Exploring the Pivotal Components Influencing the Side Effects Induced by an Analgesic-Antitumor Peptide from Scorpion Venom on Human Voltage-Gated Sodium Channels 1.4 and 1.5 through Computational Simulation
Abstract
:1. Introduction
2. Results
2.1. Differences in 3D Structures of VSD2hNav1.4 and VSD2hNav1.5 in Comparison with VSD2hNav1.7
2.2. Analysis of the Binding Modes of AGAP and the W38G/W38F Mutant with VSD2hNav1.4 and VSD2hNav1.5
2.2.1. A Structural Model for the β-ScTx-hNav1.4 Complex
2.2.2. A Structural Model for the β-ScTx-hNav1.5 Complex
2.3. Analysis of Dissociation Pathways of the AGAP/AGAPW38G/W38F Mutant with VSD2hNav1.4 and VSD2hNav1.5 by SMD Simulations and PMF Calculations
2.3.1. Differences in Conformations of AGAP and the W38G/W38F Mutant with VSD2hNav1.4 and VSD2hNav1.5
2.3.2. Specific Types of Interactions of Important Residues in the β-ScTx-hNav1.4 Complex
2.3.3. Specific Types of Interactions of Important Residues in the β-ScTx-hNav1.5 Complex
Region | Residue | Total Interaction (kJ·mol−1) | ||
---|---|---|---|---|
AGAP | AGAPW38G | AGAPW38F | ||
β-sheet I | Y5 * 1 | −17.07 | −15.63 | −28.23 |
loop between α-helix and β-sheet I | R18 | - | −2.83 | - |
N19 | - | - | −35.77 | |
β-sheet III | Y35 | −11.30 | - | −48.22 |
C36 | - | - | −8.85 | |
β-turn | Q37 * | −37.77 | −44.46 | −38.32 |
W38 | −83.59 | - | - | |
G38 | - | - | - | |
F38 | - | - | −29.71 | |
A39 * | −10.93 | −10.09 | −11.77 | |
G40 * | −25.21 | −31.28 | −29.44 | |
V41 * | −16.80 | −36.36 | −25.75 | |
Y42 * | −23.21 | −38.87 | −16.02 | |
N44 * | −64.25 | −24.25 | −45.47 | |
β-sheet II | W47 * | −31.40 | −23.19 | −19.55 |
C-terminal | R58 | −19.23 | - | −8.82 |
V59 | −5.30 | −2.39 | −2.30 | |
K62 | −33.93 | - | - | |
C63 | −21.27 | −14.85 | −1.11 |
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Homology Modeling and Molecular Docking
5.2. Molecular Dynamics
5.3. Steered Molecular Dynamics and PMF Calculations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Catterall, W.A. Cellular and molecular biology of voltage-gated sodium channels. Physiol. Rev. 1992, 72 (Suppl. S4), 15–48. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.A.; Strege, P.R.; Tester, D.J.; Locke, G.R., III; Talley, N.J.; Bernard, C.E.; Rae, J.L.; Makielski, J.C.; Ackerman, M.J.; Farrugia, G. Sodium channel mutation in irritable bowel syndrome: Evidence for an ion channelopathy. Am. J. Physiol. Gastrointest. Liver Physiol. 2009, 296, G211–G218. [Google Scholar] [CrossRef] [Green Version]
- Puntmann, V.O.; Taylor, P.C.; Barr, A.; Schnackenburg, B.; Jahnke, C.; Paetsch, I. Towards understanding the phenotypes of myocardial involvement in the presence of self-limiting and sustained systemic inflammation: A magnetic resonance imaging study. Rheumatology 2010, 49, 528–535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ke, Q.; Ye, J.; Tang, S.; Wang, J.; Luo, B.; Ji, F.; Zhang, X.; Yu, Y.; Cheng, X.; Li, Y. N1366S mutation of human skeletal muscle sodium channel causes paramyotonia congenita. J. Physiol. 2017, 595, 6837–6850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cannon, S.C. Channelopathies of skeletal muscle excitability. Compr. Physiol. 2015, 5, 761–790. [Google Scholar] [PubMed] [Green Version]
- Martin, B.; Gabris, B.; Barakat, A.F.; Henry, B.L.; Giannini, M.; Reddy, R.P.; Wang, X.; Romero, G.; Salama, G. Relaxin reverses maladaptive remodeling of the aged heart through Wnt-signaling. Sci. Rep. 2019, 9, 18545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, D.; Wang, L.; Zhong, J. Sodium channels, cardiac arrhythmia, and therapeutic strategy. Adv. Pharmacol. 2014, 70, 367–392. [Google Scholar] [PubMed]
