Divergent Specialization of Simple Venom Gene Profiles among Rear-Fanged Snake Genera (Helicops and Leptodeira, Dipsadinae, Colubridae)
Abstract
:1. Introduction
2. Results
2.1. Venom Gland Gene Family Recovery
2.2. Venom Gland Transcriptome Expression
2.3. Complexity and Variation
3. Discussion
4. Materials and Methods
4.1. Sampling
4.2. Extraction, Library Preparation, and Sequencing
4.3. Bioinformatics
4.4. Assembly of Mitochondrial Sequences and Phylogenetic Tree Estimation
4.5. Complexity and Variation
4.6. diceCT and Segmentation
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Casewell, N.R.; Wüster, W.; Vonk, F.J.; Harrison, R.A.; Fry, B.G. Complex Cocktails: The Evolutionary Novelty of Venoms. Trends Ecol. Evol. 2013, 28, 219–229. [Google Scholar] [CrossRef]
- Daltry, J.C.; Wüster, W.; Thorpe, R.S. Diet and Snake Venom Evolution. Nature 1996, 379, 537–542. [Google Scholar] [CrossRef]
- Sanz, L.; Gibbs, H.L.; Mackessy, S.P.; Calvete, J.J. Venom Proteomes of Closely Related Sistrurus Rattlesnakes with Divergent Diets. J. Proteome Res. 2006, 5, 2098–2112. [Google Scholar] [CrossRef]
- Phuong, M.A.; Mahardika, G.N.; Alfaro, M.E. Dietary Breadth Is Positively Correlated with Venom Complexity in Cone Snails. BMC Genom. 2016, 17, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyons, K.; Dugon, M.M.; Healy, K. Diet Breadth Mediates the Prey Specificity of Venom Potency in Snakes. Toxins 2020, 12, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holding, M.L.; Strickland, J.L.; Rautsaw, R.M.; Hofmann, E.P.; Mason, A.J.; Hogan, M.P.; Nystrom, G.S.; Ellsworth, S.A.; Colston, T.J.; Borja, M.; et al. Phylogenetically Diverse Diets Favor More Complex Venoms in North American Pitvipers. Proc. Natl. Acad. Sci. USA 2021, 118, 2015579118. [Google Scholar] [CrossRef]
- Barlow, A.; Pook, C.E.; Harrison, R.A.; Wüster, W. Coevolution of Diet and Prey-Specific Venom Activity Supports the Role of Selection in Snake Venom Evolution. Proc. R. Soc. B Biol. Sci. 2009, 276, 2443–2449. [Google Scholar] [CrossRef] [Green Version]
- Remigio, E.A.; Duda, T.F. Evolution of Ecological Specialization and Venom of a Predatory Marine Gastropod. Mol. Ecol. 2008, 17, 1156–1162. [Google Scholar] [CrossRef] [Green Version]
- Ligabue-Braun, R.; Verli, H.; Carlini, C.R. Venomous Mammals: A Review. Toxicon 2012, 59, 680–695. [Google Scholar] [CrossRef]
- Pekár, S.; Bočánek, O.; Michálek, O.; Petráková, L.; Haddad, C.R.; Šedo, O.; Zdráhal, Z. Venom Gland Size and Venom Complexity—Essential Trophic Adaptations of Venomous Predators: A Case Study Using Spiders. Mol. Ecol. 2018, 27, 4257–4269. [Google Scholar] [CrossRef]
- Giorgianni, M.W.; Dowell, N.L.; Griffin, S.; Kassner, V.A.; Selegue, J.E.; Carroll, S.B. The Origin and Diversification of a Novel Protein Family in Venomous Snakes. Proc. Natl. Acad. Sci. USA 2020, 117, 10911–10920. [Google Scholar] [CrossRef] [PubMed]
- Sanz, L.; Quesada-Bernat, S.; Ramos, T.; Casais-e-Silva, L.L.; Corrêa-Netto, C.; Silva-Haad, J.J.; Sasa, M.; Lomonte, B.; Calvete, J.J. New Insights into the Phylogeographic Distribution of the 3FTx/PLA2 Venom Dichotomy across Genus Micrurus in South America. J. Proteom. 2019, 200, 90–101. [Google Scholar] [CrossRef] [PubMed]
- Facente, J.; McGivern, J.J.; Seavy, M.; Wray, K.P.; Rokyta, D.R. Contrasting Modes and Tempos of Venom Expression Evolution in Two Snake Species. Genetics 2015, 199, 165–176. [Google Scholar] [CrossRef] [Green Version]
- Mackessy, S.P.; Saviola, A.J. Understanding Biological Roles of Venoms among the Caenophidia: The Importance of Rear-Fanged Snakes. Integr. Comp. Biol. 2016, 56, 1004–1021. [Google Scholar] [CrossRef] [PubMed]
