Natural Occurrence of Mycotoxins in Maize in North China
Abstract
:1. Introduction
2. Results and Discussion
2.1. Occurrence of Mycotoxins in North China
2.2. Contamination Levels of Mycotoxins in North China
3. Conclusions
4. Materials and Methods
4.1. Samples
4.2. Chemical Standards and Reagents
4.3. Sample Pretreatment
4.4. UPLC–MS/MS Analysis
4.5. Koppen–Geiger Climate Classification Map of China
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buszewska-Forajta, M. Mycotoxins, invisible danger of feedstuff with toxic effect on animals. Toxicon 2020, 182, 34–53. [Google Scholar] [CrossRef] [PubMed]
- Cendoya, E.; Chiotta, M.L.; Zachetti, V.; Chulze, S.N.; Ramirez, M.L. Fumonisins and fumonisin-producing Fusarium occurrence in wheat and wheat by products: A review. J. Cereal Sci. 2018, 80, 158–166. [Google Scholar] [CrossRef]
- Taha Gökmen, Ü.; Aslı, U.; Funda Pınar, Ç.; Serkan, Y. Genotoxic effects of mycotoxins. Toxicon 2020, 185, 104–113. [Google Scholar]
- Patial, V. Food-Borne Mycotoxicoses: Pathologies and public health impact. Foodborne Dis. 2018, 19, 239–274. [Google Scholar]
- Bennett, J.W.; Klich, M. Mycotoxins. Clin. Microbiol. Rev. 2003, 16, 497–516. [Google Scholar] [CrossRef] [Green Version]
- Liesel, C.; Chiara, R.; Karl De, R.; Hayley, W.; Beatrice, F.; Michael, K.; Jiri, Z.; Marc, J.G.; Sarah De, S.; Marthe De, B.; et al. Mycotoxin exposure and human cancer risk: A systematic review of epidemiological studies. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1449–1464. [Google Scholar]
- Aarane, M.R.; Irene, T.; Theoharis, C.T. Effects of mycotoxins on neuropsychiatric symptoms and immune processes. Clin. Ther. 2018, 40, 903–917. [Google Scholar]
- Lger, T.G.; Uar, A.; Akrolu, F.P.; Yilmaz, S. Genotoxic effects of mycotoxins. Toxicon 2020, 185, 104–113. [Google Scholar]
- Chang, H.; Woori, K.; Ju-Hee, P.; Dongho, K.; Choong-Ryeol, K.; Soohyun, C.; Chan, L. The Occurrence of Zearalenone in South Korean Feedstuffs between 2009 and 2016. Toxins 2017, 9, 223. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Jiang, Y.; Li, R.; Pang, M.; Liu, Y.; Dong, J. Natural occurrence of fumonisins B1 and B2 in maize from eight provinces of China in 2014. Food Addit. Contam. Part B 2017, 10, 113–117. [Google Scholar] [CrossRef]
- James, A.; Zikankuba, V.L. Mycotoxins contamination in maize alarms food safety in sub-Sahara Africa. Food Control 2018, 90, 372–381. [Google Scholar] [CrossRef]
- Tarazona, A.; Gómez, J.V.; Mateo, F.; Jiménez, M.; Romera, D.; Mateo, E.M. Study on mycotoxin contamination of maize kernels in Spain. Food Control 2020, 118, 107370. [Google Scholar] [CrossRef]
- Kos, J.; Hajnal, E.J.; Malachová, A.; Steiner, D.; Stranska, M.; Krska, R.; Poschmaier, B.; Sulyok, M. Mycotoxins in maize harvested in republic of serbia in the period 2012–2015. part 1: Regulated mycotoxins and its derivatives. Food Chem. 2019, 312, 126034. [Google Scholar] [CrossRef] [PubMed]
- Daou, R.; Joubrane, K.; Rabbaa, L.; Maroun, R.G.; Khoury, A.E. Aflatoxin B1 and ochratoxin A in imported and lebanese wheat and-products. Food Addit. Contam. Part B Surveill. 2021, 14, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Asifa, S.; Waqar, R.; Saima, M.; Marthe De, B.; Sarah De, S.; Mazhar, I. LC-MS/MS based appraisal of multi-mycotoxin co-occurrence in poultry feeds from different regions of Punjab, Pakistan. Food Addit. Contam. Part B 2022, 15, 106–122. [Google Scholar]
- Namulawa, V.T.; Mutiga, S.; Musimbi, F.; Akello, S.; Ghimire, S. Assessment of Fungal Contamination in Fish Feed from the Lake Victoria Basin, Uganda. Toxins 2020, 12, 233. [Google Scholar] [CrossRef] [Green Version]
