Immunoaffinity Cleanup and Isotope Dilution-Based Liquid Chromatography Tandem Mass Spectrometry for the Determination of Six Major Mycotoxins in Feed and Feedstuff
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation of IACs
2.1.1. Column Capacity
2.1.2. Specificity
2.2. Method Optimization
2.2.1. LC-MS/MS Conditions
2.2.2. The Application of Isotope Internal Standards
2.2.3. The Selection of Product Ions
2.3. Method Validation
2.3.1. Linearity and Sensitivity
2.3.2. Recovery and Precision
2.3.3. Stability
2.4. Application to Feed Samples for Mycotoxins Analysis
3. Conclusions
4. Material and Methods
4.1. Chemicals and Reagents
4.2. Apparatus
4.3. Preparation of IACs
4.3.1. Matrix Preparation
4.3.2. Ligand Conjugation
4.3.3. Packing in Columns
4.4. Sample Preparation
4.5. LC-MS/MS Analysis
4.6. Result Calculation
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marin, S.; Ramos, A.J.; Cano-Sancho, G.; Sanchis, V. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food Chem. Toxicol. 2013, 60, 218–237. [Google Scholar] [CrossRef] [PubMed]
- Binder, E.M.; Tan, L.M.; Chin, L.J.; Handl, J.; Richard, J. Worldwide occurrence of mycotoxins in commodities, feeds and feed ingredients. Anim. Feed Sci. Technol. 2007, 137, 265–282. [Google Scholar] [CrossRef]
- Neme, K.; Mohammed, A. Mycotoxin occurrence in grains and the role of postharvest management as a mitigation strategies. A review. Food Control 2017, 78, 412–425. [Google Scholar] [CrossRef]
- Rahman, H.U.; Yue, X.; Yu, Q.; Xie, H.; Zhang, W.; Zhang, Q.; Li, P. Specific antigen-based and emerging detection technologies of mycotoxins. J. Sci. Food Agric. 2019, 99, 4869–4877. [Google Scholar] [CrossRef]
- Tatay, E.; Espin, S.; Garcia-Fernandez, A.J.; Ruiz, M.J. Estrogenic activity of zearalenone, alpha-zearalenol and beta-zearalenol assessed using the E-screen assay in MCF-7 cells. Toxicol. Mech. Methods 2018, 28, 239–242. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Pan, D.; Zhang, T.; Su, M.; Sun, G.; Wei, J.; Guo, Z.; Wang, K.; Song, G.; Yan, Q. Corn Flour Intake, Aflatoxin B1 Exposure, and Risk of Esophageal Precancerous Lesions in a High-Risk Area of Huai’an, China: A Case-Control Study. Toxins 2020, 12, 299. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Qin, Z.; Kuca, K.; You, L.; Zhao, Y.; Liu, A.; Musilek, K.; Chrienova, Z.; Nepovimova, E.; Oleksak, P.; et al. An update on T-2 toxin and its modified forms: Metabolism, immunotoxicity mechanism, and human exposure assessment. Arch. Toxicol. 2020, 94, 3645–3669. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Yang, X.; Liu, M.; Huang, W.; Zhang, J.; Song, M.; Shao, B.; Li, Y. The nephrotoxicity of T-2 toxin in mice caused by oxidative stress-mediated apoptosis is related to Nrf2 pathway. Food Chem. Toxicol. 2021, 149, 112027. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Zhang, Y.; Yin, S.; Jia, Z.; Shan, A. Biochemical changes and oxidative stress induced by zearalenone in the liver of pregnant rats. Hum. Exp. Toxicol. 2015, 34, 65–73. [Google Scholar] [CrossRef]
- Singh, R.; Park, S.; Koo, J.S.; Kim, I.H.; Balasubramanian, B. Significance of varying concentrations of T-2 toxin on growth performance, serum biochemical and hematological parameters in broiler chickens. J. Anim. Sci. Technol. 2020, 62, 468–474. [Google Scholar] [CrossRef]
