Study of Competitive Displacement of Curcumin on α-zearalenol Binding to Human Serum Albumin Complex Using Fluorescence Spectroscopy
Abstract
:1. Introduction
2. Results
2.1. The Comparison of the Affinity of α-ZOL–HSA and Curcumin–HSA Complexes
2.2. Analysis of the Site of Curcumin–α-ZOL on HSA
2.3. Effect of Curcumin on α-ZOL–HSA Interaction
2.4. Studies of Competive Displacement of Curcumin on α-ZOL from HSA by Ultrafiltration–HPLC Studies
2.5. Effect of the Competitive Replacement of Curcumin on α-ZOL on Microenvironment of HSA
2.6. Effect of the Ratio of HS–α-ZOL–Curcumin on the Competitive Replacement
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Reagents
5.2. Fluorescence Spectroscopy
5.3. Competitive Probe Studies
5.4. Ultrafiltration–HPLC Study
5.5. Synchronous Fluorescence Spectra
5.6. Effect of Concentration Ratio on Competitive Response
5.7. Data Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marin, D.E.; Taranu, I.; Burlacu, R.; Tudor, D.S. Effects of zearalenone and its derivatives on the innate immune response of swine. Toxicon 2010, 56, 956–963. [Google Scholar] [CrossRef] [PubMed]
- Zinedine, A.; Soriano, J.M.; Moltó, J.C.; Mañes, J. Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: An oestrogenic mycotoxin. Food Chem. Toxicol. 2007, 45, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Binder, S.B.; Schwartz-Zimmermann, H.E.; Varga, E.; Bichl, G.; Michlmayr, H.; Adam, G.; Berthiller, F. Metabolism of Zearalenone and Its Major Modified Forms in Pigs. Toxins 2017, 9, 56. [Google Scholar] [CrossRef] [PubMed]
- Fleck, S.C.; Churchwell, M.I.; Doerge, D.R. Metabolism and pharmacokinetics of zearalenone following oral and intravenous administration in juvenile female pigs. Food Chem. Toxicol. 2017, 106, 193–201. [Google Scholar] [CrossRef]
- Rogowska, A.; Pomastowski, P.; Sagandykova, G.; Buszewski, B. Zearalenone and its metabolites: Effect on human health, metabolism and neutralisation methods. Toxicon 2019, 162, 46–56. [Google Scholar] [CrossRef]
- Rai, A.; Das, M.; Tripathi, A. Occurrence and toxicity of a fusarium mycotoxin, zearalenone. Crit. Rev. Food Sci. Nutr. 2020, 60, 2710–2729. [Google Scholar] [CrossRef]
- Frizzell, C.; Ndossi, D.; Verhaegen, S.; Dahl, E.; Eriksen, G.; Sorlie, M.; Ropstad, E.; Muller, M.; Elliott, C.T.; Connolly, L. Endocrine disrupting effects of zearalenone, alpha- and beta-zearalenol at the level of nuclear receptor binding and steroidogenesis. Toxicol. Lett. 2011, 206, 210–217. [Google Scholar] [CrossRef]
- Jung, E.-M.; Choi, K.-C.; Yu, F.H.; Jeung, E.-B. Effects of 17β-estradiol and xenoestrogens on mouse embryonic stem cells. Toxicol. Vitr. 2010, 24, 1538–1545. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, W.; Chen, C.-C.; Li, Q.; Huang, J.-W.; Ko, T.-P.; Liu, G.; Liu, W.; Peng, W.; Cheng, Y.-S.; et al. Enhanced α-Zearalenol Hydrolyzing Activity of a Mycoestrogen-Detoxifying Lactonase by Structure-Based Engineering. ACS Catal. 2016, 6, 7657–7663. [Google Scholar] [CrossRef]
- Agahi, F.; Penalva-Olcina, R.; Font, G.; Juan-García, A.; Juan, C. Effects of Voghiera garlic extracts in neuronal human cell line against zearalenone’s derivates and beauvericin. Food Chem. Toxicol. 2022, 162, 112905. [Google Scholar] [CrossRef]
- He, X.M.; Carter, D.C. Atomic-structure and chemistry of human serum-albumin. Nature 1992, 358, 209–215. [Google Scholar] [CrossRef]
- Poór, M.; Kunsági-Máté, S.; Bálint, M.; Hetényi, C.; Gerner, Z.; Lemli, B. Interaction of mycotoxin zearalenone with human serum albumin. J. Photochem. Photobiol. B Biol. 2017, 170, 16–24. [Google Scholar] [CrossRef]