- Zinedine, A.; Brera, C.; Elakhdari, S.; Catano, C.; Debegnach, F.; Angelini, S.; Santis, B.D.; Faid, M.; Benlemlih, M.; Minardi, V. Natural occurrence of mycotoxins in cereals and spices commercialized in Morocco. Food Control 2006, 17, 868–874. [Google Scholar] [CrossRef]
- Juhee, P.; Chang, H.; Hong, S.; Dongho, K.; Soohyun, C.; Chan, L. A Decrease of Incidence Cases of fumonisins in South Korean feedstuff between 2011 and 2016. Toxins 2017, 9, 286. [Google Scholar]
- Gruber-Dorninger, C.; Jenkins, T.; Schatzmayr, G. Global mycotoxin occurrence in feed: A ten-year survey. Toxins 2019, 11, 375. [Google Scholar] [CrossRef] [Green Version]
- Janse, V.; Mclaren, N.W.; Flett, B.C.; Schoeman, A. Fumonisin producing Fusarium spp. and fumonisin contamination in commercial South African maize. Eur. J. Plant Pathol. 2015, 141, 491–504. [Google Scholar] [CrossRef]
- Milicevic, D.; Petronijevic, R.; Petrovic, Z.; Stojanovic, J.D.; Jankovic, S. Impact of climate change on aflatoxin M1 contamination of raw milk with special focus on climate conditions in Serbia. J. Sci. Food Agric. 2019, 99, 5202–5210. [Google Scholar] [CrossRef] [PubMed]
- Vita, V.; Clausi, M.T.; Franchino, C.; De Pace, R. Aflatoxin B1 contamination in feed from Puglia and Basilicata regions (Italy): 5 years monitoring data. Mycotoxin Res. 2016, 32, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Tao, B.; Pang, M.; Liu, Y.; Dong, J. Natural occurrence of fumonisins B1 and B2 in maize from three main maize-producing provinces in China. Food Control 2015, 50, 838–842. [Google Scholar] [CrossRef]
- Wei, T.; Zhu, W.; Pang, M.; Liu, Y.; Dong, J. Natural occurrence of fumonisins B1 and B2 in corn in four provinces of China. Food Addit. Contam. Part B 2013, 6, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Shahdeo, D.; Khan, A.A.; Alanazi, A.M.; Bajpai, V.K.; Shukla, S.; Gandhi, S. Molecular diagnostic of ochratoxin A with specific aptamers in corn and groundnut via fabrication of a microfluidic device. Front. Nutr. 2022, 9, 851787. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Zhao, J.; Zhang, R.; Deng, L.; Li, J.; Gao, Y.; Liu, C. Effect of Tebuconazole Enantiomers and environmental factors on Fumonisin Accumulation and FUM Gene Expression in Fusarium verticillioides. J. Agric. Food Chem. 2018, 66, 13107–13115. [Google Scholar] [CrossRef]
- Lv, C.; Jin, J.; Wang, P.; Dai, X.; Liu, Y.; Zheng, M.; Xing, F. Interaction of water activity and temperature on the growth, gene expression and aflatoxin production by Aspergillus flavus on paddy and polished rice. Food Chem. 2019, 293, 472–478. [Google Scholar] [CrossRef]
- Asghar, M.A.; Ahmed, A. Influence of temperature and environmental conditions on aflatoxin contamination in maize collected from different regions of Pakistan during 2016–2019. J. Stored Prod. Res. 2020, 88, 101637. [Google Scholar] [CrossRef]
- Tran, T.M.; Ameye, M.; Phan, T.K.; Devlieghere, F.; Audenaert, K. Impact of ethnic pre-harvest practices on the occurrence of Fusarium verticillioides and fumonisin B1 in maize fields from Vietnam. Food Control 2020, 120, 107567. [Google Scholar] [CrossRef]
- Somorin, Y.M.; Bankole, S.A. Mycoflora of stored Ofada and Abakaliki rice in Lagos and Ogun States, Southwestern Nigeria. Afr. J. Microbiol. Res. 2010, 4, 1724–1726. [Google Scholar]
- Dey, D.K.; Kang, J.I.; Bajpai, V.K.; Kim, K.; Lee, H.; Sonwal, S.; Simal-Gandara, J.; Xiao, J.; Ali, S.; Huh, Y.S.; et al. Mycotoxins in food and feed: Toxicity, preventive challenges, and advanced detection techniques for associated diseases. Crit. Rev. Food Sci. Nutr. 2022, 62, 1–22. [Google Scholar] [CrossRef] [PubMed]
- EC 1881/2006; Commission of the European Communities. Setting Maximum Levels for Certain Contaminants in Foodstuffs. European Commission: Brussels, Belgium, 2018.
