Comparison of Protein Variation in Protobothrops mucrosquamatus Venom between Northern and Southeast Taiwan and Association with Human Envenoming Effects
Abstract
:1. Introduction
2. Results and Discussion
2.1. Venom Proteome of Individual Pmu
2.2. Comparison of Inter-Population Variations in Pmu Venom
2.3. Regional Variation in the Clinical Manifestations of Pmu Envenoming
2.4. Possible Venom Components Contributing to Regional Differences in Clinical Manifestations
2.5. Limitations
3. Conclusions
4. Materials and Methods
4.1. Snake Venoms
4.2. Reversed-Phase High-Performance Liquid Chromatography (RP-HPLC)
4.3. SDS-PAGE and LC-MS/MS Analysis
4.4. Relative Abundance of Protein Families
4.5. Clinical Manifestations of Pmu-Envenomed Patients in Two Taiwan Regions
4.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vasaruchapong, T.; Laoungbua, P.; Tangrattanapibul, K.; Chanhome, L. Protobothrops mucrosquamatus (Cantor, 1839), a highly venomous species added to the snake fauna of Thailand (Squamata: Viperidae). Trop. Nat. Hist. 2017, 17, 111–115. [Google Scholar]
- Cichutek, K.; Epstein, J.; Griffiths, E.; Hindawi, S.; Jivapaisarnpong, T.; Klein, H.; Minor, P.; Moftah, F.; Reddy, V.; Slamet, L. WHO Expert Committee on Biological Standardization Sixty-seventh report. Tech. Rep. Ser.-World Health Organ. 2017, 1004, 1–591. [Google Scholar]
- Mao, Y.C.; Hung, D.Z. Epidemiology of Snake Envenomation in Taiwan. In Toxinology: Clinical Toxinology; Gopalakrishnakone, P., Faiz, S.M.A., Gnanathasan, C.A., Habib, A.G., Fernando, R., Yang, C.C., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 1–17. [Google Scholar]
- Mao, Y.C.; Liu, P.Y.; Chiang, L.C.; Lee, C.H.; Lai, C.S.; Lai, K.L.; Lin, W.L.; Su, H.Y.; Ho, C.H.; Doan, U.V.; et al. Clinical manifestations and treatments of Protobothrops mucrosquamatus bite and associated factors for wound necrosis and subsequent debridement and finger or toe amputation surgery. Clin. Toxicol. 2020, 59, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Villalta, M.; Pla, D.; Yang, S.L.; Sanz, L.; Segura, A.; Vargas, M.; Chen, P.Y.; Herrera, M.; Estrada, R.; Cheng, Y.F.; et al. Snake venomics and antivenomics of Protobothrops mucrosquamatus and Viridovipera stejnegeri from Taiwan: Keys to understand the variable immune response in horses. J. Proteom. 2012, 75, 5628–5645. [Google Scholar] [CrossRef] [PubMed]
- Aird, S.D.; Arora, J.; Barua, A.; Qiu, L.; Terada, K.; Mikheyev, A.S. Population Genomic Analysis of a Pitviper Reveals Microevolutionary Forces Underlying Venom Chemistry. Genome Biol. Evol. 2017, 9, 2640–2649. [Google Scholar] [CrossRef]
- Casewell, N.R.; Jackson, T.N.W.; Laustsen, A.H.; Sunagar, K. Causes and Consequences of Snake Venom Variation. Trends Pharmacol. Sci. 2020, 41, 570–581. [Google Scholar] [CrossRef] [PubMed]