- Fliszar-Nyul, E.; Lemli, B.; Kunsagi-Mate, S.; Dellafiora, L.; Dall’Asta, C.; Cruciani, G.; Petho, G.; Poor, M. Interaction of Mycotoxin Alternariol with Serum Albumin. Int. J. Mol. Sci. 2019, 20, 2352. [Google Scholar] [CrossRef]
- Faisal, Z.; Lemli, B.; Szerencses, D.; Kunsagi-Mate, S.; Balint, M.; Hetenyi, C.; Kuzma, M.; Mayer, M.; Poor, M. Interactions of zearalenone and its reduced metabolites alpha-zearalenol and beta-zearalenol with serum albumins: Species differences, binding sites, and thermodynamics. Mycotoxin Res. 2018, 34, 269–278. [Google Scholar] [CrossRef]
- Poor, M.; Balint, M.; Hetenyi, C.; Goder, B.; Kunsagi-Mate, S.; Koszegi, T.; Lemli, B. Investigation of Non-Covalent Interactions of Aflatoxins (B1, B2, G1, G2, and M1) with Serum Albumin. Toxins 2017, 9, 339. [Google Scholar] [CrossRef]
- Yamasaki, K.; Chuang, V.T.; Maruyama, T.; Otagiri, M. Albumin-drug interaction and its clinical implication. Biochim. Biophys. Acta 2013, 1830, 5435–5443. [Google Scholar] [CrossRef]
- Poor, M.; Kunsagi-Mate, S.; Bencsik, T.; Petrik, J.; Vladimir-Knezevic, S.; Koszegi, T. Flavonoid aglycones can compete with Ochratoxin A for human serum albumin: A new possible mode of action. Int. J. Biol. Macromol. 2012, 51, 279–283. [Google Scholar] [CrossRef]
- Tan, H.; Chen, L.; Ma, L.; Liu, S.; Zhou, H.; Zhang, Y.; Guo, T.; Liu, W.; Dai, H.; Yu, Y. Fluorescence Spectroscopic Investigation of Competitive Interactions between Quercetin and Aflatoxin B₁ for Binding to Human Serum Albumin. Toxins 2019, 11, 214. [Google Scholar] [CrossRef]
- Fan, T.; Xie, Y.; Sun, S. Interference of anthocyanin extracted from black soybean coats on aflatoxin B1-human serum albumin in the binding process. Food Addit. Contam. Part A 2021, 38, 1571–1582. [Google Scholar] [CrossRef]
- Qureshi, M.A.; Javed, S. Investigating binding dynamics of trans resveratrol to HSA for an efficient displacement of aflatoxin B1 using spectroscopy and molecular simulation. Sci. Rep. 2022, 12, 2400. [Google Scholar] [CrossRef]
- Maciążek-Jurczyk, M.; Maliszewska, M.; Pożycka, J.; Równicka-Zubik, J.; Góra, A.; Sułkowska, A. Tamoxifen and curcumin binding to serum albumin. Spectroscopic study. J. Mol. Struct. 2013, 1044, 194–200. [Google Scholar] [CrossRef]
- Limaye, A.; Yu, R.-C.; Chou, C.-C.; Liu, J.-R.; Cheng, K.-C. Protective and Detoxifying Effects Conferred by Dietary Selenium and Curcumin against AFB1-Mediated Toxicity in Livestock: A Review. Toxins 2018, 10, 25. [Google Scholar] [CrossRef]
- Jin, S.; Yang, H.; Wang, Y.; Pang, Q.; Jiao, Y.; Shan, A.; Feng, X. Dietary Curcumin Alleviated Aflatoxin B1-Induced Acute Liver Damage in Ducks by Regulating NLRP3-Caspase-1 Signaling Pathways. Foods 2021, 10, 3086. [Google Scholar] [CrossRef]
- Ma, L.; Maragos, C.M.; Zhang, Y. Interaction of zearalenone with bovine serum albumin as determined by fluorescence quenching. Mycotoxin Res. 2018, 34, 39–48. [Google Scholar] [CrossRef]
- Zhang, G.; Zhao, N.; Wang, L. Fluorescence spectrometric studies on the binding of puerarin to human serum albumin using warfarin, ibuprofen and digitoxin as site markers with the aid of chemometrics. J. Lumin. 2011, 131, 2716–2724. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, X.; Liu, Y.C.; Huang, S.C.; Ouyang, Y.; Hu, Y.J. Investigations of the molecular interactions between nisoldipine and human serum albumin in vitro using multi-spectroscopy, electrochemistry and docking studies. J. Mol. Liq. 2018, 258, 155–162. [Google Scholar] [CrossRef]
