Effect of temperature and pH on the growth of Fusarium spp. causing Fusarium head blight (FHB) in wheat. South Asian J. Exp. Biol. 2016, 6, 186–193. [Google Scholar] [CrossRef]
- Rossi, V.; Ravanetti, A.; Pattori, E.; Giosue, S. Influence of temperature and humidity on the infection of wheat spikes by some fungi causing Fusarium head blight. J. Plant Pathol. 2001, 83, 189–198. [Google Scholar] [CrossRef]
- Markey, B.; Leonard, F.; Archambault, M.; Cullinane, A.; Maguire, D. Mycotoxins and mycotoxicosis. In Clinical Veterinary Microbiology, 2nd ed.; Mosby: London, UK, 2013; pp. 521–538. [Google Scholar]
- Parikka, P.-; Hakala, K.; Tiilikkala, K. Expected shifts in Fusarium species’ composition on cereal grain in Northern Europe due to climatic change. Food Addit. Contam. Part A 2012, 29, 1543–1555. [Google Scholar] [CrossRef] [PubMed]
- Moretti, A.; Pascale, M.; Lo Grieco, A.F. Mycotoxin risks under a climate change scenario in Europe. Trend Food Sci. Technol. 2019, 84, 38–40. [Google Scholar] [CrossRef]
- Juroszek, P.; von Tiedermann, A. Climate change and potential future risks through wheat diseases: A review. Eur. J. Plant. Pathol. 2013, 136, 21–33. [Google Scholar] [CrossRef] [Green Version]
- Vaughan, M.M.; Huffaker, A.; Schmelz, E.A.; Dafoe, N.J.; Christensen, S.; Sims, J.; Martins, V.F.; Swerbilow, J.; Romero, M.; Alborn, H.T.; et al. Effects of elevated [CO2] on maize defence against mycotoxigenic Fusarium verticillioides. Plant Cell. Environ. 2014, 37, 2691–2706. [Google Scholar] [CrossRef]
- Chhaya, S.R.; O’Brien, J.; Cummins, E. Feed to fork risk assessment of mycotoxins under climate change influences-recent developments. Trend Food Sci. Technol. 2021. [Google Scholar] [CrossRef]
- Rheeder, J.P.; Marasas, W.F.; Vismer, H.F. Production of fumonisin analogs by Fusarium species. Appl. Environ. Microbiol. 2002, 68, 2101–2105. [Google Scholar] [CrossRef] [Green Version]
- Kamle, M.; Mahato, D.K.; Devi, S.; Lee, K.E.; Kang, S.G.; Kumar, P. Fumonisins: Impact on Agriculture, Food, and Human Health and their Management Strategies. Toxins 2019, 11, 328. [Google Scholar] [CrossRef] [Green Version]
- Roucou, A.; Bergez, C.; Méléard, B.; Orlando, B. A Fumonisin Prevention Tool for Targeting and Ranking Agroclimatic ConditionsFavoring Exposure in French Maize-Growing Areas. Toxins 2021, 13, 214. [Google Scholar] [CrossRef] [PubMed]
- Cendoya, E.; del Pilar Monge, M.; Chiacchiera, S.M.; Farnochi, M.C.; Ramirez, M.L. Influence of water activity and temperature on growth and fumonisin production by Fusarium proliferatum strains on irradiated wheat grains. Int. J. Food Microbiol. 2018, 266, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Cao, A.; Santiago, R.; Ramos, A.J.; Marín, S.; Reid, L.M.; Butrón, A. Environmental factors related to fungal infection and fumonisin accumulation during the development and drying of white maize kernels. Int. J. Food Microbiol. 