- Mackessy, S.P. Handbook of Venoms and Toxins of Reptiles, 1st ed.; Mackessy, S.P., Ed.; CRC Press: Boca Raton, FL, USA, 2016; ISBN 9780429186394. [Google Scholar]
- Casewell, N.R.; Jackson, T.N.W.; Laustsen, A.H.; Sunagar, K. Causes and Consequences of Snake Venom Variation. Trends Pharmacol. Sci. 2020, 41, 570–581. [Google Scholar] [CrossRef] [PubMed]
- Jackson, T.N.W.; Koludarov, I.; Ali, S.A.; Dobson, J.; Zdenek, C.N.; Dashevsky, D.; Op Den Brouw, B.; Masci, P.P.; Nouwens, A.; Josh, P.; et al. Rapid Radiations and the Race to Redundancy: An Investigation of the Evolution of Australian Elapid Snake Venoms. Toxins 2016, 8, 309. [Google Scholar] [CrossRef]
- Pyron, R.A.; Burbrink, F.T.; Wiens, J.J. A Phylogeny and Revised Classification of Squamata, Including 4161 Species of Lizards and Snakes. BMC Evol. Biol. 2013, 13, 93. [Google Scholar] [CrossRef] [Green Version]
- Junqueira-de-Azevedo, I.L.M.; Campos, P.F.; Ching, A.T.C.; Mackessy, S.P. Colubrid Venom Composition: An Omics Perspective. Toxins 2016, 8, 230. [Google Scholar] [CrossRef] [Green Version]
- Jackson, T.N.W.; Young, B.; Underwood, G.; McCarthy, C.J.; Kochva, E.; Vidal, N.; van der Weerd, L.; Nabuurs, R.; Dobson, J.; Whitehead, D.; et al. Endless Forms Most Beautiful: The Evolution of Ophidian Oral Glands, Including the Venom System, and the Use of Appropriate Terminology for Homologous Structures. Zoomorphology 2017, 136, 107–130. [Google Scholar] [CrossRef]
- McGivern, J.J.; Wray, K.P.; Margres, M.J.; Couch, M.E.; Mackessy, S.P.; Rokyta, D.R. RNA-Seq and High-Definition Mass Spectrometry Reveal the Complex and Divergent Venoms of Two Rear-Fanged Colubrid Snakes. BMC Genom. 2014, 15, 1061. [Google Scholar] [CrossRef] [Green Version]
- Mackessy, S.P.; Sixberry, N.M.; Heyborne, W.H.; Fritts, T. Venom of the Brown Treesnake, Boiga irregularis: Ontogenetic Shifts and Taxa-Specific Toxicity. Toxicon 2006, 47, 537–548. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, E.P.; Rautsaw, R.M.; Mason, A.J.; Strickland, J.L.; Parkinson, C.L. Duvernoy’s Gland Transcriptomics of the Plains Black-Headed Snake, Tantilla Nigriceps (Squamata, Colubridae): Unearthing the Venom of Small Rear-Fanged Snakes. Toxins 2021, 13, 336. [Google Scholar] [CrossRef] [PubMed]
- Modahl, C.M.; Frietze, S.; Mackessy, S.P. Transcriptome-Facilitated Proteomic Characterization of Rear-Fanged Snake Venoms Reveal Abundant Metalloproteinases with Enhanced Activity. J. Proteom. 2018, 187, 223–234. [Google Scholar] [CrossRef] [PubMed]
- Pla, D.; Sanz, L.; Whiteley, G.; Wagstaff, S.C.; Harrison, R.A.; Casewell, N.R.; Calvete, J.J. What Killed Karl Patterson Schmidt? Combined Venom Gland Transcriptomic, Venomic and Antivenomic Analysis of the South African Green Tree Snake (the Boomslang), Dispholidus Typus. Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 814–823. [Google Scholar] [CrossRef] [Green Version]
- Modahl, C.M.; Mrinalini; Frietze, S.; Mackessy, S.P. Adaptive Evolution of Distinct Prey-Specific Toxin Genes in Rear-Fanged Snake Venom. Proc. R. Soc. B Biol. Sci. 2018, 285, 20181003. [Google Scholar] [CrossRef]
- Mackessy, S.P.; Bryan, W.; Smith, C.F.; Lopez, K.; Fernández, J.; Bonilla, F.; Camacho, E.; Sasa, M.; Lomonte, B. Venomics of the Central American Lyre Snake Trimorphodon Quadruplex (Colubridae: Smith, 1941) from Costa Rica. J. Proteom. 2020, 220, 103778. [Google Scholar] [CrossRef]
