Physiological Response of Atlantic Salmon (Salmo salar) to Long-Term Exposure to an Anesthetic Obtained from Heterosigma akashiwo
Abstract
:1. Introduction
2. Results
2.1. Physiological Analysis and Stress Response
2.2. Histological Assessment
2.3. Assessment of Oxidative Stress Markers
3. Discussion
4. Materials and Methods
4.1. Microalgal Culture and Extract Processing
4.2. Experimental Design and Sampling
4.3. Blood Hematology and Biochemistry Analysis
4.4. Enzyme Activities in Tissues
4.5. Histological Analysis
4.6. Data Analysis
4.7. Summary Analysis by Scoring
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wendelaar Bonga, S.E. The Stress Response in Fish. Physiol. Rev. 1997, 77, 591–625. [Google Scholar] [CrossRef] [PubMed]
- Sadoul, B.; Vijayan, M.M. Stress and Growth. In Fish Physiology; Elsevier Inc.: Amsterdam, The Netherlands, 2016; Volume 35, pp. 167–205. [Google Scholar]
- Guo, H.; Dixon, B. Understanding Acute Stress-Mediated Immunity in Teleost Fish. Fish Shellfish. Immunol. Rep. 2021, 2, 100010. [Google Scholar] [CrossRef]
- Zahl, I.H.; Samuelsen, O.; Kiessling, A. Anaesthesia of Farmed Fish: Implications for Welfare. Fish Physiol. Biochem. 2012, 38, 201–218. [Google Scholar] [CrossRef] [PubMed]
- Priborsky, J.; Velisek, J. A Review of Three Commonly Used Fish Anesthetics. Rev. Fish. Sci. Aquac. 2018, 26, 417–442. [Google Scholar] [CrossRef]
- Martins, T.; Valentim, A.; Pereira, N.; Antunes, L.M. Anaesthetics and Analgesics Used in Adult Fish for Research: A Review. Lab. Anim. 2019, 53, 325–341. [Google Scholar] [CrossRef]
- López-Cánovas, A.E.; Cabas, I.; Chaves-Pozo, E.; Ros-Chumillas, M.; Navarro-Segura, L.; López-Gómez, A.; Fernandes, J.M.O.; Galindo-Villegas, J.; García-Ayala, A. Nanoencapsulated Clove Oil Applied as an Anesthetic at Slaughtering Decreases Stress, Extends the Freshness, and Lengthens Shelf Life of Cultured Fish. Foods 2020, 9, 1750. [Google Scholar] [CrossRef]
- Rey, S.; Little, D.; Ellis, M. Farmed Fish Welfare Practices: Salmon Farming as a Case Study; GAA Publishing: London, UK, 2019; p. 56. Available online: https://www.globalseafood.org/wp-content/uploads/2020/05/FarmedFishWelfarePractices_26_May_2020.pdf (accessed on 15 June 2022).