2013, 164, 15–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reid, L.M.; Nicol, R.W.; Ouellet, T.; Savard, M.; Miller, J.D.; Young, J.C.; Stewart, D.W.; Schaafsma, A.W. Interaction of Fusarium graminearum and F. moniliforme in Maize Ears: Disease Progress, Fungal Biomass, and Mycotoxin Accumulation. Phytopathology 1999, 89, 1028–1037. [Google Scholar] [CrossRef] [Green Version]
- Samapundo, S.; Devliehgere, F.; De Meulenaer, B.; Debevere, J. Effect of water activity and temperature on growth and the relationship between fumonisin production and the radial growth of Fusarium verticillioides and Fusarium proliferatum on corn. J. Food Prot. 2005, 68, 1054–1059. [Google Scholar] [CrossRef]
- Czembor, E.; Stępień, Ł.; Waśkiewicz, A. Effect of Environmental Factors on Fusarium Species and Associated Mycotoxins in Maize Grain Grown in Poland. PLoS ONE 2015, 10, e0133644. [Google Scholar] [CrossRef]
Fungal Species | Mycotoxin | Temperature °C | aw | Time (Days) | µg/g | Reference |
---|---|---|---|---|---|---|
A. carbonarius | OTA | 28 | 0.94 | 15 | 0.0314 | [16] |
0.96 | 15 | 0.126 | “ | |||
0.98 | 15 | 0.862 | “ | |||
25 | 0.94 | 15 | 0.122 | “ | ||
0.96 | 15 | 0.326 | “ | |||
0.98 | 15 | 2 | “ | |||
20 | 0.94 | 15 | 0.324 | “ | ||
0.96 | 15 | 1.028 | “ | |||
0.98 | 15 | 2.743 | “ | |||
A. flavus | AFB1 | 40 | - | 21 | 0 | [17] |
0.90 | 9 | 0 | [9] | |||
37 | - | 3 | 0.7 | [18] | ||
- | 5 | 0.4 | “ | |||
- | 7 | 0.3 | “ | |||
0.90 | 9 | 3.96 | [9] | |||
0.95 | 9 | 2.68 | “ | |||
0.99 | 9 | 2.42 | “ | |||
35 | - | 21 | 0.001 | [17] | ||
0.90 | 5 | 0.0046 | [19] | |||
34 | - | 3 | 29 | [18] | ||
- | 5 | 36 | “ | |||
- | 7 | 18 | “ | |||
30 | - | 21 | 0.02 | [17] | ||
0.95 | 5 | 3.016 | [19] | |||
0.99 | 5 | 2.758 | “ | |||
32 | - | 3 | 633 | [18] | ||
- | 5 | 760 | “ | |||
- | 7 | 760 | “ | |||
28 | - | 2 | 184 | “ | ||
- | 4 | 760 | “ | |||
- | 7 | 760 | “ | |||
25 | - | 21 | 0.060 | [17] | ||
0.90 | 5 | 0.0036 | [19] | |||
0.95 | 5 | 0.830 | “ | |||
0.99 | 5 | 1.957 | “ | |||
- | 4 | 304 | [18] | |||
- | 5 | 507 | “ | |||
- | 7 | 449 | “ | |||
20 | - | 21 | 0.062 | [17] | ||
18 | - | 6 | 34 | [18] | ||
- | 9 | 124 | “ | |||
15 | - | 8 | 0.3 | “ | ||
- | 14 | 0.9 | “ | |||
- | 21 | 2 | “ | |||
- | 21 | 0.028 | [17] | |||
10 | - | 21 | 0.006 | “ | ||
11 | - | 14 | <0.01 | [18] | ||
- | 21 | 0.1 | “ | |||
8 | - | 21 | <0.01 | “ | ||
AFB2 | 37 | - | 3 | ND | “ | |
- | 5 | ND | “ | |||
- | 7 | ND | “ | |||
34 | - | 3 | 0.8 | “ | ||
- | 5 | 3 | “ | |||
- | 7 | 2 | “ | |||
32 | - | 3 | 166 | “ | ||
- | 5 | 133 | “ | |||
- | 7 | 125 | “ | |||
28 | - | 2 | 20 | “ | ||
- | 4 | 167 | “ | |||
- | 7 | 111 | “ | |||
25 | - | 4 | 53 | “ | ||