- Schramer, T.D.; Rautsaw, R.M.; Bayona-Serrano, J.D.; Nystrom, G.S.; West, T.R.; Ortiz-Medina, J.A.; Sabido-Alpuche, B.; Meneses-Millán, M.; Borja, M.; Junqueira-de-Azevedo, I.L.M.; et al. An Integrative View of the Toxic Potential of Conophis Lineatus (Dipsadidae: Xenodontinae), a Medically Relevant Rear-Fanged Snake. Toxicon 2022, 205, 38–52. [Google Scholar] [CrossRef]
- Campos, P.F.; Andrade-Silva, D.; Zelanis, A.; Leme, A.F.P.; Rocha, M.M.T.; Menezes, M.C.; Serrano, S.M.T.; Junqueira-De-Azevedo, I.D.L.M. Trends in the Evolution of Snake Toxins Underscored by an Integrative Omics Approach to Profile the Venom of the Colubrid Phalotris Mertensi. Genome Biol. Evol. 2016, 8, 2266–2287. [Google Scholar] [CrossRef] [Green Version]
- Ching, A.T.C.; Rocha, M.M.T.; Leme, A.F.P.; Pimenta, D.C.; de Fátima, D.; Furtado, M.; Serrano, S.M.T.; Ho, P.L.; Junqueira-de-Azevedo, I.L.M. Some Aspects of the Venom Proteome of the Colubridae Snake Philodryas Olfersii Revealed from a Duvernoy’s (Venom) Gland Transcriptome. FEBS Lett. 2006, 580, 4417–4422. [Google Scholar] [CrossRef] [Green Version]
- Ching, A.T.C.; Leme, A.F.P.; Zelanis, A.; Rocha, M.M.T.; Furtado, M.D.F.D.; Silva, D.A.; Trugilho, M.R.O.; Da Rocha, S.L.G.; Perales, J.; Ho, P.L.; et al. Venomics Profiling of Thamnodynastes Strigatus Unveils Matrix Metalloproteinases and Other Novel Proteins Recruited to the Toxin Arsenal of Rear-Fanged Snakes. J. Proteome Res. 2012, 11, 1152–1162. [Google Scholar] [CrossRef]
- Lemoine, K.; Girón, M.E.; Aguilar, I.; Navarrete, L.F.; Rodríguez-Acosta, A. Proteolytic, Hemorrhagic, and Neurotoxic Activities Caused by Leptodeira annulata ashmeadii (Serpentes: Colubridae) Duvernoy’s Gland Secretion. Wilderness Environ. Med. 2004, 15, 82–89. [Google Scholar] [CrossRef]
- Sánchez, M.N.; Gonzalez, K.Y.; Sciani, J.M.; Gritti, M.A.; Maruñak, S.L.; Tavares, F.L.; Teibler, G.P.; Peichoto, M.E. First Insights into the Biochemical and Toxicological Characterization of Venom from the Banded Cat-Eyed Snake Leptodeira annulata pulchriceps. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2021, 239, 108897. [Google Scholar] [CrossRef] [PubMed]
- Torres-Bonilla, K.A.; Schezaro-Ramos, R.; Floriano, R.S.; Rodrigues-Simioni, L.; Bernal-Bautista, M.H.; da Cruz-Höfling, M.A. Biological Activities of Leptodeira annulata (Banded Cat-Eyed Snake) Venom on Vertebrate Neuromuscular Preparations. Toxicon 2016, 119, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Torres-Bonilla, K.A.; Panunto, P.C.; Pereira, B.B.; Zambrano, D.F.; Herrán-Medina, J.; Bernal, M.H.; Hyslop, S. Toxinological Characterization of Venom from Leptodeira annulata (Banded Cat-Eyed Snake; Dipsadidae, Imantodini). Biochimie 2020, 174, 171–188. [Google Scholar] [CrossRef]
- Estrella, A.; Sánchez, E.E.; Galán, J.A.; Tao, W.A.; Guerrero, B.; Navarrete, L.F.; Rodríguez-Acosta, A. Characterization of Toxins from the Broad-Banded Water Snake Helicops angulatus (Linnaeus, 1758): Isolation of a Cysteine-Rich Secretory Protein, Helicopsin. Arch. Toxicol. 2011, 85, 305–313. [Google Scholar] [CrossRef]
- Estrella, A.; Rodríguez-Torres, A.; Serna, L.; Navarrete, L.F. Is the South American Water Snake Helicops angulatus (Linnaeus, 1758) (Ddipsadidae:Xenodontinae) Venomous? Herpetotropicos 2012, 5, 79–84. [Google Scholar]
- Gutiérrez, J.M.; Calvete, J.J.; Habib, A.G.; Harrison, R.A.; Williams, D.J.; Warrell, D.A. Snakebite Envenoming. Nat. Rev. Dis. Prim. 2017, 3, 17063. [Google Scholar] [CrossRef]
- Lomonte, B.; Rey-Suárez, P.; Fernández, J.; Sasa, M.; Pla, D.; Vargas, N.; Bénard-Valle, M.; Sanz, L.; Corrêa-Netto, C.; Núñez, V.; et al. Venoms of Micrurus Coral Snakes: Evolutionary Trends in Compositional Patterns Emerging from Proteomic Analyses. Toxicon 2016, 122, 7–25. [Google Scholar] [CrossRef]