- Ross, L.G.; Ross, B.; Ross, B. Anaesthetic and Sedative Techniques for Aquatic Animals, 3rd ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2009; ISBN 9781444302264. [Google Scholar] [CrossRef]
- Aydın, B.; Barbas, L.A.L. Sedative and Anesthetic Properties of Essential Oils and Their Active Compounds in Fish: A Review. Aquaculture 2020, 520, 734999. [Google Scholar] [CrossRef]
- Sneddon, L.U. Clinical Anesthesia and Analgesia in Fish. J. Exot. Pet Med. 2012, 21, 32–43. [Google Scholar] [CrossRef] [Green Version]
- Bressler, K.; Ron, B. Effect of Anesthetics on Stress and the Innate Immune System of Gilthead Seabream (Sparus aurata). Isr. J. Aquac. Bamidgeh 2004, 56, 5–13. [Google Scholar] [CrossRef]
- Readman, G.D.; Owen, S.F.; Murrell, J.C.; Knowles, T.G. Do Fish Perceive Anaesthetics as Aversive? PLoS ONE 2013, 8, e73773. [Google Scholar] [CrossRef] [Green Version]
- Pounder, K.C.; Mitchell, J.L.; Thomson, J.S.; Pottinger, T.G.; Sneddon, L.U. Physiological and Behavioural Evaluation of Common Anaesthesia Practices in the Rainbow Trout. Appl. Anim. Behav. Sci. 2018, 199, 94–102. [Google Scholar] [CrossRef]
- Gressler, L.T.; Riffel, A.P.K.; Parodi, T.V.; Saccol, E.M.H.; Koakoski, G.; Da Costa, S.T.; Pavanato, M.A.; Heinzmann, B.M.; Caron, B.; Schmidt, D.; et al. Silver Catfish Rhamdia quelen Immersion Anaesthesia with Essential Oil of Aloysia triphylla (L’Hérit) Britton or Tricaine Methanesulfonate: Effect on Stress Response and Antioxidant Status. Aquac. Res. 2014, 45, 1061–1072. [Google Scholar] [CrossRef]
- Readman, G.D.; Owen, S.F.; Knowles, T.G.; Murrell, J.C. Species Specific Anaesthetics for Fish Anaesthesia and Euthanasia. Sci. Rep. 2017, 7, 7102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Cunha, M.A.; de Barros, F.M.C.; de Oliveira Garcia, L.; de Lima Veeck, A.P.; Heinzmann, B.M.; Loro, V.L.; Emanuelli, T.; Baldisserotto, B. Essential Oil of Lippia alba: A New Anesthetic for Silver Catfish, Rhamdia quelen. Aquaculture 2010, 306, 403–406. [Google Scholar] [CrossRef]
- Iversen, M.; Finstad, B.; McKinley, R.S.; Eliassen, R.A. The Efficacy of Metomidate, Clove Oil, Aqui-STM and Benzoak® as Anaesthetics in Atlantic Salmon (Salmo salar L.) Smolts, and Their Potential Stress-Reducing Capacity. Aquaculture 2003, 221, 549–566. [Google Scholar] [CrossRef]
- Palić, D.; Herolt, D.M.; Andreasen, C.B.; Menzel, B.W.; Roth, J.A. Anesthetic Efficacy of Tricaine Methanesulfonate, Metomidate and Eugenol: Effects on Plasma Cortisol Concentration and Neutrophil Function in Fathead Minnows (Pimephales promelas Rafinesque, 1820). Aquaculture 2006, 254, 675–685. [Google Scholar] [CrossRef] [Green Version]
- Toni, C.; Becker, A.G.; Simões, L.N.; Pinheiro, C.G.; de Lima Silva, L.; Heinzmann, B.M.; Caron, B.O.; Baldisserotto, B. Fish Anesthesia: Effects of the Essential Oils of Hesperozygis ringens and Lippia alba on the Biochemistry and Physiology of Silver Catfish (Rhamdia quelen). Fish Physiol. Biochem. 2014, 40, 701–714. [Google Scholar] [CrossRef]
