Crotoxin Modulates Macrophage Phenotypic Reprogramming
Abstract
:1. Introduction
2. Results
2.1. Developmental Characterization of Ehrlich Ascitic Tumor—EAT
2.2. Effect of CTX on Ascitic Fluid Volume
2.3. Effect of CTX on Cellularity Present in the Ascitic Fluid
2.3.1. Effect of Concomitant Treatment (6th Day—Lag to Log Phase)
2.3.2. Effect of Concomitant Treatment (13th Day—Log to Terminal Phase)
2.4. Effect CTX on Cytokine Release
2.5. Effect of CTX on Nitric Oxide Production (NO•)
2.6. CTX Alters the Phenotypic Profile of Resident Macrophages and the Tumor Microenvironment
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Crotoxin
5.2. Animals
5.3. Maintenance and Inoculation of Ehrlich Ascitic Tumor Cells
5.4. Temporal Evaluation of Ehrlich Ascitic Tumor
5.5. CTX Treatment
Treatments CTX Performed at Different Periods
5.6. Obtaining Peritoneal Lavage from Non-Tumor-Bearing Animals
5.7. Obtaining and Isolating Macrophages Obtained from Ascites Induced by Ehrlich’s Tumor
5.8. Quantification of Nitric Oxide (NO•) Secreted in Ascites or Peritoneal Lavage
5.9. Enzyme Immunoassay (ELISA) for Cytokine Determination
5.10. Macrophage Immunophenotyping
5.11. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mantovani, A.; Schioppa, T.; Porta, C.; Allavena, P.; Sica, A. Role of Tumor-Associated Macrophages in Tumor Progression and Invasion. Cancer Metastasis Rev. 2006, 25, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Solinas, G.; Schiarea, S.; Liguori, M.; Fabbri, M.; Pesce, S.; Zammataro, L.; Pasqualini, F.; Nebuloni, M.; Chiabrando, C.; Mantovani, A.; et al. Tumor-Conditioned Macrophages Secrete Migration-Stimulating Factor: A New Marker for M2-Polarization, Influencing Tumor Cell Motility. J. Immunol. 2010, 185, 642–652. [Google Scholar] [CrossRef] [PubMed]
- Allavena, P.; Mantovani, A. Immunology in the Clinic Review Series; Focus on Cancer: Tumour-Associated Macrophages: Undisputed Stars of the Inflammatory Tumour Microenvironment. Clin. Exp. Immunol. 2012, 167, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Sica, A.; Schioppa, T.; Mantovani, A.; Allavena, P. Tumour-Associated Macrophages Are a Distinct M2 Polarised Population Promoting Tumour Progression: Potential Targets of Anti-Cancer Therapy. Eur. J. Cancer 2006, 42, 717–727. [Google Scholar] [CrossRef] [PubMed]
- Sica, A.; Larghi, P.; Mancino, A.; Rubino, L.; Porta, C.; Totaro, M.G.; Rimoldi, M.; Biswas, S.K.; Allavena, P.; Mantovani, A. Macrophage Polarization in Tumour Progression. Semin. Cancer Biol. 2008, 18, 349–355. [Google Scholar] [CrossRef]
- Mantovani, A.; Bottazzi, B.; Colotta, F.; Sozzani, S.; Ruco, L. The Origin and Function of Tumor-Associated Macrophages. Immunol. Today 1992, 13, 265–270. [Google Scholar] [CrossRef]
- Alleva, D.G.; Burger, C.J.; Elgert, K.D. Tumor-Induced Regulation of Suppressor Macrophage Nitric Oxide and TNF-Alpha Production. Role of Tumor-Derived IL-10, TGF-Beta, and Prostaglandin E2. J. Immunol. 1994, 153, 1674–1686. [Google Scholar] [CrossRef]
- Bhaumik, S.; Khar, A. Cytokine-Induced Production of NO by Macrophages Induces Apoptosis and Immunological Rejection of AK-5 Histiocytic Tumor. Apoptosis 1998, 3, 361–368. [Google Scholar] [CrossRef]