- Amazonas, D.R.; Portes-Junior, J.A.; Nishiyama, M.Y., Jr.; Nicolau, C.A.; Chalkidis, H.M.; Mourão, R.H.V.; Grazziotin, F.G.; Rokyta, D.R.; Gibbs, H.L.; Valente, R.H.; et al. Molecular Mechanisms Underlying Intraspecific Variation in Snake Venom. J. Proteom. 2018, 181, 60–72. [Google Scholar] [CrossRef]
- Sanz, L.; Quesada-Bernat, S.; Pérez, A.; De Morais-Zani, K.; SantEänna, S.S.; Hatakeyama, D.M.; Tasima, L.J.; De Souza, M.B.; Kayano, A.M.; Zavaleta, A.; et al. Danger in the Canopy. Comparative Proteomics and Bioactivities of the Venoms of the South American Palm Pit Viper Bothrops bilineatus Subspecies bilineatus and smaragdinus and Antivenomics of B. b. bilineatus (Rondônia) Venom against the Brazilian Pentabothropic Antivenom. J. Proteome Res. 2020, 19, 3518–3532. [Google Scholar] [CrossRef]
- Peichoto, M.E.; Tavares, F.L.; Santoro, M.L.; MacKessy, S.P. Venom Proteomes of South and North American Opisthoglyphous (Colubridae and Dipsadidae) Snake Species: A Preliminary Approach to Understanding Their Biological Roles. Comp. Biochem. Physiol. Part D Genom. Proteom. 2012, 7, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Modahl, C.M.; Mackessy, S.P. Venoms of Rear-Fanged Snakes: New Proteins and Novel Activities. Front. Ecol. Evol. 2019, 7, 279. [Google Scholar] [CrossRef] [Green Version]
- Grundler, M.C. SquamataBase: A Natural History Database and R Package for Comparative Biology of Snake Feeding Habits. Biodivers. Data J. 2020, 8, e49943. [Google Scholar] [CrossRef] [PubMed]
- Duellman, W.E. Cusco Amazonico: The Lives of Amphibians and Reptiles in an Amazonian Rainforest; Comstock Pub. Associates: Ithaca, NY, USA, 2005; Volume 43, ISBN 9780801439971. [Google Scholar]
- Arlinghaus, F.T.; Eble, J.A. C-Type Lectin-like Proteins from Snake Venoms. Toxicon 2012, 60, 512–519. [Google Scholar] [CrossRef]
- Ogawa, T.; Chijiwa, T.; Oda-Ueda, N.; Ohno, M. Molecular Diversity and Accelerated Evolution of C-Type Lectin-like Proteins from Snake Venom. Toxicon 2005, 45, 1–14. [Google Scholar] [CrossRef]
- Xie, B.; Dashevsky, D.; Rokyta, D.; Ghezellou, P.; Fathinia, B.; Shi, Q.; Richardson, M.K.; Fry, B.G. Dynamic Genetic Differentiation Drives the Widespread Structural and Functional Convergent Evolution of Snake Venom Proteinaceous Toxins. BMC Biol. 2022, 20, 4. [Google Scholar] [CrossRef]
- Sanz, L.; Pérez, A.; Quesada-Bernat, S.; Diniz-Sousa, R.; Calderón, L.A.; Soares, A.M.; Calvete, J.J.; Caldeira, C.A.S. Venomics and Antivenomics of the Poorly Studied Brazil’s Lancehead, Bothrops brazili (Hoge, 1954), from the Brazilian State of Pará. J. Venom. Anim. Toxins Incl. Trop. Dis. 2020, 26, 20190103. [Google Scholar] [CrossRef]
- Strickland, J.L.; Smith, C.F.; Mason, A.J.; Schield, D.R.; Borja, M.; Castañeda-Gaytán, G.; Spencer, C.L.; Smith, L.L.; Trápaga, A.; Bouzid, N.M.; et al. Evidence for Divergent Patterns of Local Selection Driving Venom Variation in Mojave Rattlesnakes (Crotalus scutulatus). Sci. Rep. 2018, 8, 17622. [Google Scholar] [CrossRef]
- Weese, D.A.; Duda, T.F. Effects of Predator-Prey Interactions on Predator Traits: Differentiation of Diets and Venoms of a Marine Snail. Toxins 2019, 11, 299. [Google Scholar] [CrossRef] [Green Version]
- Rotenberg, D.; Bamberger, E.S.; Kochva, E. Studies on Ribonucleic Acid Synthesis in the Venom Glands of Vipera Palaestinae (Ophidia, Reptilia). Biochem. J. 1971, 121, 609–612. [Google Scholar] [CrossRef] [Green Version]