- FDA-2019-D-5609; Draft Guidance for Industry: Action Levels for Poisonous or Deleterious Substances in Human Food and Animal Feed. Center for Food Safety and Applied Nutrition: College Park, MD, USA, 2018.
- FDA. Guidance for Industry: Fumonisin Levels in Human Foods and Animal Feeds; Food and Drug Administration: Silver Spring, MD, USA, 2018.
- GB 2761-2017; National Food Safety Standard Maximum Levels of Mycotoxins in Food. China Food and Drug Administration: Beijing, China, 2017.
- LS/T 6133-2018; Inspection of Grain and OILs-Determination of 16 Mycotoxins in Cereals-HPLC-MS/MS Method. National Food and Strategic Reserves Administration: Beijing, China, 2018.
- Liu, Z.; Mutukumira, A.N.; Chen, H. Food safety governance in China: From supervision to coregulation. Food Sci. Nutr. 2019, 7, 4127–4139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Province | Mean Maximum Temperature (°C) | Mean Minimum Temperature (°C) | Mean Temperature (°C) | Mean Precipitation Value (mm) |
---|---|---|---|---|
Heilongjiang | 27.6 | 19.1 | 23.3 | 164.3 |
Jilin | 28.2 | 19.3 | 23.8 | 93.8 |
Liaoning | 29.9 | 21.0 | 25.4 | 98.3 |
Inner Mongolia | 29.1 | 19.4 | 24.3 | 100.5 |
Ningxia | 29.2 | 18.9 | 24.1 | 41.5 |
Shaanxi | 27.7 | 19.0 | 23.3 | 150.2 |
Mycotoxin | Organizations and Country | ||
---|---|---|---|
China | FDA | EU | |
FBs | - | 2000 | 4000 |
AFB1 + AFB2 + AFG1 + AFG2 | - | 20 | 4 |
DON | 1000 | - | 1750 |
ZEN | 60 | - | 350 |
OTA | 5 | - | 5 |
T-2 + HT-2 | - | - | 200 |
Mycotoxin | Concentration (µg/kg) | Province | |||||
---|---|---|---|---|---|---|---|
Heilongjiang | Jilin | Liaoning | Inner Mongolia | Ningxia | Shaanxi | ||
FBs | 0 < x < 2000 | 95.6% | 97.7% | 57.1% | 80.0% | 86.8% | 84.4% |
2000 < x < 4000 | 2.6% | 1.1% | 18.2% | 12.5% | 5.3% | 6.3% | |
x > 4000 | 1.8% | 1.1% | 24.7% | 7.5% | 7.9% | 9.4% | |
AFs | 0 < x < 4 | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |
4 < x < 20 | 83.3% | 100.0% | 100.0% | 100.0% | 100.0% | 53.1% | |
x > 20 | 16.7% | 0.0% | 0.0% | 0.0% | 0.0% | 46.9% | |
DON | 0 < x < 1000 | 80.7% | 73.6% | 96.1% | 100.0% | 97.4% | 100.0% |
1000 < x < 1750 | 7.0% | 11.5% | 0.0% | 0.0% | 2.6% | 0.0% | |
x > 1750 | 12.3% | 14.9% | 3.9% | 0.0% | 0.0% | 0.0% | |
ZEN | 0 < x < 60 | 87.7% | 79.3% | 92.2% | 100.0% | 97.4% | 100.0% |
60 < x < 350 | 10.5% | 17.2% | 6.5% | 0.0% | 1.3% | 0.0% | |
x > 350 | 1.8% | 3.4% | 1.3% | 0.0% | 1.3% | 0.0% | |
OTA | 0 < x < 5 | 98.2% | 97.7% | 97.4% | 100.0% | 100.0% | 100.0% |
x > 5 | 1.8% | 2.3% | 2.6% | 0.0% | 0.0% | 0.0% | |
HT-2 + T-2 | 0 < x < 200 | 100.0% | 100.0% | 100.0% | 100.0% | 100.0% | 100.0% |
x > 200 | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |
Mycotoxins | Precursor Ion (m/z) | Product Ion (m/z) | Residence Time (min) | DP (V) | CE (eV) | Ionization Mode (ESI) | Ionspray Voltage (V) |
---|---|---|---|---|---|---|---|
FB1 | 722.4 | 334.3 *,352.3 | 4.17 | 220 | 45,45 | + | 5500 |