- Massey, D.J.; Calvete, J.J.; Sánchez, E.E.; Sanz, L.; Richards, K.; Curtis, R.; Boesen, K. Venom variability and envenoming severity outcomes of the Crotalus scutulatus scutulatus (Mojave rattlesnake) from Southern Arizona. J. Proteom. 2012, 75, 2576–2587. [Google Scholar] [CrossRef]
- Cochran, C.; Hax, S.; Hayes, W.K. Case reports of envenomation and venom composition differences between two Arizona populations of the Southwestern Speckled Rattlesnake, Crotalus pyrrhus (Cope, 1867). Toxicon 2019, 171, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Vélez, S.M.; Salazar, M.; Acosta de Patiño, H.; Gómez, L.; Rodriguez, A.; Correa, D.; Saldaña, J.; Navarro, D.; Lomonte, B.; Otero-Patiño, R.; et al. Geographical variability of the venoms of four populations of Bothrops asper from Panama: Toxicological analysis and neutralization by a polyvalent antivenom. Toxicon 2017, 132, 55–61. [Google Scholar] [CrossRef]
- Tan, C.H.; Palasuberniam, P.; Tan, K.Y. Snake venom proteomics, immunoreactivity and toxicity neutralization studies for the asiatic mountain pit vipers, Ovophis convictus, Ovophis tonkinensis, and Hime Habu, Ovophis okinavensis. Toxins 2021, 13, 514. [Google Scholar] [CrossRef]
- Chen, Y.W.; Chen, M.H.; Chen, Y.C.; Hung, D.Z.; Chen, C.K.; Yen, D.H.; Huang, C.I.; Lee, C.H.; Wang, L.M.; Yang, C.C. Differences in clinical profiles of patients with Protobothrops mucrosquamatus and Viridovipera stejnegeri envenoming in Taiwan. Am. J. Trop. Med. Hyg. 2009, 80, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Su, H.Y.; Li, Y.H.; Tang, C.N.; Su, C.I.; Tsai, M.J. Can surgery in patient with Protobothrops mucrosquamatus envenomation be predicted in emergency department? Hong Kong J. Emerg. Med. 2016, 23, 210–219. [Google Scholar] [CrossRef]
- Tsai, I.H.; Wang, Y.M.; Chen, Y.H.; Tsai, T.S.; Tu, M.C. Venom phospholipases A2 of bamboo viper (Trimeresurus stejnegeri): Molecular characterization, geographic variations and evidence of multiple ancestries. Biochem. J. 2004, 377, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Creer, S.; Malhotra, A.; Thorpe, R.S.; Stöcklin, R.S.; Favreau, P.S.; Hao Chou, W.S. Genetic and ecological correlates of intraspecific variation in pitviper venom composition detected using matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF-MS) and isoelectric focusing. J. Mol. Evol. 2003, 56, 317–329. [Google Scholar] [CrossRef] [PubMed]
- Aird, S.D.; Watanabe, Y.; Villar-Briones, A.; Roy, M.C.; Terada, K.; Mikheyev, A.S. Quantitative high-throughput profiling of snake venom gland transcriptomes and proteomes (Ovophis okinavensis and Protobothrops flavoviridis). BMC Genom. 2013, 14, 790. [Google Scholar] [CrossRef]
- Tsai, I.H.; Chen, Y.H.; Wang, Y.M. Comparative proteomics and subtyping of venom phospholipases A2 and disintegrins of Protobothrops pit vipers. Biochim. Biophys. Acta 2004, 1702, 111–119. [Google Scholar] [CrossRef]