- Mirghaed, T.; Ghelichpour, A.; Zargari, M.; Yousefi, A.M. Anaesthetic Efficacy and Biochemical Effects of 1,8-Cineole in Rainbow Trout (Oncorhynchus mykiss, Walbaum, 1792). Aquac. Res. 2018, 49, 2156–2165. [Google Scholar] [CrossRef]
- Souza, C.D.F.; Baldissera, M.D.; Baldisserotto, B.; Heinzmann, B.M.; Martos-Sitcha, J.A.; Mancera, J.M. Essential Oils as Stress-Reducing Agents for Fish Aquaculture: A Review. Front. Physiol. 2019, 10, 785. [Google Scholar] [CrossRef] [Green Version]
- Purbosari, N.; Warsiki, E.; Syamsu, K.; Santoso, J. Natural versus Synthetic Anesthetic for Transport of Live Fish: A Review. Aquac. Fish. 2019, 4, 129–133. [Google Scholar] [CrossRef]
- Chang, F.H.; Anderson, C.; Boustead, N.C. First Record of a Heterosigma (Raphidophyceae) Bloom with Associated Mortality of Cage-reared Salmon in Big Glory Bay, New Zealand. N. Zeal. J. Mar. Freshw. Res. 1990, 24, 461–469. [Google Scholar] [CrossRef]
- Khan, S.; Arakawa, O.; Onoue, Y. Neurotoxins in a Toxic Red Tide of Heterosigma akashiwo (Raphidophyceae) in Kagoshima Bay, Japan. Aquac. Res. 1997, 28, 9–14. [Google Scholar] [CrossRef]
- O’Halloran, C.; Silver, M.W.; Holman, T.R.; Scholin, C.A. Heterosigma akashiwo in Central California Waters. Harmful Algae 2006, 5, 124–132. [Google Scholar] [CrossRef]
- Kempton, J.; Keppler, C.J.; Lewitus, A.; Shuler, A.; Wilde, S. A Novel Heterosigma akashiwo (Raphidophyceae) Bloom Extending from a South Carolina Bay to Offshore Waters. Harmful Algae 2008, 7, 235–240. [Google Scholar] [CrossRef]
- Jack Rensel, J.E.; Haigh, N.; Tynan, T.J. Fraser River Sockeye Salmon Marine Survival Decline and Harmful Blooms of Heterosigma akashiwo. Harmful Algae 2010, 10, 98–115. [Google Scholar] [CrossRef]
- Engesmo, A.; Eikrem, W.; Seoane, S.; Smith, K.; Edvardsen, B.; Hofgaard, A.; Tomas, C.R. New Insights into the Morphology and Phylogeny of Heterosigma akashiwo (Raphidophyceae), with the Description of Heterosigma minor sp. Nov. Phycologia 2016, 55, 279–294. [Google Scholar] [CrossRef]
- Gokul, E.A.; Raitsos, D.E.; Gittings, J.A.; Alkawri, A.; Hoteit, I. Remotely Sensing Harmful Algal Blooms in the Red Sea. PLoS ONE 2019, 14, e0215463. [Google Scholar] [CrossRef]
- Astuya, A.; Ramírez, A.E.; Aballay, A.; Araya, J.; Silva, J.; Ulloa, V.; Fuentealba, J. Neurotoxin-like Compounds from the Ichthyotoxic Red Tide Alga Heterosigma akashiwo Induce a TTX-like Synaptic Silencing in Mammalian Neurons. Harmful Algae 2015, 47, 1–8. [Google Scholar] [CrossRef]
- Gallardo-Rodríguez, J.J.; Astuya-Villalón, A.; Avello, V.; Llanos-Rivera, A.; Krock, B.; Agurto-Muñoz, C.; Sánchez-Mirón, A.; García-Camacho, F. Production of Extracts with Anaesthetic Activity from the Culture of Heterosigma akashiwo in Pilot-Scale Photobioreactors. Algal Res. 2020, 45, 101760. [Google Scholar] [CrossRef]
- Schreck, C.B.; Tort, L. The Concept of Stress in Fish. In Fish Physiology; Elsevier Inc.: Amsterdam, The Netherlands, 2016; Volume 35. [Google Scholar]
- Jerez-Cepa, I.; Ruiz-Jarabo, I. Physiology: An Important Tool to Assess the Welfare of Aquatic Animals. Biology 2021, 10, 61. [Google Scholar] [CrossRef]