- Mora-Obando, D.; Salazar-Valenzuela, D.; Pla, D.; Lomonte, B.; Guerrero-Vargas, J.A.; Ayerbe, S.; Gibbs, H.L.; Calvete, J.J. Venom Variation in Bothrops asper Lineages from North-Western South America. J. Proteom. 2020, 229, 103945. [Google Scholar] [CrossRef] [PubMed]
- Mackessy, S.P. Venom Ontogeny in the Pacific Rattlesnakes Crotalus Viridis Helleri and C. v. Oreganus. Copeia 1988, 1988, 92. [Google Scholar] [CrossRef]
- Haney, R.A.; Clarke, T.H.; Gadgil, R.; Fitzpatrick, R.; Hayashi, C.Y.; Ayoub, N.A.; Garb, J.E. Effects of Gene Duplication, Positive Selection, and Shifts in Gene Expression on the Evolution of the Venom Gland Transcriptome in Widow Spiders. Genome Biol. Evol. 2016, 8, 228–242. [Google Scholar] [CrossRef] [Green Version]
- Barua, A.; Mikheyev, A.S. Many Options, Few Solutions: Over 60 My Snakes Converged on a Few Optimal Venom Formulations. Mol. Biol. Evol. 2019, 36, 1964–1974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. Available online: http://www.Bioinformatics.Babraham.Ac.Uk/Projects/Fastqc/ (accessed on 10 March 2021).
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Haas, B.J.; Papanicolaou, A.; Yassour, M.; Grabherr, M.; Blood, P.D.; Bowden, J.; Couger, M.B.; Eccles, D.; Li, B.; Lieber, M.; et al. De Novo Transcript Sequence Reconstruction from RNA-Seq Using the Trinity Platform for Reference Generation and Analysis. Nat. Protoc. 2013, 8, 1494–1512. [Google Scholar] [CrossRef]
- Rokyta, D.R.; Lemmon, A.R.; Margres, M.J.; Aronow, K. The Venom-Gland Transcriptome of the Eastern Diamondback Rattlesnake (Crotalus adamanteus). BMC Genom. 2012, 13, 312. [Google Scholar] [CrossRef] [Green Version]
- Holding, M.L.; Margres, M.J.; Mason, A.J.; Parkinson, C.L.; Rokyta, D.R. Evaluating the Performance of de Novo Assembly Methods for Venom-Gland Transcriptomics. Toxins 2018, 10, 249. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Kobert, K.; Flouri, T.; Stamatakis, A. PEAR: A Fast and Accurate Illumina Paired-End ReAd MergeR. Bioinformatics 2014, 30, 614–620. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Smith, S.A. Orthology Inference in Nonmodel Organisms Using Transcriptomes and Low-Coverage Genomes: Improving Accuracy and Matrix Occupancy for Phylogenomics. Mol. Biol. Evol. 2014, 31, 3081–3092. [Google Scholar] [CrossRef]
- Morales-Briones, D.F.; Kadereit, G.; Tefarikis, D.T.; Moore, M.J.; Smith, S.A.; Brockington, S.F.; Timoneda, A.; Yim, W.C.; Cushman, J.C.; Yang, Y. Disentangling Sources of Gene Tree Discordance in Phylogenomic Data Sets: Testing Ancient Hybridizations in Amaranthaceae s.l. Syst. Biol. 2021, 70, 219–235. [Google Scholar] [CrossRef] [PubMed]
- Smith-Unna, R.; Boursnell, C.; Patro, R.; Hibberd, J.M.; Kelly, S. TransRate: Reference-Free Quality Assessment of de Novo Transcriptome Assemblies. Genome Res. 2016, 26, 1134–1144. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Smith, S.A. Optimizing de Novo Assembly of Short-Read RNA-Seq Data for Phylogenomics. BMC Genom. 2013, 14, 328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davidson, N.M.; Oshlack, A. Corset: Enabling Differential Gene Expression Analysis for de Novo Assembled Transcriptomes. Genome Biol. 2014, 15, 410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patro, R.; Duggal, G.; Love, M.I.; Irizarry, R.A.; Kingsford, C. Salmon Provides Fast and Bias-Aware Quantification of Transcript Expression. Nat. Methods 2017, 14, 417–419. [Google Scholar] [CrossRef] [Green Version]
- Available online: http://Transdecoder.Github.Io/ (accessed on 12 March 2021).