- Tsai, I.H.; Chen, Y.H.; Wang, Y.M.; Liau, M.Y.; Lu, P.J. Differential expression and geographic variation of the venom phospholipases A2 of Calloselasma rhodostoma and Trimeresurus mucrosquamatus. Arch. Biochem. Biophys. 2001, 387, 257–264. [Google Scholar] [CrossRef]
- Tsai, I.H.; Wang, Y.M.; Chen, Y.H. Variations of phospholipases A2 in the geographic venom samples of pitvipers. J. Toxicol. Toxin Rev. 2003, 22, 651–662. [Google Scholar] [CrossRef]
- Wei, J.F.; Wei, X.L.; Mo, Y.Z.; He, S.H. Induction of microvascular leakage and histamine release by promutoxin, an Arg49 phospholipase A2. Toxicon 2010, 55, 888–896. [Google Scholar] [CrossRef]
- Maruyama, K.; Kawasaki, T.; Sakai, Y.; Taniuchi, Y.; Shimizu, M.; Kawashima, H.; Takenaka, T. Isolation and amino acid sequence of flavostatin, a novel disintegrin from the venom of Trimeresurus flavoviridis. Peptides 1997, 18, 73–78. [Google Scholar] [CrossRef]
- Fox, J.W.; Serrano, S.M. Structural considerations of the snake venom metalloproteinases, key members of the M12 reprolysin family of metalloproteinases. Toxicon 2005, 45, 969–985. [Google Scholar] [CrossRef]
- You, W.K.; Seo, H.J.; Chung, K.H.; Kim, D.S. A novel metalloprotease from Gloydius halys venom induces endothelial cell apoptosis through its protease and disintegrin-like domains. J. Biochem. 2003, 134, 739–749. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.B.; Chang, S.C.; Liau, M.Y.; Huang, T.F. Purification, molecular cloning and mechanism of action of graminelysin I, a snake-venom-derived metalloproteinase that induces apoptosis of human endothelial cells. Biochem. J. 2001, 357, 719–728. [Google Scholar] [CrossRef] [PubMed]
- Díaz, C.; Valverde, L.; Brenes, O.; Rucavado, A.; Gutiérrez, J.M. Characterization of events associated with apoptosis/anoikis induced by snake venom metalloproteinase BaP1 on human endothelial cells. J. Cell. Biochem. 2005, 94, 520–528. [Google Scholar] [CrossRef] [PubMed]
- Herrera, C.; Escalante, T.; Voisin, M.B.; Rucavado, A.; Morazán, D.; Macêdo, J.K.; Calvete, J.J.; Sanz, L.; Nourshargh, S.; Gutiérrez, J.M.; et al. Tissue localization and extracellular matrix degradation by PI, PII and PIII snake venom metalloproteinases: Clues on the mechanisms of venom-induced hemorrhage. PLoS Negl. Trop. Dis. 2015, 9, e0003731. [Google Scholar] [CrossRef]
- Olaoba, O.T.; Karina Dos Santos, P.; Selistre-de-Araujo, H.S.; Ferreira de Souza, D.H. Snake Venom Metalloproteinases (SVMPs): A structure-function update. Toxicon X 2020, 7, 100052. [Google Scholar] [CrossRef]
- Baldo, C.; Jamora, C.; Yamanouye, N.; Zorn, T.M.; Moura-da-Silva, A.M. Mechanisms of vascular damage by hemorrhagic snake venom metalloproteinases: Tissue distribution and in situ hydrolysis. PLoS Negl. Trop. Dis. 2010, 4, e727. [Google Scholar] [CrossRef]
- Cintra-Francischinelli, M.; Pizzo, P.; Rodrigues-Simioni, L.; Ponce-Soto, L.A.; Rossetto, O.; Lomonte, B.; Gutiérrez, J.M.; Pozzan, T.; Montecucco, C. Calcium imaging of muscle cells treated with snake myotoxins reveals toxin synergism and presence of acceptors. Cell. Mol. Life Sci. CMLS 2009, 66, 1718–1728. [Google Scholar] [CrossRef]