- Takaishi, K.; Komohara, Y.; Tashiro, H.; Ohtake, H.; Nakagawa, T.; Katabuchi, H.; Takeya, M. Involvement of M2-Polarized Macrophages in the Ascites from Advanced Epithelial Ovarian Carcinoma in Tumor Progression via Stat3 Activation. Cancer Sci. 2010, 101, 2128–2136. [Google Scholar] [CrossRef]
- Redente, E.F.; Dwyer-Nield, L.D.; Merrick, D.T.; Raina, K.; Agarwal, R.; Pao, W.; Rice, P.L.; Shroyer, K.R.; Malkinson, A.M. Tumor Progression Stage and Anatomical Site Regulate Tumor-Associated Macrophage and Bone Marrow-Derived Monocyte Polarization. Am. J. Pathol. 2010, 176, 2972–2985. [Google Scholar] [CrossRef]
- Na, Y.R.; Yoon, Y.N.; Son, D.I.; Seok, S.H. Cyclooxygenase-2 Inhibition Blocks M2 Macrophage Differentiation and Suppresses Metastasis in Murine Breast Cancer Model. PLoS ONE 2013, 8, e63451. [Google Scholar] [CrossRef] [PubMed]
- Kono, Y.; Kawakami, S.; Higuchi, Y.; Maruyama, K.; Yamashita, F.; Hashida, M. Antitumor Effect of Nuclear Factor-ΚB Decoy Transfer by Mannose-Modified Bubble Lipoplex into Macrophages in Mouse Malignant Ascites. Cancer Sci. 2014, 105, 1049–1055. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Marchesi, F.; Malesci, A.; Laghi, L.; Allavena, P. Tumour-Associated Macrophages as Treatment Targets in Oncology. Nat. Rev. Clin. Oncol. 2017, 14, 399–416. [Google Scholar] [CrossRef] [PubMed]
- Slotta, K.; Fraenkel-Conrat, H. Estudos Químicos Sobre Os Venenos Ofídicos. 4—Purificação e Cristalização Do Veneno Da Cobra Cascavel. Mem. Inst. Butantan 1938, 12, 505–512. [Google Scholar]
- Fraenkel-Conrat, H.; Singer, B. Fractionation and Composition of Crotoxin. Arch. Biochem. Biophys. 1956, 60, 64–73. [Google Scholar] [CrossRef]
- Brazil, V. Neurotoxins from South American Rattlesnake. J. Formos. Med. Assoc. 1972, 71, 394–398. [Google Scholar]
- Gopalakrishnakone, P.; Dempster, D.W.; Hawgood, B.J.; Elder, H.Y. Cellular and Mitochondrial Changes Induced in the Structure of Murine Skeletal Muscle by Crotoxin, a Neurotoxic Phospholipase A2 Complex. Toxicon 1984, 22, 85–98. [Google Scholar] [CrossRef]
- Stocker, K. Composition of Snake Venoms. In Medical Use of Snake Venom Proteins; Stocker, K., Ed.; CRC Press: Boston, MA, USA, 1990; pp. 33–56. [Google Scholar]
- Sampaio, S.C.; Hyslop, S.; Fontes, M.R.M.; Prado-Franceschi, J.; Zambelli, V.O.; Magro, A.J.; Brigatte, P.; Gutierrez, V.P.; Cury, Y. Crotoxin: Novel Activities for a Classic β-Neurotoxin. Toxicon 2010, 55, 1045–1060. [Google Scholar] [CrossRef]
- Faure, G.; Xu, H.; Saul, F.A. Crystal Structure of Crotoxin Reveals Key Residues Involved in the Stability and Toxicity of This Potent Heterodimeric β-Neurotoxin. J. Mol. Biol. 2011, 412, 176–191. [Google Scholar] [CrossRef]
- Cura, J.E.; Blanzaco, D.P.; Brisson, C.; Cura, M.A.; Cabrol, R.; Larrateguy, L.; Mendez, C.; Sechi, J.C.; Silveira, J.S.; Theiller, E.; et al. Phase I and Pharmacokinetics Study of Crotoxin (Cytotoxic PLA2, NSC-624244) in Patients with Advanced Cancer. Clin. Cancer Res. 2002, 8, 1033–1041. [Google Scholar]
- Reid, P.F. Crotoxin Administration for Cancer Treatment and Pain Relief. U.S. Patent 8921305B2, 22 January 2013. [Google Scholar]