- Rao, Z.X.; Tokach, M.D.; Woodworth, J.C.; DeRouchey, J.M.; Goodband, R.D.; Calderon, H.I.; Dritz, S.S. Effects of Fumonisin-Contaminated Corn on Growth Performance of 9 to 28 kg Nursery Pigs. Toxins 2020, 12, 604. [Google Scholar] [CrossRef] [PubMed]
- Benkerroum, N. Aflatoxins: Producing-Molds, Structure, Health Issues and Incidence in Southeast Asian and Sub-Saharan African Countries. Int. J. Environ. Res. Public Health 2020, 17, 1215. [Google Scholar] [CrossRef] [PubMed]
- Marijani, E.; Charo-Karisa, H.; Gnonlonfin, G.J.B.; Kigadye, E.; Okoth, S. Effects of aflatoxin B(1) on reproductive performance of farmed Nile tilapia. Int. J. Vet. Sci. Med. 2019, 7, 35–42. [Google Scholar] [CrossRef]
- Pang, J.; Zhou, Q.; Sun, X.; Li, L.; Zhou, B.; Zeng, F.; Zhao, Y.; Shen, W.; Sun, Z. Effect of low-dose zearalenone exposure on reproductive capacity of male mice. Toxicol. Appl. Pharmacol. 2017, 333, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Pizzolato Montanha, F.; Anater, A.; Burchard, J.F.; Luciano, F.B.; Meca, G.; Manyes, L.; Pimpão, C.T. Mycotoxins in dry-cured meats: A review. Food Chem. Toxicol. 2018, 111, 494–502. [Google Scholar] [CrossRef]
- European Commission (EC). Commission Recommendation 576/2006/EC of 17 August 2006 on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT-2 and fumonisins in products intended for animal feeding. Off. J. Eur. Union 2006, L229, 7–9. [Google Scholar]
- GB 13078-2017; Standardization Administration of the People’s Republic of China. Hygienical Standard for Feeds: GB 13078-2017. Standards Press of China: Beijing, China, 2017.
- Qu, L.; Jia, Q.; Liu, C.; Wang, W.; Duan, L.; Yang, G.; Han, C.Q.; Li, H. Thin layer chromatography combined with surface-enhanced raman spectroscopy for rapid sensing aflatoxins. J. Chromatogr. A 2018, 1579, 115–120. [Google Scholar] [CrossRef]
- Chen, J.; Wang, L.; Zhao, M.; Huang, D.; Luo, F.; Huang, L.; Qiu, B.; Guo, L.; Lin, Z.; Chen, G. Enzyme-linked immunosorbent assay for aflatoxin B-1 using a portable pH meter as the readout. Anal. Methods 2018, 10, 3804–3809. [Google Scholar] [CrossRef]
- D’Agnello, P.; Vita, V.; Franchino, C.; Urbano, L.; Curiale, A.; Debegnach, F.; Iammarino, M.; Marchesani, G.; Chiaravalle, A.E.; De Pace, R. ELISA and UPLC/FLD as Screening and Confirmatory Techniques for T-2/HT-2 Mycotoxin Determination in Cereals. Appl. Sci. 2021, 11, 1688. [Google Scholar] [CrossRef]
- Muscarella, M.; Iammarino, M.; Nardiello, D.; Lo Magro, S.; Palermo, C.; Centonze, D.; Palermo, D. Validation of a confirmatory analytical method for the determination of aflatoxins B1, B2, G1 and G2 in foods and feed materials by HPLC with on-line photochemical derivatization and fluorescence detection. Food Addit Contam Part. A Chem Anal. Control. Expo. Risk Assess. 2009, 26, 1402–1410. [Google Scholar] [CrossRef]
- Kim, H.; Lee, M.; Kim, H.; Cho, S.; Park, H.; Jeong, M. Analytical method development and monitoring of Aflatoxin B1, B2, G1, G2 and Ochratoxin A in animal feed using HPLC with fluorescence detector and photochemical reaction device. Cogent Food Agric. 2017, 3, 1419788. [Google Scholar] [CrossRef]