- Zahl, I.H.; Kiessling, A.; Samuelsen, O.B.; Olsen, R.E. Anesthesia Induces Stress in Atlantic Salmon (Salmo salar), Atlantic Cod (Gadus morhua) and Atlantic Halibut (Hippoglossus hippoglossus). Fish Physiol. Biochem. 2010, 36, 719–730. [Google Scholar] [CrossRef]
- Alagöz, K.; Paruğ, Ş.; Taştan, Y.; Bilen, S.; Sönmez, A.Y. Spurge (Euphorbia rigida) Exhibits Anaesthetic Effect in Rainbow Trout (Oncorhynchus mykiss) without Altering Plasma Cortisol Levels. Aquac. Res. 2021, 52, 5441–5451. [Google Scholar] [CrossRef]
- Bodur, T.; Afonso, J.M.; Montero, D.; Navarro, A. Assessment of Effective Dose of New Herbal Anesthetics in Two Marine Aquaculture Species: Dicentrarchus labrax and Argyrosomus regius. Aquaculture 2018, 482, 78–82. [Google Scholar] [CrossRef]
- Maita, M.; Satoh, K.I.; Fukuda, Y.; Lee, H.K.; Winton, J.R.; Okamoto, N. Correlation between Plasma Component Levels of Cultured Fish and Resistance to Bacterial Infection. Fish Pathol. 1998, 33, 129–133. [Google Scholar] [CrossRef] [Green Version]
- Velisek, J.; Stara, A.; Li, Z.H.; Silovska, S.; Turek, J. Comparison of the Effects of Four Anaesthetics on Blood Biochemical Profiles and Oxidative Stress Biomarkers in Rainbow Trout. Aquaculture 2011, 310, 369–375. [Google Scholar] [CrossRef]
- Pritchard, J.B. The Gill and Homeostasis: Transport under Stress. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003, 285, 1269–1271. [Google Scholar] [CrossRef] [Green Version]
- Rinaldi, L.; Basso, P.; Tettamanti, G.; Grimaldi, A.; Terova, G.; Saroglia, M.; de Eguileor, M. Oxygen Availability Causes Morphological Changes and a Different Vegf/Fik-1/Hif-2 Expression Pattern in Sea Bass Gills. Ital. J. Zool. 2005, 72, 103–111. [Google Scholar] [CrossRef] [Green Version]
- Chance, R.J.; Cameron, G.A.; Fordyce, M.; Noguera, P.; Wang, T.; Collins, C.; Secombes, C.J.; Collet, B. Effects of Repeated Anaesthesia on Gill and General Health of Atlantic Salmon, Salmo salar. J. Fish Biol. 2018, 93, 1069–1081. [Google Scholar] [CrossRef] [Green Version]
- Teles, M.; Oliveira, M.; Jerez-Cepa, I.; Franco-Martínez, L.; Tvarijonaviciute, A.; Tort, L.; Mancera, J.M. Transport and Recovery of Gilthead Sea Bream (Sparus aurata L.) Sedated with Clove Oil and MS222: Effects on Oxidative Stress Status. Front. Physiol. 2019, 10, 523. [Google Scholar] [CrossRef]
- Chowdhury, S.; Saikia, S.K. Oxidative Stress in Fish: A Review. J. Sci. Res. 2020, 12, 145–160. [Google Scholar] [CrossRef] [Green Version]
- Santurtun, E.; Broom, D.M.; Phillips, C.J.C. A Review of Factors Affecting the Welfare of Atlantic Salmon (Salmo salar). Anim. Welf. 2018, 27, 193–204. [Google Scholar] [CrossRef]
- Saraiva, J.L.; Arechavala-Lopez, P.; Cabrera-Álvarez, M.J.; Waley, D. Requested by the ANIT Committee Particular Welfare Needs in Animal Transport: Aquatic Animals; EPRS: Brussels, Belgium, 2021. [Google Scholar]
- Vanderzwalmen, M.; Eaton, L.; Mullen, C.; Henriquez, F.; Carey, P.; Snellgrove, D.; Sloman, K.A. The Use of Feed and Water Additives for Live Fish Transport. Rev. Aquac. 2019, 11, 263–278. [Google Scholar] [CrossRef] [Green Version]