- Razzak, M.A.; Lee, J.E.; Choi, S.S. Structural insights into the binding behavior of isoflavonoid glabridin with human serum albumin. Food Hydrocoll. 2019, 91, 290–300. [Google Scholar] [CrossRef]
- Martinez-Gomez, M.A.; Escuder-Gilabert, L.; Villanueva-Camanas, R.M.; Sagrado, S.; Medina-Hernandez, M.J. Evaluation of enantioselective binding of propanocaine to human serum albumin by ultrafiltration and electrokinetic chromatography under intermediate precision conditions. J. Chromatogr. B 2012, 889, 87–94. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, L.; Sun, Q.; Gan, N.; Zhang, Q.; Yang, J.; Yi, B.; Liao, X.; Zhu, D.; Li, H. Study on the interaction between 2,6-dihydroxybenzoic acid nicotine salt and human serum albumin by multi-spectroscopy and molecular dynamics simulation. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 270, 120868. [Google Scholar] [CrossRef]
- Zhang, Q.-J.; Liu, B.-S.; Han, R.; Li, G.-X. Studies on the interaction of gliclazide with bovine serum albumin by fluorescence and synchronous fluorescence spectroscopy. Spectrosc. Lett. 2015, 49, 208–213. [Google Scholar] [CrossRef]
- Banu, A.; Khan, R.H.; Qashqoosh, M.T.A.; Manea, Y.K.; Furkan, M.; Naqvi, S. Multispectroscopic and computational studies of interaction of bovine serum albumin, human serum albumin and bovine hemoglobin with bisacodyl. J. Mol. Struct. 2022, 1249, 131550. [Google Scholar] [CrossRef]
- Baudrimont, I.; Murn, M.; Betbeder, A.M.; Guilcher, J.; Creppy, E.E. Effect of piroxicam on the nephrotoxicity induced by ochratoxin A in rats. Toxicology 1995, 95, 147–154. [Google Scholar] [CrossRef]
- Galtier, P.; Camguilhem, R.; Bodin, G. Evidence for in vitro and in vivo interaction between ochratoxin A and three acidic drugs. Food Cosmet. Toxicol. 1980, 18, 493–496. [Google Scholar] [CrossRef]
- Poor, M.; Kunsagi-Mate, S.; Czibulya, Z.; Li, Y.; Peles-Lemli, B.; Petrik, J.; Vladimir-Knezevic, S.; Koszegi, T. Fluorescence spectroscopic investigation of competitive interactions between ochratoxin A and 13 drug molecules for binding to human serum albumin. Luminescence 2013, 28, 726–733. [Google Scholar] [CrossRef]
- Koszegi, T.; Poor, M. Ochratoxin A: Molecular Interactions, Mechanisms of Toxicity and Prevention at the Molecular Level. Toxins 2016, 8, 111. [Google Scholar] [CrossRef]
- Kumagai, S. Ochratoxin A: Plasma concentration and excretion into bile and urine in albumin-deficient rats. Food Chem. Toxicol. 1985, 23, 941–943. [Google Scholar] [CrossRef]
- Suzuki, M.; Nakamura, T.; Iyoki, S.; Fujiwara, A.; Watanabe, Y.; Mohri, K.; Isobe, K.; Ono, K.; Yano, S. Elucidation of anti-allergic activities of curcumin-related compounds with a special reference to their anti-oxidative activities. Biol. Pharm. Bull. 2005, 28, 1438–1443. [Google Scholar] [CrossRef]
- Shaikh, S.A.M.; Singh, B.G.; Barik, A.; Ramani, M.V.; Balaji, N.V.; Subbaraju, G.V.; Naik, D.B.; Indira Priyadarsini, K. Diketo modification of curcumin affects its interaction with human serum albumin. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 199, 394–402. [Google Scholar] [CrossRef]
- Tapal, A.; Tiku, P.K. Complexation of curcumin with soy protein isolate and its implications on solubility and stability of curcumin. Food Chem. 2012, 130, 960–965. [Google Scholar] [CrossRef]
- Marefati, A.; Bertrand, M.; Sjöö, M.; Dejmek, P.; Rayner, M. Storage and digestion stability of encapsulated curcumin in emulsions based on starch granule Pickering stabilization. Food Hydrocoll. 2017, 63, 309–320. [Google Scholar] [CrossRef]