- Monbaliu, S.; Van Poucke, C.; Detavernier, C.; Dumoulin, F.; Van De Velde, M.; Schoeters, E.; Van Dyck, S.; Averkieva, O.; Van Peteghem, C.; De Saeger, S. Occurrence of Mycotoxins in Feed as Analyzed by a Multi-Mycotoxin LC-MS/MS Method. J. Agric. Food Chem. 2010, 58, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Nakhjavan, B.; Ahmed, N.S.; Khosravifard, M. Development of an Improved Method of Sample Extraction and Quantitation of Multi-Mycotoxin in Feed by LC-MS/MS. Toxins 2020, 12, 462. [Google Scholar] [CrossRef]
- Rubert, J.; Dzuman, Z.; Vaclavikova, M.; Zachariasova, M.; Soler, C.; Hajslova, J. Analysis of mycotoxins in barley using ultra high liquid chromatography high resolution mass spectrometry: Comparison of efficiency and efficacy of different extraction procedures. Talanta 2012, 99, 712–719. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Wang, M.; You, T.; Wang, K. Using Magnetic Multiwalled Carbon Nanotubes as Modified QuEChERS Adsorbent for Simultaneous Determination of Multiple Mycotoxins in Grains by UPLC-MS/MS. J. Agric. Food Chem. 2019, 67, 8035–8044. [Google Scholar] [CrossRef]
- Ye, Z.; Cui, P.; Wang, Y.; Yan, H.; Wang, X.; Han, S.; Zhou, Y. Simultaneous Determination of Four Aflatoxins in Dark Tea by Multifunctional Purification Column and Immunoaffinity Column Coupled to Liquid Chromatography Tandem Mass Spectrometry. J. Agric. Food Chem. 2019, 67, 11481–11488. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; De Saeger, S.; Shi, W.; Li, C.; Zhang, S.; Cao, X.; Shen, J. Determination of deoxynivalenol in cereals by immunoaffinity clean-up and ultra-high performance liquid chromatography tandem mass spectrometry. Methods 2012, 56, 192–197. [Google Scholar] [CrossRef]
- AlFaris, N.A.; Wabaidur, S.M.; Alothman, Z.A.; Altamimi, J.Z.; Aldayel, T.S. Fast and efficient immunoaffinity column cleanup and liquid chromatography-tandem mass spectrometry method for the quantitative analysis of aflatoxins in baby food and feeds. J. Sep. Sci. 2020, 43, 2079–2087. [Google Scholar] [CrossRef]
- Li, Y.; Chen, A.; Mao, X.; Sun, M.; Yang, S.; Li, J.; You, Y.; Wu, Y.; Jiang, G. Multiple antibodied based immunoaffinity columns preparation for the simultaneous analysis of deoxynivalenol and T-2 toxin in cereals by liquid chromatography tandem mass spectrometry. Food Chem. 2021, 337, 127802. [Google Scholar] [CrossRef]
- Mackay, N.; Marley, E.; Leeman, D.; Poplawski, C.; Donnelly, C. Analysis of Aflatoxins, Fumonisins, Deoxynivalenol, Ochratoxin A, Zearalenone, HT-2 and T-2 toxins in Animal Feed by LC-MS/MS Using Cleanup with a Multi-Antibody Immunoaffinity Column. J. AOAC Int. 2022, 105, 1330–1340. [Google Scholar] [CrossRef]
- Lijalem, Y.G.; Gab-Allah, M.A.; Choi, K.; Kim, B. Development of isotope dilution-liquid chromatography/tandem mass spectrometry for the accurate determination of zearalenone and its metabolites in corn. Food Chem. 2022, 384, 132483. [Google Scholar] [CrossRef]
- Gab-Allah, M.A.; Choi, K.; Kim, B. Development of isotope dilution-liquid chromatography/tandem mass spectrometry for the accurate determination of type-A trichothecenes in grains. Food Chem. 2021, 344, 128698. [Google Scholar] [CrossRef] [PubMed]