- Sampaio, F.D.F.; Freire, C.A. An Overview of Stress Physiology of Fish Transport: Changes in Water Quality as a Function of Transport Duration. Fish Fish. 2016, 17, 1055–1072. [Google Scholar] [CrossRef]
- Bowker, J.D.; Trushenski, J.T. Mythbusters: What’s Real and What’s Not When It Comes to Fish Drugs. N. Am. J. Aquac. 2015, 77, 358–366. [Google Scholar] [CrossRef]
- Kampke, E.H.; de Souza Barroso, M.E.; Marques, F.M.; Fronza, M.; Scherer, R.; Lemos, M.F.; Campagnaro, B.P.; Gomes, L.C. Genotoxic effect of Lippia alba (Mill.) NE Brown essential oil on fish (Oreochromis niloticus) and mammal (Mus musculus). Environ. Toxicol. Pharmacol. 2018, 59, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Postay, L.F.; Cabral, D.S.; Heringer, O.A.; Vieira, L.V.; de Moraes, L.R.; Freitas, G.; Gomes, L.C. The effectiveness of surfactants applied with essential oil of Lippia alba in the anesthesia of Nile tilapia (Oreochromis niloticus) and their toxicity assessment for fish and mammals. Environ. Sci. Pollut. Res. 2021, 28, 10224–10233. [Google Scholar] [CrossRef] [PubMed]
- dos Santos Nascimento, H.; do Amaral Crispim, B.; Francisco, L.F.V.; Merey, F.M.; Kummrow, F.; Viana, L.F.; Inoue, L.A.K.A.; Barufatti, A. Genotoxicity evaluation of three anesthetics commonly employed in aquaculture using Oreochromis niloticus and Astyanax lacustris. Aquac. Rep. 2020, 17, 100357. [Google Scholar] [CrossRef]
- Golomazou, E.; Malandrakis, E.E.; Kavouras, M.; Karatzinos, T.; Miliou, H.; Exadactylos, A.; Panagiotaki, P. Anaesthetic and genotoxic effect of medicinal plant extracts in gilthead seabream (Sparus aurata L.). Aquaculture 2016, 464, 673–682. [Google Scholar] [CrossRef]
- Guillard, R.R.L.; Morton, S.L. Culture Methods. In Manual on Harmful Marine Microalgae; UNESCO: Paris, France, 2003; pp. 77–97. ISBN 9231039482. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonçalves, A.T.; Llanos-Rivera, A.; Ruano, M.; Avello, V.; Gallardo-Rodriguez, J.J.; Astuya-Villalón, A. Physiological Response of Atlantic Salmon (Salmo salar) to Long-Term Exposure to an Anesthetic Obtained from Heterosigma akashiwo. Toxins 2022, 14, 575. https://doi.org/10.3390/toxins14080575
Gonçalves AT, Llanos-Rivera A, Ruano M, Avello V, Gallardo-Rodriguez JJ, Astuya-Villalón A. Physiological Response of Atlantic Salmon (Salmo salar) to Long-Term Exposure to an Anesthetic Obtained from Heterosigma akashiwo. Toxins. 2022; 14(8):575. https://doi.org/10.3390/toxins14080575
Chicago/Turabian StyleGonçalves, Ana Teresa, Alejandra Llanos-Rivera, Miguel Ruano, Veronica Avello, Juan José Gallardo-Rodriguez, and Allisson Astuya-Villalón. 2022. "Physiological Response of Atlantic Salmon (Salmo salar) to Long-Term Exposure to an Anesthetic Obtained from Heterosigma akashiwo" Toxins 14, no. 8: 575. https://doi.org/10.3390/toxins14080575
APA StyleGonçalves, A. T., Llanos-Rivera, A., Ruano, M., Avello, V., Gallardo-Rodriguez, J. J., & Astuya-Villalón, A. (2022). Physiological Response of Atlantic Salmon (Salmo salar) to Long-Term Exposure to an Anesthetic Obtained from Heterosigma akashiwo. Toxins, 14(8), 575. https://doi.org/10.3390/toxins14080575