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and Applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef] [Green Version]
- Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W. CD-HIT: Accelerated for Clustering the next-Generation Sequencing Data. Bioinformatics 2012, 28, 3150–3152. [Google Scholar] [CrossRef]
- Li, B.; Ruotti, V.; Stewart, R.M.; Thomson, J.A.; Dewey, C.N. RNA-Seq Gene Expression Estimation with Read Mapping Uncertainty. Bioinformatics 2009, 26, 493–500. [Google Scholar] [CrossRef] [Green Version]
- Langmead, B.; Salzberg, S.L. Fast Gapped-Read Alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [Green Version]
- Rokyta, D.R.; Wray, K.P.; Margres, M.J. The Genesis of an Exceptionally Lethal Venom in the Timber Rattlesnake (Crotalus horridus) Revealed through Comparative Venom-Gland Transcriptomics. BMC Genom. 2013, 14, 394. [Google Scholar] [CrossRef] [Green Version]
- Margres, M.J.; Aronow, K.; Loyacano, J.; Rokyta, D.R. The Venom-Gland Transcriptome of the Eastern Coral Snake (Micrurus fulvius) Reveals High Venom Complexity in the Intragenomic Evolution of Venoms. BMC Genom. 2013, 14, 531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vonk, F.J.; Casewell, N.R.; Henkel, C.V.; Heimberg, A.M.; Jansen, H.J.; McCleary, R.J.R.; Kerkkamp, H.M.E.; Vos, R.A.; Guerreiro, I.; Calvete, J.J.; et al. The King Cobra Genome Reveals Dynamic Gene Evolution and Adaptation in the Snake Venom System. Proc. Natl. Acad. Sci. USA 2013, 110, 20651–20656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayona-Serrano, J.D.; Viala, V.L.; Rautsaw, R.M.; Schramer, T.D.; Barros-Carvalho, G.A.; Nishiyama, M.Y.; Freitas-De-Sousa, L.A.; Moura-Da-Silva, A.M.; Parkinson, C.L.; Grazziotin, F.G.; et al. Replacement and Parallel Simplification of Nonhomologous Proteinases Maintain Venom Phenotypes in Rear-Fanged Snakes. Mol. Biol. Evol. 2020, 37, 3563–3575. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 3 June 2020).
- Johnson, M.G.; Gardner, E.M.; Liu, Y.; Medina, R.; Goffinet, B.; Shaw, A.J.; Zerega, N.J.C.; Wickett, N.J. HybPiper: Extracting Coding Sequence and Introns for Phylogenetics from High-throughput Sequencing Reads Using Target Enrichment. Appl. Plant Sci. 2016, 4, 1600016. [Google Scholar] [CrossRef] [Green Version]
- Dong, S.; Kumazawa, Y. Complete Mitochondrial DNA Sequences of Six Snakes: Phylogenetic Relationships and Molecular Evolution of Genomic Features. J. Mol. Evol. 2005, 61, 12–22. [Google Scholar] [CrossRef]
- Kumazawa, Y.; Ota, H.; Nishida, M.; Ozawa, T. The Complete Nucleotide Sequence of a Snake (Dinodon Semicarinatus) Mitochondrial Genome with Two Identical Control Regions. Genetics 1998, 150, 313–329. [Google Scholar] [CrossRef]
- Jiang, Z.J.; Castoe, T.A.; Austin, C.C.; Burbrink, F.T.; Herron, M.D.; McGuire, J.A.; Parkinson, C.L.; Pollock, D.D. Comparative Mitochondrial Genomics of Snakes: Extraordinary Substitution Rate Dynamics and Functionality of the Duplicate Control Region. BMC Evol. Biol. 2007, 7, 123. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.; Li, H.; Zhou, K. Evolution of the Mitochondrial Genome in Snakes: Gene Rearrangements and Phylogenetic Relationships. BMC Genom. 2008, 9, 569. [Google Scholar] [CrossRef] [Green Version]
- Kumazawa, Y.; Nishida, M. Complete Mitochondrial DNA Sequences of the Green Turtle and Blue- Tailed Mole Skink: Statistical Evidence for Archosaurian Affinity of Turtles. Mol. Biol. Evol. 1999, 16, 784–792. [Google Scholar] [CrossRef] [Green Version]