- Rychlik, M.; Asam, S. Stable isotope dilution assays in mycotoxin analysis. Anal. Bioanal. Chem. 2008, 390, 617–628. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lin, S.; Wang, Y.; Mao, X.; Wu, Y.; Liu, Y.; Chen, D. Broad-specific monoclonal antibody based IACs purification coupled UPLC-MS/MS method for T-2 and HT-2 toxin determination in maize and cherry samples. Food Agric. Immunol. 2020, 31, 291–302. [Google Scholar] [CrossRef]
- Shen, M.H.; Singh, R.K. Determining aflatoxins in raw peanuts using immunoaffinity column as sample clean-up method followed by normal-phase HPLC-FLD analysis. Food Control 2022, 139, 109065. [Google Scholar] [CrossRef]
- Wilcox, J.; Pazdanska, M.; Milligan, C.; Chan, D.; MacDonald, S.J.; Donnelly, C. Analysis of Aflatoxins and Ochratoxin A in Cannabis and Cannabis Products by LC-Fluorescence Detection Using Cleanup with Either Multiantibody Immunoaffinity Columns or an Automated System with In-Line Reusable Immunoaffinity Cartridges. J. AOAC Int. 2020, 103, 494–503. [Google Scholar] [CrossRef] [PubMed]
- Girolamo, A.; Ciasca, B.; Pascale, M.; Lattanzio, V.M.T. Determination of Zearalenone and Trichothecenes, Including Deoxynivalenol and Its Acetylated Derivatives, Nivalenol, T-2 and HT-2 Toxins, in Wheat and Wheat Products by LC-MS/MS: A Collaborative Study. Toxins 2020, 12, 786. [Google Scholar] [CrossRef] [PubMed]
- De Santis, B.; Debegnach, F.; Gregori, E.; Russo, S.; Marchegiani, F.; Moracci, G.; Brera, C. Development of a LC-MS/MS Method for the Multi-Mycotoxin Determination in Composite Cereal-Based Samples. Toxins 2017, 9, 169. [Google Scholar] [CrossRef]
- Kappenberg, A.; Juraschek, L.M. Development of a LC-MS/MS Method for the Simultaneous Determination of the Mycotoxins Deoxynivalenol (DON) and Zearalenone (ZEA) in Soil Matrix. Toxins 2021, 13, 470. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, Y.; Deng, Q.; Sun, L.; Wang, R.; Wang, X.; Liao, J.; Gooneratne, R. Simultaneous Quantification of Aflatoxin B-1, T-2 Toxin, Ochratoxin A and Deoxynivalenol in Dried Seafood Products by LC-MS/MS. Toxins 2020, 12, 488. [Google Scholar] [CrossRef]
- Lattanzio, V.M.T.; Della Gatta, S.; Suman, M.; Visconti, A. Development and in-house validation of a robust and sensitive solid-phase extraction liquid chromatography/tandem mass spectrometry method for the quantitative determination of aflatoxins B-1, B-2, G(1), G(2), ochratoxin A, deoxynivalenol, zearalenone, T-2 and HT-2 toxins in cereal-based foods. Rapid Commun. Mass Spectrom. 2011, 25, 1869–1880. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Wong, J.W.; Krynitsky, A.J.; Trucksess, M.W. Determining Mycotoxins in Baby Foods and Animal Feeds Using Stable Isotope Dilution and Liquid Chromatography Tandem Mass Spectrometry. J. Agric. Food Chem. 2014, 62, 8935–8943. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.J.; Kim, H.J. Development of an immunoaffinity chromatography and LC-MS/MS method for the determination of 6 zearalenones in animal feed. PLoS ONE 2018, 13, e0193584. [Google Scholar] [CrossRef] [PubMed]