- Shityakov, S.; Salmas, R.E.; Durdagi, S.; Roewer, N.; Förster, C.; Broscheit, J. Solubility profiles, hydration and desolvation of curcumin complexed with γ-cyclodextrin and hydroxypropyl-γ-cyclodextrin. J. Mol. Struct. 2017, 1134, 91–98. [Google Scholar] [CrossRef]
- Aditya, N.P.; Yang, H.; Kim, S.; Ko, S. Fabrication of amorphous curcumin nanosuspensions using β-lactoglobulin to enhance solubility, stability, and bioavailability. Colloids Surf. B Biointerfaces 2015, 127, 114–121. [Google Scholar] [CrossRef]
- Chen, F.P.; Ou, S.Y.; Chen, Z.; Tang, C.H. Soy Soluble Polysaccharide as a Nanocarrier for Curcumin. J. Agric. Food Chem. 2017, 65, 1707–1714. [Google Scholar] [CrossRef]
- Ubeyitogullari, A.; Ciftci, O.N. A novel and green nanoparticle formation approach to forming low-crystallinity curcumin nanoparticles to improve curcumin’s bioaccessibility. Sci. Rep. 2019, 9, 19112. [Google Scholar] [CrossRef]
- Somu, P.; Paul, S. Bio-conjugation of curcumin with self-assembled casein nanostructure via surface loading enhances its bioactivity: An efficient therapeutic system. Appl. Surf. Sci. 2018, 462, 316–329. [Google Scholar] [CrossRef]
- Lee, E.M.; Gwon, S.Y.; Son, Y.A.; Kim, S.H. Fluorescence quenching of carbazole by 2-chloro-3,5-dinitrobenzotrifluoride-ethylamines intermolecular charge-transfer complex. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 103, 453–455. [Google Scholar] [CrossRef]
- Gehlen, M.H. The centenary of the Stern-Volmer equation of fluorescence quenching: From the single line plot to the SV quenching map. J. Photochem. Photobiol. C Photochem. Rev. 2020, 42, 100338. [Google Scholar] [CrossRef]
- Feng, J.; Zhao, X.; Yan, Y.; Chen, H.; Liu, J.; Li, X.; Na, R.; Li, Q.X. Interactions between stipuol enantiomers and human serum albumin. Food Chem. 2022, 385, 132686. [Google Scholar] [CrossRef]
Complex | Ksv (×104 L moL−1) | Kq (×1012 L moL−1s−1) | R | Ka (M−1) | n | R |
---|---|---|---|---|---|---|
curcumin–HSA | 2.92 | 2.92 | 0.966 | 1.12×105 | 1.13 | 0.980 |
α-ZOL–HSA | 7.15 | 7.15 | 0.999 | 3.98×104 | 0.98 | 0.994 |
Cα-ZOL (×10−6 L moL−1) | Ksv (×104 L moL−1) | Kq (×1012 L moL−1s−1) | R | Ka (M−1) | n | R |
---|---|---|---|---|---|---|
0 | 2.92 | 2.92 | 0.966 | 11.20 | 1.13 | 0.980 |
2.0 | 3.64 | 3.64 | 0.991 | 14.40 | 1.12 | 0.990 |
4.0 | 3.84 | 3.84 | 0.989 | 8.32 | 1.07 | 0.982 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Tan, H.; Zhou, H.; Guo, T.; Zhou, Y.; Zhang, Y.; Liu, X.; Ma, L. Study of Competitive Displacement of Curcumin on α-zearalenol Binding to Human Serum Albumin Complex Using Fluorescence Spectroscopy. Toxins 2022, 14, 604. https://doi.org/10.3390/toxins14090604
Li Y, Tan H, Zhou H, Guo T, Zhou Y, Zhang Y, Liu X, Ma L. Study of Competitive Displacement of Curcumin on α-zearalenol Binding to Human Serum Albumin Complex Using Fluorescence Spectroscopy. Toxins. 2022; 14(9):604. https://doi.org/10.3390/toxins14090604
Chicago/Turabian StyleLi, Yifang, Hongxia Tan, Hongyuan Zhou, Ting Guo, Ying Zhou, Yuhao Zhang, Xiaozhu Liu, and Liang Ma. 2022. "Study of Competitive Displacement of Curcumin on α-zearalenol Binding to Human Serum Albumin Complex Using Fluorescence Spectroscopy" Toxins 14, no. 9: 604. https://doi.org/10.3390/toxins14090604
APA StyleLi, Y., Tan, H., Zhou, H., Guo, T., Zhou, Y., Zhang, Y., Liu, X., & Ma, L. (2022). Study of Competitive Displacement of Curcumin on α-zearalenol Binding to Human Serum Albumin Complex Using Fluorescence Spectroscopy. Toxins, 14(9), 604. https://doi.org/10.3390/toxins14090604