- Macey, J.R.; Papenfuss, T.J.; Kuehl, J.V.; Fourcade, H.M.; Boore, J.L. Phylogenetic Relationships among Amphisbaenian Reptiles Based on Complete Mitochondrial Genomic Sequences. Mol. Phylogenet. Evol. 2004, 33, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Slater, G.S.C.; Birney, E. Automated Generation of Heuristics for Biological Sequence Comparison. BMC Bioinform. 2005, 6, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cock, P.J.A.; Antao, T.; Chang, J.T.; Chapman, B.A.; Cox, C.J.; Dalke, A.; Friedberg, I.; Hamelryck, T.; Kauff, F.; Wilczynski, B.; et al. Biopython: Freely Available Python Tools for Computational Molecular Biology and Bioinformatics. Bioinformatics 2009, 25, 1422–1423. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Durbin, R. Fast and Accurate Short Read Alignment with Burrows-Wheeler Transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map Format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tange, O. GNU Parallel 20150322 (‘Hellwig’). Login USENIX Mag. 2015, 436, 42–47. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [Green Version]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.W.; Walker, J.F.; Smith, S.A. Phyx: Phylogenetic Tools for Unix. Bioinformatics 2017, 33, 1886–1888. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, L.T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Bray, J.R.; Curtis, J.T. An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecol. Monogr. 1957, 27, 325–349. [Google Scholar] [CrossRef]
- Callahan, S.; Crowe-Riddell, J.M.; Nagesan, R.S.; Gray, J.A.; Rabosky, A.R.D. A Guide for Optimal Iodine Staining and High-Throughput DiceCT Scanning in Snakes. Ecol. Evol. 2021, 11, 11587–11603. [Google Scholar] [CrossRef] [PubMed]
Subfamily | Species | Major Venom Component(s) | Reference |
---|---|---|---|
Colubrinae | Ahaetulla prasina | SVMPs, 3FTxs | [24] |
Boiga irregularis | 3FTxs, SVMPs | [21] | |
Dispholidus typus | SVMPs | [25] | |
Spilotes sulphureus | 3FTxs | [26] | |
Tantilla nigriceps | 3FTxs, CRiSPs, SVMPs | [23] | |
Trimorphodon quadruplex | 3FTxs, SVMPs | [27] | |
Dipsadinae | Borikenophis portoricensis | SVMPs | [24] |
Conophis lineatus | svMMPs | [28] | |
Hypsiglena sp. | SVMPs, CRiSPs | [21] | |
Phalotris mertensi | Kunitzs, SVMPs, CTLs | [29] | |
Philodryas olfersii | SVMPs, CNPs | [30] | |
Thamnodynastes strigatus | svMMPs | [31] |
Family | Taxon | Museum Accession No. | Date Captured | Station, Country | SVL (mm) | Mass (g) | Sex | Age |
---|---|---|---|---|---|---|---|---|
Viperidae | Bothrops atrox 0365 | MUSM 35721 | 21 March 2016 | EBLA, Peru | 589 | 81 | F | J |
Bothrops bilineatus 0065 | UMMZ 245084 | 11 March 2016 | EBLA, Peru | 744 | 85 | F | A | |
Bothrops brazili 1278 | MUSM 36922 | 1 December 2016 | EBLA, Peru | 606 | 76 | M | A | |
Elapidae | Micrurus annellatus 3275 | UMMZ 248450 | 26 November 2018 | EBLA, Peru | 497 | 18.11 | F | A |
Micrurus hemprichii 1810 | UMMZ 246857 | 18 January 2017 | EBMS, Peru | 740 | 86 | M | A | |
Micrurus lemniscatus 0249 | UMMZ 245082 | 16 March 2016 | EBLA, Peru | 715 | 65 | M | A | |
Micrurus lemniscatus 0336 | MUSM 35905 | 21 March 2016 | EBLA, Peru | 725 | 50 | F | A | |
Micrurus nigrocinctus 3053 | UMMZ 247142 | 22 May 2018 | LBM, Nicaragua | 717 | 64.8 | F | A | |
Micrurus obscurus 0665 | UMMZ 246859 | 7 November 2016 | EBVC, Peru | 261 | 5.19 | M | J | |
Micrurus obscurus 1054 | UMMZ 246860 | 22 November 2016 | EBLA, Peru | 775 | 81 | M | A | |
Colubridae | Helicops angulatus 0143 | UMMZ 245053 | 13 March 2016 | EBLA, Peru | 373 | 48.36 | F | A |
Helicops angulatus 3440 | UMMZ 248879 | 2 December 2018 | EBLA, Peru | 411 | 60 | F | A | |
Helicops angulatus 3559 | MUSM 39826 | 9 December 2018 | EBLA, Peru | 307 | 24.19 | F | A | |