- | 5 | 80 | “ | |||
- | 7 | 85 | “ | |||
18 | - | 6 | 4 | “ | ||
- | 9 | 19 | “ | |||
15 | - | 8 | 0.02 | “ | ||
- | 14 | 0.1 | “ | |||
- | 21 | 0.2 | “ | |||
11 | - | 14 | <0.01 | “ | ||
- | 21 | ND | “ | |||
8 | - | 21 | ND | “ | ||
AFG1 | 37 | - | 3 | 0.01 | “ | |
- | 5 | ND | “ | |||
- | 7 | ND | “ | |||
34 | - | 3 | 0.6 | “ | ||
- | 5 | 0.2 | “ | |||
- | 7 | <0.2 | “ | |||
32 | - | 3 | 71 | “ | ||
- | 5 | 64 | “ | |||
- | 7 | 46 | “ | |||
28 | - | 2 | 64 | “ | ||
- | 4 | 458 | “ | |||
- | 7 | 180 | “ | |||
25 | - | 4 | 198 | “ | ||
- | 5 | 256 | “ | |||
- | 7 | 235 | “ | |||
18 | - | 6 | 37 | “ | ||
- | 9 | 160 | “ | |||
15 | - | 8 | 0.06 | “ | ||
- | 14 | 1 | “ | |||
- | 21 | 3 | “ | |||
11 | - | 14 | <0.01 | “ | ||
- | 21 | 0.09 | “ | |||
8 | - | 21 | <0.01 | “ | ||
AFG2 | 37 | - | 3 | ND | “ | |
- | 5 | ND | “ | |||
- | 7 | ND | “ | |||
34 | - | 3 | <0.01 | “ | ||
- | 5 | <0.01 | “ | |||
- | 7 | <0.01 | “ | |||
32 | - | 3 | 11 | “ | ||
- | 5 | 10 | “ | |||
- | 7 | 5 | “ | |||
28 | - | 2 | 10 | “ | ||
- | 4 | 56 | “ | |||
- | 7 | 25 | “ | |||
25 | - | 4 | 25 | “ | ||
- | 5 | 31 | “ | |||
- | 7 | 32 | “ | |||
18 | - | 6 | 3 | “ | ||
- | 9 | 12 | “ | |||
15 | - | 8 | <0.01 | “ | ||
- | 14 | <0.01 | “ | |||
- | 21 | 0.3 | “ | |||
11 | - | 14 | <0.01 | “ | ||
- | 21 | ND | “ | |||
8 | - | 21 | ND | “ | ||
Fusarium verticilloides | FBs | 40 | - | 21 | 0 | [17] |
35 | - | 21 | 0.157 | “ | ||
30 | - | 21 | 0.02 | “ | ||
25 | - | 21 | 0.199 | “ | ||
20 | - | 21 | 0.258 | “ | ||
15 | - | 21 | 0.03 | “ | ||
10 | - | 21 | 0 | “ | ||
P. verrucosum | OTA | 25 | 0.95 | 56 | 3.6 | [20] |
0.99 | 56 | 0.15 | “ | |||
15 | 0.95 | 56 | 1.8 | “ | ||
0.99 | 56 | 3 | “ | |||
P. verrucosum + F. culmorum | OTA | 25 | 0.95 | 56 | 0 | “ |
0.99 | 56 | 0 | “ | |||
15 | 0.95 | 56 | 0.01 | “ | ||
0.99 | 56 | 0 | “ | |||
P. verrucosum + F. poae | OTA | 25 | 0.95 | 56 | 0 | “ |
0.99 | 56 | 0 | “ | |||
15 | 0.95 | 56 | 0.2 | “ | ||
0.99 | 56 | 0.06 | “ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zingales, V.; Taroncher, M.; Martino, P.A.; Ruiz, M.-J.; Caloni, F. Climate Change and Effects on Molds and Mycotoxins. Toxins 2022, 14, 445. https://doi.org/10.3390/toxins14070445
Zingales V, Taroncher M, Martino PA, Ruiz M-J, Caloni F. Climate Change and Effects on Molds and Mycotoxins. Toxins. 2022; 14(7):445. https://doi.org/10.3390/toxins14070445
Chicago/Turabian StyleZingales, Veronica, Mercedes Taroncher, Piera Anna Martino, María-José Ruiz, and Francesca Caloni. 2022. "Climate Change and Effects on Molds and Mycotoxins" Toxins 14, no. 7: 445. https://doi.org/10.3390/toxins14070445
APA StyleZingales, V., Taroncher, M., Martino, P. A., Ruiz, M. -J., & Caloni, F. (2022). Climate Change and Effects on Molds and Mycotoxins. Toxins, 14(7), 445. https://doi.org/10.3390/toxins14070445