- Faiad, O.J.; Francisco, A.M.S.D.C.; Brigatte, P.; Curi, R.; Sampaio, S.C. Crotoxin modulates metabolism and secretory activity of peritoneal macrophages from Walker 256 tumor-bearing rats. Toxicon 2022, 15, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, D.F.; Lopes-Ferreira, M.; Faquim-Mauro, E.L.; Macedo, M.S.; Farsky, S.H. Role of Crotoxin, a Phospholipase A2 Isolated from Crotalus Durissus Terrificus Snake Venom, on Inflammatory and Immune Reactions. Mediat. Inflamm. 2001, 10, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Nunes, F.P.B.; Zychar, B.C.; Della-Casa, M.S.; Sampaio, S.C.; Gonçalves, L.R.C.; Cirillo, M.C. Crotoxin Is Responsible for the Long-Lasting Anti-Inflammatory Effect of Crotalus Durissus Terrificus Snake Venom: Involvement of Formyl Peptide Receptors. Toxicon 2010, 55, 1100–1106. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, P.D.; Guerra, F.S.; Sales, N.M.; Sardella, T.B.; Jancar, S.; Neves, J.S. Characterization of the Inflammatory Response during Ehrlich Ascitic Tumor Development. J. Pharmacol. Toxicol. Methods 2015, 71, 83–89. [Google Scholar] [CrossRef]
- Sugiura, K. Tumor Transplantation. In Methods of Animal Experimentation; Gay, W.I., Ed.; Academic Press: London, UK, 1965; Volume II, pp. 171–221. ISBN 9781483261539. [Google Scholar]
- Sheela, M.L.; Ramakrishna, M.K.; Salimath, B.P. Angiogenic and Proliferative Effects of the Cytokine VEGF in Ehrlich Ascites Tumor Cells Is Inhibited by Glycyrrhiza Glabra. Int. Immunopharmacol. 2006, 6, 494–498. [Google Scholar] [CrossRef]
- Cavazzoni, E.; Bugiantella, W.; Graziosi, L.; Franceschini, M.S.; Donini, A. Malignant Ascites: Pathophysiology and Treatment. Int. J. Clin. Oncol. 2013, 18, 1–9. [Google Scholar] [CrossRef]
- de Araújo Pimenta, L.; de Almeida, M.E.S.; Bretones, M.L.; Cirillo, M.C.; Curi, R.; Sampaio, S.C. Crotoxin Promotes Macrophage Reprogramming towards an Antiangiogenic Phenotype. Sci. Rep. 2019, 9, 4281. [Google Scholar] [CrossRef]
- da Silva, R.J.; da Silva, M.G.; Vilela, L.C.; Fecchio, D. Cytokine Profile of Ehrlich Ascites Tumor Treated with Bothrops Jararaca Venom. Mediat. Inflamm. 2002, 11, 197–201. [Google Scholar] [CrossRef]
- Brigatte, P.; Faiad, O.J.; Ferreira Nocelli, R.C.; Landgraf, R.G.; Palma, M.S.; Cury, Y.; Curi, R.; Sampaio, S.C. Walker 256 Tumor Growth Suppression by Crotoxin Involves Formyl Peptide Receptors and Lipoxin A4. Mediat. Inflamm. 2016, 2016, 2457532. [Google Scholar] [CrossRef]
- Simões, R.L.; De-Brito, N.M.; Cunha-Costa, H.; Morandi, V.; Fierro, I.M.; Roitt, I.M.; Barja-Fidalgo, C. Lipoxin A4 Selectively Programs the Profile of M2 Tumor-Associated Macrophages Which Favour Control of Tumor Progression. Int. J. Cancer 2017, 140, 346–357. [Google Scholar] [CrossRef]
- Aliberti, J.; Serhan, C.; Sher, A. Parasite-Induced Lipoxin A 4 Is an Endogenous Regulator of IL-12 Production and Immunopathology in Toxoplasma Gondii Infection. J. Exp. Med. 2002, 196, 1253–1262. [Google Scholar] [CrossRef] [PubMed]
- Parkinson, J.F. Lipoxin and Synthetic Lipoxin Analogs: An Overview of Anti-Inflammatory Functions and New Concepts in Immunomodulation. Inflamm. Allergy Drug Targets 2006, 5, 91–106. [Google Scholar] [CrossRef] [PubMed]