- Liu, M.; Yang, K.C.; Dudley, S.C. Cardiac Sodium Channel Mutations: Why so Many Phenotypes? Curr. Top Membr. 2016, 78, 513–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Remme, C.A.; Bezzina, C.R. Sodium channel (dys)function and cardiac arrhythmias. Cardiovasc. Ther. 2010, 28, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.F.; Ma, R.L.; Wang, S.L.; Duan, Z.Y.; Zhang, J.H.; Wu, L.J.; Wu, C.F. Expression of an antitumor-analgesic peptide from the venom of Chinese scorpion Buthus martensii karsch in Escherichia coli. Protein Expr. Purif. 2003, 27, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Mao, Q.H.; Ruan, J.P.; Cai, X.T.; Lu, W.G.; Ye, J.; Yang, J.; Yang, Y.; Sun, X.Y.; Cao, J.L.; Cao, P. Antinociceptive effects of analgesic-antitumor peptide (AGAP), a neurotoxin from the scorpion Buthus martensii Karsch, on formalin-induced inflammatory pain through a mitogen-activated protein kinases-dependent mechanism in mice. PLoS ONE 2013, 8, e78239. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, Y.; Li, S.; Xu, Z.; Li, H.; Ma, L.; Fan, J.; Bu, D.; Liu, B.; Fan, Z.; et al. Mutations in SCN9A, encoding a sodium channel alpha subunit, in patients with primary erythermalgia. J. Med. Genet. 2004, 41, 171–174. [Google Scholar] [CrossRef] [PubMed]
- Cox, J.J.; Reimann, F.; Nicholas, A.K.; Thornton, G.; Roberts, E.; Springell, K.; Karbani, G.; Jafri, H.; Mannan, J.; Raashid, Y.; et al. An SCN9A channelopathy causes congenital inability to experience pain. Nature 2006, 444, 894–898. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, G.; Mcmahon, S.B. The physiological function of different voltage-gated sodium channels in pain. Nat. Rev. Neurosci. 2021, 22, 263–274. [Google Scholar] [CrossRef]
- Chew, L.A.; Bellampalli, S.S.; Dustrude, E.T.; Khanna, R. Mining the Nav1.7 interactome: Opportunities for chronic pain therapeutics. Biochem. Pharm. 2019, 163, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Loussouarn, G.; Sternberg, D.; Nicole, S.; Marionneau, C.; Le Bouffant, F.; Toumaniantz, G.; Barc, J.; Malak, O.A.; Fressart, V.; Péréon, Y.; et al. Physiological and Pathophysiological Insights of Nav1.4 and Nav1.5 Comparison. Front. Pharm. 2016, 14, 314. [Google Scholar]
- Flinspach, M.; Xu, Q.; Piekarz, A.D.; Fellows, R.; Hagan, R.; Gibbs, A.; Liu, Y.; Neff, R.A.; Freedman, J.; Eckert, W.A.; et al. Insensitivity to pain induced by a potent selective closed-state Nav1.7 inhibitor. Sci. Rep. 2017, 3, 39662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagen, N.A.; Lapointe, B.; Ong-Lam, M.; Dubuc, B.; Walde, D.; Gagnon, B.; Love, R.; Goel, R.; Hawley, P.; Ngoc, A.H.; et al. A multicentre open-label safety and efficacy study of tetrodotoxin for cancer pain. Curr. Oncol. 2011, 18, e109–e116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Israel, M.R.; Tay, B.; Deuis, J.R.; Vetter, I. Sodium Channels and Venom Peptide Pharmacology. Adv. Pharmacol. 2017, 79, 67–116. [Google Scholar] [PubMed]
- De Lera Ruiz, M.; Kraus, R.L. Voltage-Gated Sodium Channels: Structure, Function, Pharmacology, and Clinical Indications. J. Med. Chem. 2015, 58, 7093–7118. [Google Scholar] [CrossRef]
- Lai, M.C.; Wu, S.N.; Huang, C.W. The Specific Effects of OD-1, a Peptide Activator, on Voltage-Gated Sodium Current and Seizure Susceptibility. Int. J. Mol. Sci. 2020, 21, 8254. [Google Scholar] [CrossRef]
- Hung, T.Y.; Wu, S.N.; Huang, C.W. The Integrated Effects of Brivaracetam, a Selective Analog of Levetiracetam, on Ionic Currents and Neuronal Excitability. Biomedicines 2021, 9, 369. [Google Scholar] [CrossRef] [PubMed]
- Couraud, F.; Jover, E.; Dubois, J.M.; Rochat, H. Two types of scorpion receptor sites, one related to the activation, the other to the inactivation of the action potential sodium channel. Toxicon 1982, 20, 9–16. [Google Scholar] [CrossRef]