- Fernandes, C.A.; Borges, R.J.; Lomonte, B.; Fontes, M.R. A structure-based proposal for a comprehensive myotoxic mechanism of phospholipase A2-like proteins from viperid snake venoms. Biochim. Biophys. Acta 2014, 1844, 2265–2276. [Google Scholar] [CrossRef]
- Bustillo, S.; García-Denegri, M.E.; Gay, C.; Van de Velde, A.C.; Acosta, O.; Angulo, Y.; Lomonte, B.; Gutiérrez, J.M.; Leiva, L. Phospholipase A(2) enhances the endothelial cell detachment effect of a snake venom metalloproteinase in the absence of catalysis. Chem.-Biol. Interact. 2015, 240, 30–36. [Google Scholar] [CrossRef]
- Ogawa, T.; Tobishima, Y.; Kamata, S.; Matsuda, Y.; Muramoto, K.; Hidaka, M.; Futai, E.; Kuraishi, T.; Yokota, S.; Ohno, M.; et al. Focused Proteomics Analysis of Habu Snake (Protobothrops flavoviridis) Venom Using Antivenom-Based Affinity Chromatography Reveals Novel Myonecrosis-Enhancing Activity of Thrombin-Like Serine Proteases. Front. Pharmacol. 2021, 12, 766406. [Google Scholar] [CrossRef] [PubMed]
- Warrell, D.A. 75—Venomous and Poisonous Animals. In Manson’s Tropical Infectious Diseases (Twenty-Third Edition); Farrar, J., Hotez, P.J., Junghanss, T., Kang, G., Lalloo, D., White, N.J., Eds.; W.B. Saunders: London, UK, 2014; pp. 1096–1127.e1093. [Google Scholar]
- Macêdo, J.K.A.; Joseph, J.K.; Menon, J.; Escalante, T.; Rucavado, A.; Gutiérrez, J.M.; Fox, J.W. Proteomic analysis of human blister fluids following envenomation by three snake species in India: Differential markers for venom mechanisms of action. Toxins 2019, 11, 246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiménez, N.; Escalante, T.; Gutiérrez, J.M.; Rucavado, A. Skin pathology induced by snake venom metalloproteinase: Acute damage, revascularization, and re-epithelization in a mouse ear model. J. Investig. Dermatol. 2008, 128, 2421–2428. [Google Scholar] [CrossRef] [PubMed]
- Freitas-de-Sousa, L.A.; Colombini, M.; Lopes-Ferreira, M.; Serrano, S.M.T.; Moura-da-Silva, A.M. Insights into the mechanisms involved in strong hemorrhage and dermonecrosis induced by atroxlysin-Ia, a PI-class snake venom metalloproteinase. Toxins 2017, 9, 239. [Google Scholar] [CrossRef]
- Escalante, T.; Rucavado, A.; Pinto, A.F.; Terra, R.M.; Gutiérrez, J.M.; Fox, J.W. Wound exudate as a proteomic window to reveal different mechanisms of tissue damage by snake venom toxins. J. Proteome Res. 2009, 8, 5120–5131. [Google Scholar] [CrossRef]
- Gutiérrez, J.M.; Rucavado, A.; Chaves, F.; Díaz, C.; Escalante, T. Experimental pathology of local tissue damage induced by Bothrops asper snake venom. Toxicon 2009, 54, 958–975. [Google Scholar] [CrossRef]
- Pidde-Queiroz, G.; Magnoli, F.C.; Portaro, F.C.; Serrano, S.M.; Lopes, A.S.; Paes Leme, A.F.; van den Berg, C.W.; Tambourgi, D.V. P-I snake venom metalloproteinase is able to activate the complement system by direct cleavage of central components of the cascade. PLoS Negl. Trop. Dis. 2013, 7, e2519. [Google Scholar] [CrossRef]