- Paoloni, A.; Solfrizzo, M.; Bibi, R.; Pecorelli, I. Development and validation of LC-MS/MS method for the determination of Ochratoxin A and its metabolite Ochratoxin α in poultry tissues and eggs. J. Environ. Sci. Health. Part. B Pestic. Food Contam. Agric. Waste 2018, 53, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Albero, B.; Fernandez-Cruz, M.L.; Perez, R.A. Simultaneous Determination of 15 Mycotoxins in Aquaculture Feed by Liquid Chromatography-Tandem Mass Spectrometry. Toxins 2022, 14, 316. [Google Scholar] [CrossRef]
- Franco, L.T.; Petta, T.; Rottinghaus, G.E.; Bordin, K.; Gomes, G.A.; Oliveira, C.A.F. Co-occurrence of mycotoxins in maize food and maize-based feed from small-scale farms in Brazil: A pilot study. Mycotoxin Res. 2019, 35, 65–73. [Google Scholar] [CrossRef]
- Streit, E.; Naehrer, K.; Rodrigues, I.; Schatzmayr, G. Mycotoxin occurrence in feed and feed raw materials worldwide: Long-term analysis with special focus on Europe and Asia. J. Sci. Food Agric. 2013, 93, 2892–2899. [Google Scholar] [CrossRef]
- Arroyo-Manzanares, N.; Rodriguez-Estevez, V.; Arenas-Fernandez, P.; Garcia-Campana, A.M.; Gamiz-Gracia, L. Occurrence of Mycotoxins in Swine Feeding from Spain. Toxins 2019, 11, 342. [Google Scholar] [CrossRef]
- Monge, M.P.; Dalcero, A.M.; Magnoli, C.E.; Chiacchiera, S.M. Natural co-occurrence of fungi and mycotoxins in poultry feeds from Entre Rios, Argentina. Food Addit Contam Part. B Surveill 2013, 6, 168–174. [Google Scholar] [CrossRef]
- Alassane-Kpembi, I.; Schatzmayr, G.; Taranu, I.; Marin, D.; Puel, O.; Oswald, I.P. Mycotoxins co-contamination: Methodological aspects and biological relevance of combined toxicity studies. Crit. Rev. Food Sci. Nutr. 2017, 57, 3489–3507. [Google Scholar] [CrossRef]
- Kolawole, O.; Graham, A.; Donaldson, C.; Owens, B.; Abia, W.A.; Meneely, J.; Alcorn, M.J.; Connolly, L.; Elliott, C.T. Low Doses of Mycotoxin Mixtures below EU Regulatory Limits Can Negatively Affect the Performance of Broiler Chickens: A Longitudinal Study. Toxins 2020, 12, 433. [Google Scholar] [CrossRef] [PubMed]
- Jia, R.; Liu, W.; Zhao, L.; Cao, L.; Shen, Z. Low doses of individual and combined deoxynivalenol and zearalenone in naturally moldy diets impair intestinal functions via inducing inflammation and disrupting epithelial barrier in the intestine of piglets. Toxicol. Lett. 2020, 333, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Iammarino, M.; Palermo, C.; Tomasevic, I. Advanced Analysis Techniques of Food Contaminants and Risk Assessment-Editorial. Appl. Sci. 2022, 12, 4863. [Google Scholar] [CrossRef]
- Kovac, M.; Bulaic, M.; Jakovljevic, J.; Nevistic, A.; Rot, T.; Kovac, T.; Sarkanj, I.D.; Sarkanj, B. Mycotoxins, Pesticide Residues, and Heavy Metals Analysis of Croatian Cereals. Microorganisms 2021, 9, 216. [Google Scholar] [CrossRef]
- Zhang, K.; Banerjee, K. A Review: Sample Preparation and Chromatographic Technologies for Detection of Aflatoxins in Foods. Toxins 2020, 12, 539. [Google Scholar] [CrossRef] [PubMed]
Mycotoxins | Column Capacity (ng) |
---|---|
DON | 995 |
AFB1 | 198 |
ZEN | 998 |
OTA | 100 |
T-2 toxin | 996 |
FB1 | 2995 |
Mycotoxins | Recovery (%) |
---|---|
DON | 97.9 |
AFB1 | 100.0 |
ZEN | 99.5 |
OTA | 99.8 |
T-2 toxin | 98.9 |