Helicops leopardinus 1812 | UMMZ 246808 | 18 January 2017 | EBMS, Peru | 685 | 220 | F | A | |
Helicops polylepis 1932 | UMMZ 246809 | 18 January 2017 | EBMS, Peru | 823 | 600 | F | A | |
Leptodeira annulata 0468 | UMMZ 245059 | 24 March 2016 | EBLA, Peru | 463 | 18.56 | M | A | |
Leptodeira annulata 0497 | UMMZ 245060 | 27 March 2016 | EBLA, Peru | 590 | 38.02 | F | A | |
Leptodeira rhombifera 3241 | UMMZ 247098 | 12 June 2018 | Tecomapa, Nicaragua | 665 | 169.5 | F | A | |
Leptodeira septentrionalis 3176 | UMMZ 247099 | 3 June 2018 | RB, Nicaragua | 654 | 113.2 | F | A |
Family | Taxon | Library Preparation | Illumina Platform | Reads Pairs | Percent Toxin Expression |
---|---|---|---|---|---|
Viperidae | Bothrops atrox 0365 | TruSeq RNASeq | HiSeq 4000 | 22,392,182 | 47.97% |
Bothrops bilineatus 0065 | NEBNext Ultra II | NovaSeq 6000 | 17,985,945 | 74.53% | |
Bothrops brazili 1278 | NEBNext Ultra II | NovaSeq 6000 | 14,816,998 | 47.25% | |
Elapidae | Micrurus annellatus 3275 | NEBNext Ultra II | NovaSeq 6000 | 16,398,046 | 39.12% |
Micrurus hemprichii 1810 | NEBNext Ultra II | NovaSeq 6000 | 19,149,986 | 33.68% | |
Micrurus lemniscatus 0249 | NEBNext Ultra II | NovaSeq 6000 | 16,413,190 | 19.58% | |
Micrurus lemniscatus 0336 | TruSeq RNASeq | HiSeq 4000 | 24,938,732 | 53.04% | |
Micrurus nigrocinctus 3053 | NEBNext Ultra II | NovaSeq 6000 | 18,981,692 | 63.38% | |
Micrurus obscurus 0665 | NEBNext Ultra II | NovaSeq 6000 | 15,955,904 | 40.44% | |
Micrurus obscurus 1054 | NEBNext Ultra II | NovaSeq 6000 | 16,791,601 | 48.82% | |
Colubridae | Helicops angulatus 0143 | TruSeq RNASeq | HiSeq 4000 | 23,374,958 | 17.15% |
Helicops angulatus 3440 | NEBNext Ultra II | NovaSeq 6000 | 17,274,735 | 31.03% | |
Helicops angulatus 3559 | NEBNext Ultra II | NovaSeq 6000 | 15,797,921 | 19.57% | |
Helicops leopardinus 1812 | NEBNext Ultra II | NovaSeq 6000 | 17,894,322 | 52.98% | |
Helicops polylepis 1932 | NEBNext Ultra II | NovaSeq 6000 | 12,936,858 | 91.81% | |
Leptodeira annulata 0468 | NEBNext Ultra II | NovaSeq 6000 | 19,191,193 | 27.03% | |
Leptodeira annulata 0497 | TruSeq RNASeq | HiSeq 4000 | 20,844,579 | 36.83% | |
Leptodeira rhombifera 3241 | NEBNext Ultra II | NovaSeq 6000 | 17,838,000 | 41.59% | |
Leptodeira septentrionalis 3176 | NEBNext Ultra II | NovaSeq 6000 | 17,147,031 | 46.39% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerda, P.A.; Crowe-Riddell, J.M.; Gonçalves, D.J.P.; Larson, D.A.; Duda, T.F., Jr.; Davis Rabosky, A.R. Divergent Specialization of Simple Venom Gene Profiles among Rear-Fanged Snake Genera (Helicops and Leptodeira, Dipsadinae, Colubridae). Toxins 2022, 14, 489. https://doi.org/10.3390/toxins14070489
Cerda PA, Crowe-Riddell JM, Gonçalves DJP, Larson DA, Duda TF Jr., Davis Rabosky AR. Divergent Specialization of Simple Venom Gene Profiles among Rear-Fanged Snake Genera (Helicops and Leptodeira, Dipsadinae, Colubridae). Toxins. 2022; 14(7):489. https://doi.org/10.3390/toxins14070489
Chicago/Turabian StyleCerda, Peter A., Jenna M. Crowe-Riddell, Deise J. P. Gonçalves, Drew A. Larson, Thomas F. Duda, Jr., and Alison R. Davis Rabosky. 2022. "Divergent Specialization of Simple Venom Gene Profiles among Rear-Fanged Snake Genera (Helicops and Leptodeira, Dipsadinae, Colubridae)" Toxins 14, no. 7: 489. https://doi.org/10.3390/toxins14070489
APA StyleCerda, P. A., Crowe-Riddell, J. M., Gonçalves, D. J. P., Larson, D. A., Duda, T. F., Jr., & Davis Rabosky, A. R. (2022). Divergent Specialization of Simple Venom Gene Profiles among Rear-Fanged Snake Genera (Helicops and Leptodeira, Dipsadinae, Colubridae). Toxins, 14(7), 489. https://doi.org/10.3390/toxins14070489