- Costa, E.S.; Faiad, O.J.; Landgraf, R.G.; Ferreira, A.K.; Brigatte, P.; Curi, R.; Cury, Y.; Sampaio, S.C. Involvement of formyl peptide receptors in the stimulatory effect of crotoxin on macrophages co-cultivated with tumour cells. Toxicon 2013, 74, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Neves, C.L.; De Lima Mauro, E.F.; Sampaio, S.C. Crotoxin modulates the phenotypic reprogramming of quiescent macrophages or stimulated by tumor microenvironment. Toxicon 2019, 168 (Suppl. 1), S24. [Google Scholar] [CrossRef]
- Rangel-Santos, A.; Lima, C.; Lopes-Ferreira, M.; Cardoso, D.F. Immunosuppresive Role of Principal Toxin (Crotoxin) of Crotalus Durissus Terrificus Venom. Toxicon 2004, 44, 609–616. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Ostrovskaia, L.A.; Skibida, I.P.; Krugliak, S.A.; Emanuél, N.M. Kinetic Peculiarities of the Development of Ehrlich Ascites Tumor in Linear and Non-Linear Mice. Izv. Akad. Nauk. SSSR Seriia Biol. 1966, 5, 734–738. [Google Scholar]
- Lima, T.S.; Neves, C.L.; Zambelli, V.O.; Lopes, F.S.R.; Sampaio, S.C.; Cirillo, M.C. Crotoxin, a Rattlesnake Toxin, down-Modulates Functions of Bone Marrow Neutrophils and Impairs the Syk-GTPase Pathway. Toxicon 2017, 136, 44–55. [Google Scholar] [CrossRef]
- Ding, A.H.; Nathan, C.F.; Stuehr, D.J. Release of Reactive Nitrogen Intermediates and Reactive Oxygen Intermediates from Mouse Peritoneal Macrophages. J. Immunol. 1988, 141, 2407–2412. [Google Scholar] [CrossRef]
6th Day after EAT Inoculation | ||||||
---|---|---|---|---|---|---|
Non-Tumor-Bearing Mice | Tumor-Bearing Mice | |||||
Cytokines (pg/mL) | Saline | CTX 0.9 µg/Animal | CTX 5.0 µg/Animal | Saline | CTX 0.9 µg/Animal | CTX 5.0 µg/Animal |
IL-1β | 14.5 ± 1.50 | 15.8 ± 3.04 | 14.0 ± 3.24 | 7.3 ± 1.65 | 8.0 ± 2.04 | 6.5 ± 0.87 |
IL-10 | 13.1 ± 10.7 | 9.2 ± 9.2 | 30.6 ± 15.1 | 84 ± 29.8 | N.D. * | N.D. * |
TNF-α | 252.8 ± 37 | 247.5 ± 57.2 | 297.3 ± 22 | 114.5 ± 30.4 | 65.7 ± 4.8 | 50.1 ± 8.2 |
13th Day after EAT Inoculation | ||||||
---|---|---|---|---|---|---|
Non-Tumor-Bearing Mice | Tumor-Bearing Mice | |||||
Cytokines (pg/mL) | Saline | CTX 0.9 µg/Animal | CTX 5.0 µg/Animal | Saline | CTX 0.9 µg/Animal | CTX 5.0 µg/Animal |
IL-1β | 13.8 ± 3.8 | 13.3 ± 3.7 | 13.7 ± 0.24 | 5.8 ± 1.44 | 3.5 ± 1.85 | 2.5 ± 0.50 |
IL-10 | 69.8 ± 68.8 | 42.6 ± 42.6 | 1.9 ± 1.9 | 342 ± 75 | 309 ± 61 | 267 ± 54 |
TNF-α | 298 ± 99 | 167 ± 44 | 215 ± 7.3 | 14.3 ± 3 | 18 ± 5 | 24 ± 1.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neves, C.L.; Barbosa, C.M.V.; Ranéia-Silva, P.A.; Faquim-Mauro, E.L.; Sampaio, S.C. Crotoxin Modulates Macrophage Phenotypic Reprogramming. Toxins 2023, 15, 616. https://doi.org/10.3390/toxins15100616
Neves CL, Barbosa CMV, Ranéia-Silva PA, Faquim-Mauro EL, Sampaio SC. Crotoxin Modulates Macrophage Phenotypic Reprogramming. Toxins. 2023; 15(10):616. https://doi.org/10.3390/toxins15100616
Chicago/Turabian StyleNeves, Camila Lima, Christiano Marcello Vaz Barbosa, Priscila Andrade Ranéia-Silva, Eliana L. Faquim-Mauro, and Sandra Coccuzzo Sampaio. 2023. "Crotoxin Modulates Macrophage Phenotypic Reprogramming" Toxins 15, no. 10: 616. https://doi.org/10.3390/toxins15100616
APA StyleNeves, C. L., Barbosa, C. M. V., Ranéia-Silva, P. A., Faquim-Mauro, E. L., & Sampaio, S. C. (2023). Crotoxin Modulates Macrophage Phenotypic Reprogramming. Toxins, 15(10), 616. https://doi.org/10.3390/toxins15100616