- Xu, Y.; Meng, X.; Hou, X.; Sun, J.; Kong, X.; Sun, Y.; Liu, Z.; Ma, Y.; Niu, Y.; Song, Y.; et al. A mutant of the Buthus martensii Karsch antitumor-analgesic peptide exhibits reduced inhibition to hNa(v)1.4 and hNa(v)1.5 channels while retaining analgesic activity. J. Biol. Chem. 2017, 292, 18270–18280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cestèle, S.; Catterall, W.A. Molecular mechanisms of neurotoxin action on voltage-gated sodium channels. Biochimie 2000, 82, 883–892. [Google Scholar] [CrossRef] [PubMed]
- Cestèle, S.; Qu, Y.; Rogers, J.C.; Rochat, H.; Scheuer, T.; Catterall, W.A. Voltage sensor-trapping: Enhanced activation of sodium channels by beta-scorpion toxin bound to the S3-S4 loop in domain II. Neuron 1998, 21, 919–931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedraza Escalona, M.; Possani, L.D. Scorpion beta-toxins and voltage-gated sodium channels: Interactions and effects. Front. Biosci. 2013, 18, 572–587. [Google Scholar] [CrossRef] [PubMed]
- Gurevitz, M. Mapping of scorpion toxin receptor sites at voltage-gated sodium channels. Toxicon 2012, 60, 502–511. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Z.; Yarov-Yarovoy, V.; Scheuer, T.; Karbat, I.; Cohen, L.; Gordon, D.; Gurevitz, M.; Catterall, W.A. Structure-function map of the receptor site for β-scorpion toxins in domain II of voltage-gated sodium channels. J. Biol. Chem. 2011, 286, 33641–33651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Sun, J.; Yu, Y.; Kong, X.; Meng, X.; Liu, Y.; Cui, Y.; Su, Y.; Zhao, M.; Zhang, J. Trp: A conserved aromatic residue crucial to the interaction of a scorpion peptide with sodium channels. J. Biochem. 2020, 168, 633–641. [Google Scholar] [CrossRef]
- Xu, Y.; Sun, J.; Liu, H.; Sun, J.; Yu, Y.; Su, Y.; Cui, Y.; Zhao, M.; Zhang, J. Scorpion Toxins Targeting Voltage-gated Sodium Channels Associated with Pain. Curr. Pharm. Biotechnol. 2018, 19, 848–855. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Wang, J.L.; Ming, H.Y.; Zhang, Y.N.; Dun, Y.Q.; Zhang, J.H.; Song, Y.B. Insights into the binding mode and functional components of the analgesic-antitumour peptide from Buthus martensii Karsch to human voltage-gated sodium channel 1.7 based on dynamic simulation analysis. J. Biomol. Struct. Dyn. 2020, 38, 1868–1879. [Google Scholar] [CrossRef] [PubMed]
- Zhorov, B.S.; Du, Y.; Song, W.; Luo, N.; Gordon, D.; Gurevitz, M.; Dong, K. Mapping the interaction surface of scorpion β-toxins with an insect sodium channel. Biochem. J. 2021, 478, 2843–2869. [Google Scholar] [CrossRef]
- Chen, R.; Chung, S.H. Conserved functional surface of antimammalian scorpion β-toxins. J. Phys. Chem. B 2012, 116, 4796–4800. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Gao, B.; Peigneur, S.; Tytgat, J. How a Scorpion Toxin Selectively Captures a Prey Sodium Channel: The Molecular and Evolutionary Basis Uncovered. Mol. Biol. Evol. 2020, 37, 3149–3164. [Google Scholar] [CrossRef] [PubMed]
- Webb, B.; Sali, A. Comparative Protein Structure Modeling Using MODELLER. Curr. Protoc. Protein Sci. 2016, 54, 5.6.1–5.6.37. [Google Scholar]
- Consortium, U.P. UniProt: A hub for protein information. Nucleic Acids Res. 2015, 43, D204–D212. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Li, L.; Weng, Z. ZDOCK: An initial-stage protein-docking algorithm. Proteins Struct. Funct. Bioinform. 2010, 52, 80–87. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. Softwarex 2015, 1, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Berger, O.; Edholm, O.; Jahnig, F. Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys. J. 1997, 72, 2002–2013. [Google Scholar] [CrossRef] [Green Version]
- Kandt, C.; Ash, W.L.; Tieleman, D.P. Setting up and running molecular dynamics simulations of membrane proteins. Methods 2007, 41, 475–488. [Google Scholar] [CrossRef] [PubMed]