FB1 | 95.8 |
Analyte | Spiked Level (μg·kg−1) | Without Isotope Internal Standards | With Isotope Internal Standards | ||
---|---|---|---|---|---|
Mean Recovery (%) | RSD (%) | Mean Recovery (%) | RSD (%) | ||
DON | 1000 | 74.8 | 4.5 | 96.0 | 3.9 |
AFB1 | 10 | 56.1 | 24.1 | 93.7 | 6.8 |
ZEN | 250 | 78.1 | 16.2 | 103.7 | 0.9 |
OTA | 100 | 109.1 | 6.3 | 92.5 | 8.5 |
T-2 toxin | 500 | 47.0 | 11.8 | 99.7 | 2.4 |
FB1 | 5000 | 72.3 | 20.7 | 111.0 | 6.2 |
Mycotoxins | Product Ions (m/z) | Internal Standards | Product Ions (m/z) |
---|---|---|---|
DON | 203/249/260.9 | 13C15-DON | 216/263 |
AFB1 | 241.0/269.1/285.0 | 13C17-AFB1 | 255/301 |
ZEN | 187/202.9/283 | 13C18-ZEN | 167.9/199/215 |
OTA | 193.1/221/238.9 | 13C20-OTA | 203/231.9/250 |
T-2 toxin | 215.1/245.1/305.3 | 12C24-T-2 | 198/229/322 |
FB1 | 316.2/334.2/352.3 | 13C34-FB1 | 175/356/374 |
Analyte | Liner Range (µg·kg−1) | Standard Curve | R2 | LOD (µg·kg−1) | LOQ (µg·kg−1) |
---|---|---|---|---|---|
DON | 5–1000 | y = 0.0133x − 0.0903 | 0.9983 | 0.75 | 2.5 |
AFB1 | 0.25–50 | y = 0.0567x − 0.0119 | 0.9954 | 0.075 | 0.25 |
ZEN | 2.5–500 | y = 0.0183x + 0.0439 | 0.9996 | 0.375 | 1.25 |
OTA | 0.5–100 | y = 0.1075x − 0.0944 | 0.9983 | 0.15 | 0.5 |
T-2 toxin | 2.5–500 | y = 0.0100x − 0.0189 | 0.9990 | 0.15 | 0.5 |
FB1 | 25–5000 | y = 0.0070x + 0.0835 | 0.9983 | 1.5 | 5 |
Analyte | Spike Level (μg·kg−1) | Matrix | Mean Recovery (%) | SD (μg·kg−1) | RSD (%) |
---|---|---|---|---|---|
DON | 500, 1000, 2000 | Corn | 94.9–100.8 | 6.4–49.0 | 1.3–5.2 |
Wheat | 94.1–97.7 | 9.4–59.2 | 1.7–6.3 | ||
Pig feed | 93.9–99.4 | 7.6–92.7 | 1.5–4.9 | ||
Chicken feed | 96.1–103.6 | 27.3–61.6 | 3.0–5.4 | ||
AFB1 | 5, 10, 20 | Corn | 101.0–114.8 | 0.4–1.1 | 4.6–6.7 |
Wheat | 105.3–111.3 | 0.2–0.5 | 1.2–10.1 | ||
Pig feed | 93.7–105.0 | 0.1–1.7 | 2.5–8.9 | ||
Chicken feed | 84.2–104.3 | 0.4–1.9 | 6.5–10.3 | ||
ZEN | 125, 250, 500 | Corn | 103.2–109.0 | 3.6–14.5 | 2.7–3.9 |
Wheat | 94.9–108.5 | 2.6–13.3 | 0.9–10.7 | ||
Pig feed | 102.0–106.0 | 2.3–18.4 | 0.9–11.2 | ||
Chicken feed | 97.6–116.5 | 10.4–13.7 | 2.4–8.4 | ||
OTA | 50, 100, 200 | Corn | 96.3–110.3 | 1.1–7.0 | 2.1–3.6 |
Wheat | 98.0–111.8 | 2.7–6.0 | 1.6–10.7 | ||
Pig feed | 92.5–101.8 | 1.3–12.4 | 2.7–6.1 | ||
Chicken feed | 100.8–113.7 | 3.2–8.6 | 3.8–5.7 | ||
T-2 toxin | 250, 500, 1000 | Corn | 92.0–100.7 | 2.6–13.4 | 1.1–1.7 |
Wheat | 89.4–103.9 | 1.3–22.3 | 0.3–2.3 | ||
Pig feed | 89.3–99.7 | 3.3–16.5 | 1.5–2.4 | ||
Chicken feed | 95.4–104.4 | 0.9–15.2 | 0.2–4.2 | ||
FB1 | 2500, 5000, 10,000 | Corn | 106.1–113.3 | 144.2–340.6 | 3.0–8.9 |
Wheat | 95.5–106.4 | 125.0–277.0 | 1.4–11.6 | ||
Pig feed | 95.7–117.1 | 247.5–485.0 | 5.1–11.4 | ||
Chicken feed | 94.8–116.6 | 240.3–285.8 | 2.4–10.1 |
Analyte | Feed samples | Corn | Wheat | Pig Compound Feed | Chicken Compound Feed | Fermented Cattle Feed |
---|---|---|---|---|---|---|
Number of Samples | 8 | 6 | 8 | 8 | 6 | |
DON | Detectable samples a | 8 | 4 | 8 | 8 | 6 |
Detection rate (%) | 100 | 66.7 | 100 | 100 | 100 | |
Content range (μg·kg−1) | 339.50–1403.22 | 65.83–986.42 | 47.86–865.23 | 3.94–727.16 | 4.98–38.08 | |
AFB1 | Detectable samples | 5 | 2 | 2 | 3 | 3 |
Detection rate (%) | 62.5 | 33.3 | 25.0 | 37.5 | 50.0 | |