- Costa, S.K.P.; Camargo, E.A.; Antunes, E. Inflammatory action of secretory phospholipases A2 from snake venoms. In Toxins and Drug Discovery; Cruz, L.J., Luo, S., Gopalakrishnakone, P., Eds.; Springer: Dordrecht, The Netherlands, 2017; pp. 35–52. [Google Scholar]
- Caccin, P.; Pellegatti, P.; Fernandez, J.; Vono, M.; Cintra-Francischinelli, M.; Lomonte, B.; Gutiérrez, J.M.; Di Virgilio, F.; Montecucco, C. Why myotoxin-containing snake venoms possess powerful nucleotidases? Biochem. Biophys. Res. Commun. 2013, 430, 1289–1293. [Google Scholar] [CrossRef]
- Rucavado, A.; Nicolau, C.A.; Escalante, T.; Kim, J.; Herrera, C.; Gutiérrez, J.M.; Fox, J.W. Viperid envenomation wound exudate contributes to increased vascular permeability via a DAMPs/TLR-4 mediated pathway. Toxins 2016, 8, 349. [Google Scholar] [CrossRef]
- Arafat, A.S.; Arun, A.; Ilamathi, M.; Asha, J.; Sivashankari, P.R.; D’Souza, C.J.; Sivaramakrishnan, V.; Dhananjaya, B.L. Homology modeling, molecular dynamics and atomic level interaction study of snake venom 5’ nucleotidase. J. Mol. Model. 2014, 20, 2156. [Google Scholar] [CrossRef]
- Lazarovici, P.; Marcinkiewicz, C.; Lelkes, P.I. From Snake Venom’s Disintegrins and C-Type Lectins to Anti-Platelet Drugs. Toxins 2019, 11, 303. [Google Scholar] [CrossRef] [PubMed]
- Suntravat, M.; Sanchez, O.; Reyes, A.; Cirilo, A.; Ocheltree, J.S.; Galan, J.A.; Salazar, E.; Davies, P.; Sanchez, E.E. Evaluation of Signaling Pathways Profiling in Human Dermal Endothelial Cells Treated by Snake Venom Cysteine-Rich Secretory Proteins (svCRiSPs) from North American Snakes Using Reverse Phase Protein Array (RPPA). Toxins 2021, 13, 613. [Google Scholar] [CrossRef]
- Tasoulis, T.; Isbister, G.K. A Review and Database of Snake Venom Proteomes. Toxins 2017, 9, 290. [Google Scholar] [CrossRef] [PubMed]
- Toby, T.K.; Fornelli, L.; Kelleher, N.L. Progress in Top-Down Proteomics and the Analysis of Proteoforms. Annu. Rev. Anal. Chem. 2016, 9, 499–519. [Google Scholar] [CrossRef] [PubMed]
- Ryan, C.M.; Souda, P.; Halgand, F.; Wong, D.T.; Loo, J.A.; Faull, K.F.; Whitelegge, J.P. Confident assignment of intact mass tags to human salivary cystatins using top-down Fourier-transform ion cyclotron resonance mass spectrometry. J. Am. Soc. Mass Spectrom. 2010, 21, 908–917. [Google Scholar] [CrossRef] [PubMed]
- Calvete, J.J.; Juárez, P.; Sanz, L. Snake venomics. Strategy and applications. J. Mass Spectrom. 2007, 42, 1405–1414. [Google Scholar] [CrossRef]
Frcation | Protein Name a | Protein Family | Species | Accession No. |
---|---|---|---|---|
1 | basic PLA2 homolog, TMV-K49 | PLA2 | Pmu | P22640 |
2 | basic PLA2 homolog | PLA2 | Pmu | ~P22640 |
3 | cysteine-rich venom protein, TM-CRVP | CRISP | Pmu | P79845 |