FB2 | 706.5 | 336.3 *,318.3 | 4.61 | 112 | 45,45 | + | 5500 |
AFB1 | 313.2 | 285.1 *,241.1 | 3.59 | 121 | 22,38 | + | 5500 |
AFB2 | 315.2 | 287.1 *,259.1 | 3.48 | 124 | 24,30 | + | 5500 |
AFG1 | 329.2 | 311.1 *,243.1 | 3.33 | 120 | 20,25 | + | 5500 |
AFG2 | 331.2 | 313.1 *,245 | 3.19 | 122 | 33,40 | + | 5500 |
OTA | 404.1 | 239 *,358 | 4.58 | 120 | 25,10 | + | 5500 |
HT-2 | 442.2 | 215.1 *,263.1 | 4.02 | 75 | 10,10 | + | 5500 |
T-2 | 484.3 | 305 *,185.1 | 4.30 | 80 | 18,30 | + | 5500 |
DON | 297.1 | 249.1 *,203.1 | 1.74 | 180 | 15,19 | + | 5500 |
ZEN | 317.1 | 175 *,130.8 | 4.57 | 95 | 25,33 | - | 4500 |
Mycotoxin | LOD (μg/kg) | LOQ (μg/kg) | Linearity Equation | R2 |
---|---|---|---|---|
FB1 | 0.8 | 2.4 | Y = 2048.6X + 5164.4 | 0.9997 |
FB2 | 0.3 | 0.9 | Y = 5920.2X + 7589.1 | 0.9998 |
DON | 3.9 | 11.9 | Y = 233.08X + 350.97 | 0.9997 |
AFB1 | 0.2 | 0.5 | Y = 12923X + 25907 | 0.9998 |
AFB2 | 0.3 | 0.8 | Y = 9854.5X + 18439 | 0.9998 |
AFG1 | 0.3 | 0.8 | Y = 14893X + 36370 | 0.9997 |
AFG2 | 0.1 | 0.2 | Y = 22657X + 84711 | 0.9995 |
OTA | 0.1 | 0.3 | Y = 12886X − 10112 | 0.9999 |
T-2 | 0.1 | 0.3 | Y = 7452.9X − 16843 | 0.9997 |
HT-2 | 0.4 | 1.1 | Y = 838X + 2102.7 | 0.9997 |
ZEN | 0.3 | 0.8 | Y = 3840.1X + 4480.3 | 0.9999 |
Mycotoxin | Recovery (%) | RSD (%) | Recovery (%) | RSD (%) | Recovery (%) | RSD (%) |
---|---|---|---|---|---|---|
20 μg/kg | 500 μg/kg | 1600 μg/kg | ||||
FB1 | 87 | 9.2 | 83 | 3.7 | 75 | 4.2 |
FB2 | 81 | 4.4 | 82 | 7.2 | 74 | 6.3 |
DON | 84 | 8.4 | 95 | 8.5 | 73 | 6.2 |
AFB1 | 78 | 7.1 | 84 | 8.0 | 89 | 9.1 |
AFB2 | 85 | 8.1 | 86 | 4.9 | 85 | 4.7 |
AFG1 | 92 | 6.6 | 95 | 4.8 | 88 | 5.9 |
AFG2 | 78 | 5.3 | 89 | 3.8 | 97 | 7.7 |
OTA | 72 | 3.5 | 83 | 4.4 | 75 | 2.9 |
T-2 | 82 | 8.6 | 89 | 5.3 | 82 | 8.4 |
HT-2 | 77 | 7.2 | 91 | 9.0 | 85 | 4.7 |
ZEN | 78 | 7.3 | 83 | 3.0 | 76 | 4.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, S.; Feng, X.; Liu, G.; Zhao, N.; Liu, J.; Zhang, Z.; Yang, N.; Zhou, L.; Pang, M.; Tang, B.; et al. Natural Occurrence of Mycotoxins in Maize in North China. Toxins 2022, 14, 521. https://doi.org/10.3390/toxins14080521
Cheng S, Feng X, Liu G, Zhao N, Liu J, Zhang Z, Yang N, Zhou L, Pang M, Tang B, et al. Natural Occurrence of Mycotoxins in Maize in North China. Toxins. 2022; 14(8):521. https://doi.org/10.3390/toxins14080521
Chicago/Turabian StyleCheng, Sirui, Xiaoxiao Feng, Guoxin Liu, Nan Zhao, Jing Liu, Zhimeng Zhang, Nan Yang, Luqi Zhou, Minhao Pang, Bowen Tang, and et al. 2022. "Natural Occurrence of Mycotoxins in Maize in North China" Toxins 14, no. 8: 521. https://doi.org/10.3390/toxins14080521
APA StyleCheng, S., Feng, X., Liu, G., Zhao, N., Liu, J., Zhang, Z., Yang, N., Zhou, L., Pang, M., Tang, B., Dong, J., Zhao, B., & Liu, Y. (2022). Natural Occurrence of Mycotoxins in Maize in North China. Toxins, 14(8), 521. https://doi.org/10.3390/toxins14080521