- Amira, S.; Spangberg, D.; Hermansson, K. Derivation and evaluation of a flexible SPC model for liquid water. Chem. Phys. 2004, 303, 327–334. [Google Scholar] [CrossRef]
- Lemak, A.S.; Balabaev, N.K. On The Berendsen Thermostat. Mol. Simul. 1994, 13, 177–187. [Google Scholar] [CrossRef]
- Petersen, H.G. Accuracy and efficiency of the particle mesh Ewald method. J. Chem. Phys. 1995, 103, 3668–3679. [Google Scholar] [CrossRef]
- Hess, B.; Bekker, H.; Berendsen, H.J.C.; Fraaije, J.G. LINCS: A linear constraint solver for molecular simulations. J. Chem. Theory Comput. 1997, 4, 1463–1472. [Google Scholar] [CrossRef]
- Makarewicz, T.; Kazmierkiewicz, R. Molecular dynamics simulation by GROMACS using GUI plugin for PyMOL. J. Chem. Inf. Model. 2013, 53, 1229–1234. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Daura, X.; Gademann, K.; Jaun, B.; Seebach, D.; Van Gunsteren, W.F.; Mark, A.E. Peptide Folding: When Simulation Meets Experiment. Angew. Chem. Int. Ed. 1999, 38, 236–240. [Google Scholar] [CrossRef]
- Do, P.C.; Lee, E.H.; Le, L. Steered Molecular Dynamics Simulation in Rational Drug Design. J. Chem. Inf. Model. 2018, 58, 1473–1482. [Google Scholar] [CrossRef]
- Kumar, S.; Bouzida, D.; Swendsen, R.H.; Kollman, P.A.; Rosenberg, J.M. The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J. Comput. Chem. 1992, 13, 1011–1021. [Google Scholar] [CrossRef]
Region | Residue | Total Interaction (kJ·mol−1) | ||
---|---|---|---|---|
AGAP | AGAPW38G | AGAPW38F | ||
β-sheet I | Y5 | −0.99 | - | - |
D8 | - | - | −22.96 | |
loop between α-helix and β-sheet I | C12 | - | - | −2.87 |
Y14 | −2.55 | - | - | |
F15 * 1 | −23.10 | −20.44 | −40.96 | |
α-helix | Y21 | - | - | −2.60 |
β-sheet III | Y35 | −3.16 | - | −40.40 |
β-turn | Q37 | - | −19.97 | −48.43 |
W38 | −38.99 | - | - | |
G38 | - | −16.60 | - | |
F38 | - | - | −38.59 | |
A39 | −10.16 | −12.59 | −7.65 | |
G40 | - | −27.39 | - | |
V41 | −37.54 | - | −38.77 | |
Y42 * | −25.09 | −18.10 | −23.06 | |
G43 | −24.60 | - | - | |
N44 * | −15.78 | −28.25 | −24.74 | |
β-sheet II | W47 | - | - | −7.25 |
C-terminal | R58 | - | - | −2.75 |
V59 | - | −2.47 | - | |
G61 | - | - | −14.15 | |
K62 | −68.51 | - | - | |
C63 | −17.33 | −10.14 | - | |
N64 | −19.85 | - | - | |
G65 | −25.08 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, F.; Fang, L.; Wang, Q.; Ye, Q.; He, Y.; Xu, W.; Song, Y. Exploring the Pivotal Components Influencing the Side Effects Induced by an Analgesic-Antitumor Peptide from Scorpion Venom on Human Voltage-Gated Sodium Channels 1.4 and 1.5 through Computational Simulation. Toxins 2023, 15, 33. https://doi.org/10.3390/toxins15010033
Zhao F, Fang L, Wang Q, Ye Q, He Y, Xu W, Song Y. Exploring the Pivotal Components Influencing the Side Effects Induced by an Analgesic-Antitumor Peptide from Scorpion Venom on Human Voltage-Gated Sodium Channels 1.4 and 1.5 through Computational Simulation. Toxins. 2023; 15(1):33. https://doi.org/10.3390/toxins15010033
Chicago/Turabian StyleZhao, Fan, Liangyi Fang, Qi Wang, Qi Ye, Yanan He, Weizhuo Xu, and Yongbo Song. 2023. "Exploring the Pivotal Components Influencing the Side Effects Induced by an Analgesic-Antitumor Peptide from Scorpion Venom on Human Voltage-Gated Sodium Channels 1.4 and 1.5 through Computational Simulation" Toxins 15, no. 1: 33. https://doi.org/10.3390/toxins15010033
APA StyleZhao, F., Fang, L., Wang, Q., Ye, Q., He, Y., Xu, W., & Song, Y. (2023). Exploring the Pivotal Components Influencing the Side Effects Induced by an Analgesic-Antitumor Peptide from Scorpion Venom on Human Voltage-Gated Sodium Channels 1.4 and 1.5 through Computational Simulation. Toxins, 15(1), 33. https://doi.org/10.3390/toxins15010033