4 | acidic R6-PLA2, TmPL-III | PLA2 | Pmu | Q9I968 |
5 | basic N6-PLA2, Trimucrotoxin | PLA2 | Pmu | Q90W39 |
6 | acidic E6-PLA2, TmPL-I | PLA2 | Pmu | Q91506 |
7 | plasminogen activator, TSV-PA | SVSP | T. stejnegeri | Q91516 |
8 | kallikrein-CohID-4 | SVSP | C. o. helleri | T1DMM6 |
9 | beta-fibrinogenase mucrofibrase-3 | SVSP | Pmu | Q91509 |
9 | trimecetin-beta subunit | Snaclec | Pmu | Q5FZI5 |
10 | beta-fibrinogenase mucrofibrase-2 | SVSP | Pmu | Q91508 |
11 | trimerelysin-2 | PI-SVMP | P. flavoviridis | P20165 |
12 | mucrocetin-alpha subunit | Snaclec | Pmu | Q6TPH0 |
12 | trimecetin-beta subunit | Snaclec | Pmu | Q5FZI5 |
13 | L-amino acid oxidase | LAO | P. flavoviridis | T2HRS5 |
14 | ecto-5’-nucleotidase | 5’-NT | P. elegans | A0A077L6M5 |
15 | Zn-metalloproteinase, PMMP-3 | PII-SVMP | Pmu | E9NW28 |
15 | trimecetin-beta subunit | Snaclec | Pmu | Q5FZI5 |
16 | Zn-metalloproteinase, PMMP-3 | PII-SVMP | Pmu | E9NW28 |
17 | trimecetin-beta subunit | Snaclec | Pmu | Q5FZI5 |
18 | Zn-metalloproteinase, PMMP-3 | PII-SVMP | Pmu | E9NW28 |
19 | Zn-metalloproteinase, PMMP-3 | PII-SVMP | Pmu | E9NW28 |
20 | Zn-metalloproteinase, TM-3 | PII-SVMP | Pmu | O57413 |
20 | trimecetin-alpha subunit | Snaclec | Pmu | Q5FZI6 |
20 | trimecetin-beta subunit | Snaclec | Pmu | Q5FZI5 |
20 | phospholipase B-like | PLB | Pmu | A0A1W7RER1 |
20 | glutaminyl cyclotransferases | QPCT | Pmu | M9ND11 |
20 | L-amino acid oxidase | LAO | P. elegans | A0A077L6L4 |
21 | Zn-metalloproteinase, PMMP-1 | PII-SVMP | Pmu | E9NW26 |
22 | Zn-metalloprotease P-IIIa (Fragment) | PIII-SVMP | P. elegans | A0A077L7D6 |
22 | flavorase | PIII-SVMP | P. flavoviridis | G1UJB2 |
Protein Family a | Northern | Southeastern | Total | p-Value |
---|---|---|---|---|
Sample number | n = 119 | n = 44 | n = 163 | |
SVMP, total | 45.95 | 42.76 | 45.1 | 0.001 |
-PI or PII class | 43.09 | 39.34 | 42.11 | <0.001 |
-PIII class | 2.86 | 3.42 | 3.01 | 0.011 |
PLA2 | 25.56 | 23.48 | 25.0 | 0.033 |
SVSP | 8.26 | 8.15 | 8.23 | 0.364 |
Snaclec | 13.15 | 11.86 | 12.8 | 0.01 |
CRISP | 1.11 | 2.25 | 1.42 | <0.001 |
LAO | 2.15 | 2.97 | 2.37 | 0.01 |
5’-NT | 2.63 | 7.15 | 3.85 | <0.001 |
PLB | 0.74 | 0.86 | 0.77 | 0.172 |
QPCT | 0.44 | 0.52 | 0.46 | 0.05 |
Fraction | Northern, n (%) a | Southeastern, n (%) | Protein Family | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 119 | ( | 100 | ) | 44 | ( | 100 | ) | PLA2 | 1 |
2 | 17 | ( | 14.3 | ) | 2 | ( | 4.55 | ) | PLA2 | 0.103 |
3 | 95 | ( | 79.8 | ) | 39 | ( | 88.6 | ) | CRISP | 0.192 |
4 | 23 | ( | 19.3 | ) | 21 | ( | 47.7 | ) | PLA2 TmPL-III | <0.001 |
5 | 116 | ( | 97.5 | ) | 42 | ( | 95.5 | ) | PLA2 | 0.612 |
6 | 115 | ( | 96.6 | ) | 40 | ( | 90.9 | ) | PLA2 | 0.213 |
7 | 98 | ( | 82.4 | ) | 29 | ( | 65.9 | ) | SVSP | 0.025 |
8 | 27 | ( | 22.7 | ) | 25 | ( | 56.8 | ) | KN-like SVSP | <0.001 |
9 | 119 | ( | 100 | ) | 44 | ( | 100 | ) | SVSP, Snaclec | 1 |
10 | 56 | ( | 47.1 | ) | 37 | ( | 84.1 | ) | SVSP | <0.001 |