Content range (μg·kg−1) | 5.64–11.48 | 4.09–6.79 | 6.59–11.96 | 2.03–31.08 | 0.30–0.63 | |
ZEN | Detectable samples | 8 | 5 | 8 | 8 | 6 |
Detection rate (%) | 100 | 83.3 | 100 | 100 | 100 | |
Content range (μg·kg−1) | 2.85–208.40 | 5.10–71.89 | 10.14–284.45 | 10.15–228.58 | 20.40–149.33 | |
OTA | Detectable samples | 6 | 3 | 2 | 2 | 3 |
Detection rate (%) | 75.0 | 50.0 | 25.0 | 25.0 | 50.0 | |
Content range (μg·kg−1) | 4.60–15.05 | 1.63–11.66 | 6.54–8.40 | 1.97–6.54 | 1.82–2.79 | |
T-2 | Detectable samples | 5 | 3 | 5 | 4 | 0 |
Detection rate (%) | 62.5 | 50.0 | 62.5 | 50.0 | 0 | |
Content range (μg·kg−1) | 2.42–547.61 | 2.64–302.36 | 0.3–402.78 | 1.93–87.20 | – | |
FB1 | Detectable samples | 2 | 2 | 7 | 8 | 6 |
Detection rate (%) | 25.0 | 33.3 | 87.5 | 100 | 100 | |
Content range (μg·kg−1) | 6.02–680.93 | 21.90–709.00 | 33.55–147.11 | 15.19–2013.44 | 78.00–6220.95 |
Mycotoxins | Type | Precursor Ions (m/z) | Product Ions (m/z) | Retention Time (min) | Fragmentor (V) | Collision Energy (eV) |
---|---|---|---|---|---|---|
DON | [M+H]+ | 297.1 | 249 * | 3.067 | 110 | 10 |
203 | 6 | |||||
AFB1 | [M+H]+ | 313.1 | 241 * | 4.884 | 130 | 38 |
285 | 24 | |||||
ZEN | [M+H]+ | 319.1 | 283 * | 5.767 | 80 | 8 |
187 | 20 | |||||
OTA | [M+H]+ | 404.1 | 238.9 * | 5.724 | 90 | 21 |
221 | 15 | |||||
T-2 toxin | [M+H]+ | 484.2 | 215.1 * | 5.606 | 80 | 15 |
305.3 | 8 | |||||
FB1 | [M+H]+ | 722.4 | 352.3 * | 5.322 | 135 | 36 |
334.2 | 44 | |||||
13C15-DON | [M+H]+ | 312.2 | 263 * | 3.090 | 110 | 8 |
216 | 14 | |||||
13C17-AFB1 | [M+H]+ | 330.1 | 255 * | 4.882 | 145 | 40 |
301 | 30 | |||||
13C18-ZEN | [M+H]+ | 337.1 | 199 * | 5.765 | 80 | 20 |
167.9 | 40 | |||||
13C20-OTA | [M+H]+ | 424.1 | 250 * | 5.725 | 90 | 26 |
231.9 | 40 | |||||
12C24-T-2 | [M+H]+ | 508.2 | 229 * | 5.605 | 80 | 13 |
322 | 9 | |||||
13C34-FB1 | [M+H]+ | 756.4 | 356 * | 5.322 | 135 | 45 |
374 | 50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Jin, Y.; Guo, Q.; Wang, X.; Luo, S.; Yang, W.; Li, J.; Chen, Y. Immunoaffinity Cleanup and Isotope Dilution-Based Liquid Chromatography Tandem Mass Spectrometry for the Determination of Six Major Mycotoxins in Feed and Feedstuff. Toxins 2022, 14, 631. https://doi.org/10.3390/toxins14090631
Liu Y, Jin Y, Guo Q, Wang X, Luo S, Yang W, Li J, Chen Y. Immunoaffinity Cleanup and Isotope Dilution-Based Liquid Chromatography Tandem Mass Spectrometry for the Determination of Six Major Mycotoxins in Feed and Feedstuff. Toxins. 2022; 14(9):631. https://doi.org/10.3390/toxins14090631
Chicago/Turabian StyleLiu, Ying, Yongpeng Jin, Qi Guo, Xiong Wang, Sunlin Luo, Wenjun Yang, Juntao Li, and Yiqiang Chen. 2022. "Immunoaffinity Cleanup and Isotope Dilution-Based Liquid Chromatography Tandem Mass Spectrometry for the Determination of Six Major Mycotoxins in Feed and Feedstuff" Toxins 14, no. 9: 631. https://doi.org/10.3390/toxins14090631
APA StyleLiu, Y., Jin, Y., Guo, Q., Wang, X., Luo, S., Yang, W., Li, J., & Chen, Y. (2022). Immunoaffinity Cleanup and Isotope Dilution-Based Liquid Chromatography Tandem Mass Spectrometry for the Determination of Six Major Mycotoxins in Feed and Feedstuff. Toxins, 14(9), 631. https://doi.org/10.3390/toxins14090631