11 | 104 | ( | 87.4 | ) | 32 | ( | 72.7 | ) | PI-SVMP | 0.025 |
12 | 116 | ( | 97.5 | ) | 42 | ( | 95.5 | ) | Snaclec | 0.612 |
13 | 94 | ( | 79.0 | ) | 43 | ( | 97.7 | ) | LAO | 0.003 |
14 | 74 | ( | 62.2 | ) | 39 | ( | 88.6 | ) | 5’-NT | 0.001 |
15 | 119 | ( | 100 | ) | 42 | ( | 95.5 | ) | PII-SVMP, Snaclec | 0.072 |
16 | 59 | ( | 49.6 | ) | 17 | ( | 38.6 | ) | PII-SVMP | 0.214 |
17 | 93 | ( | 78.2 | ) | 18 | ( | 40.9 | ) | Snaclec | <0.001 |
18 | 100 | ( | 84.0 | ) | 21 | ( | 47.7 | ) | PII-SVMP | <0.001 |
19 | 97 | ( | 81.5 | ) | 29 | ( | 65.9 | ) | PII-SVMP | 0.035 |
20 | 119 | ( | 100 | ) | 44 | ( | 100 | ) | SVMP, others b | 1 |
21 | 78 | ( | 65.6 | ) | 30 | ( | 68.2 | ) | PII-SVMP | 0.752 |
22 | 111 | ( | 93.3 | ) | 44 | ( | 100 | ) | PIII-SVMP | 0.109 |
Region | Northern | Southeastern | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
Patient number | n = 149 | ( | % | ) | n = 60 | ( | % | ) | |
Local symptoms | |||||||||
Ecchymosis | 112 | ( | 75.2 | ) | 13 | ( | 21.7 | ) | <0.001 |
Blistering | 26 | ( | 17.5 | ) | 3 | ( | 5 | ) | 0.019 |
Local complications | |||||||||
Cellulitis | 38 | ( | 25.5 | ) | 8 | ( | 13.3 | ) | 0.055 |
Tissue necrosis | 17 | ( | 11.4 | ) | 3 | ( | 5 | ) | 0.154 |
Compartment syndrome | 9 | ( | 6 | ) | 5 | ( | 8.3 | ) | 0.549 |
Systemic complications | |||||||||
Thrombocytopenia | 18 | ( | 12.1 | ) | 8 (n = 57) | ( | 14 | ) | 0.705 |
Coagulopathy | 9 | ( | 6 | ) | 2 (n = 58) | ( | 3.5 | ) | 0.455 |
Acute renal impairment | 8 | ( | 5.4 | ) | 7 (n = 57) | ( | 12.3 | ) | 0.088 |
Rhabdomyolysis | 17 | ( | 11.4 | ) | 3 (n = 27) | ( | 5.1 | ) | 0.964 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiang, L.-C.; Chien, K.-Y.; Su, H.-Y.; Chen, Y.-C.; Mao, Y.-C.; Wu, W.-G. Comparison of Protein Variation in Protobothrops mucrosquamatus Venom between Northern and Southeast Taiwan and Association with Human Envenoming Effects. Toxins 2022, 14, 643. https://doi.org/10.3390/toxins14090643
Chiang L-C, Chien K-Y, Su H-Y, Chen Y-C, Mao Y-C, Wu W-G. Comparison of Protein Variation in Protobothrops mucrosquamatus Venom between Northern and Southeast Taiwan and Association with Human Envenoming Effects. Toxins. 2022; 14(9):643. https://doi.org/10.3390/toxins14090643
Chicago/Turabian StyleChiang, Liao-Chun, Kun-Yi Chien, Hung-Yuan Su, Yen-Chia Chen, Yan-Chiao Mao, and Wen-Guey Wu. 2022. "Comparison of Protein Variation in Protobothrops mucrosquamatus Venom between Northern and Southeast Taiwan and Association with Human Envenoming Effects" Toxins 14, no. 9: 643. https://doi.org/10.3390/toxins14090643
APA StyleChiang, L. -C., Chien, K. -Y., Su, H. -Y., Chen, Y. -C., Mao, Y. -C., & Wu, W. -G. (2022). Comparison of Protein Variation in Protobothrops mucrosquamatus Venom between Northern and Southeast Taiwan and Association with Human Envenoming Effects. Toxins, 14(9), 643. https://doi.org/10.3390/toxins14090643