A Digital Twin Lake Framework for Monitoring and Management of Harmful Algal Blooms
Abstract
:1. Introduction
- (1)
- Browser-based front ends, instead of programs deployed on network servers as usual, are used to execute the video-based process of HAB monitoring. As a result, the problem of low efficiency in the traditional methods is completely solved;
- (2)
- DTLF is constructed by modelling a precise 3D model of the lake body, and the water environment of the lake can be realistically represented using monitoring data on the water quality, as well as precisely analyzed in a 3D manner;
- (3)
- Based on the constructed DTLF, present conditions of HABs and water quality in lakes can be grasped comprehensively by integrating monitoring data from satellite remote sensing, video devices and in situ stations.
2. Results
2.1. Research Area and Data Source
2.2. Satellite Remote Sensing of HABs in the Whole Lake
2.3. Video-Based Real-Time Monitoring of HABs in Nearshore Areas
2.4. Integrated Representation and Analysis of Multi-Source Monitoring Data
2.5. Evaluation Results of Efficiency, Effect and Accuracy
2.5.1. Efficiency Evaluation
2.5.2. Effect Evaluation
2.5.3. Accuracy Evaluation
3. Discussion
3.1. Advantages of DTLF
3.2. Potential Applications of DTLF
3.3. Uncertainties in the DTLF and Future Work
4. Conclusions
5. Materials and Methods
5.1. Construction of the DTLF
- (1)
- Dynamically determine the lake boundary and the lake surface. It can be inferred that the lake boundary and the lake surface vary with the changes of water level. In this work, a planar model is firstly generated according to the dynamically monitored water levels of the lake; the lake boundary is then determined by calculating the intersection line of the determined planar model and the 3D terrain data for the watershed. And the enclosed space of the determined lake boundary is considered as the lake surface;
- (2)
- Generate the 3D model of the underwater topography of the lake. A batch program is implemented and applied which can assign heights for all points in the underwater topography according to their elevations. And then the 3D model of the underwater terrain can be generated by fitting a curved surface based on all processed points;
- (3)
- Generate the final DTLF. Merge the obtained lake surface and the 3D model of the underwater terrain of the lake to generate the final DTLF. Considering the dynamic character of the water level, an algorithm is designed to refine the generated DTLF, i.e., (i) if the boundary of the 3D model of the underwater terrain is lower than the lake surface, i.e., there are empty areas between them, mend the empty areas with the 3D terrain data for the watershed, and (ii) if the boundary of the 3D model of the underwater terrain is higher than the lake surface, clip the 3D model of the underwater terrain based on the lake surface, i.e., only keep 3D points with heights less than or equal to the height of the lake surface.
5.2. HAB Monitoring throughout the Whole Lake via Satellite Remote Sensing
5.3. Video-Based Real-Time Monitoring of HABs in Nearshore Area of Lake
5.4. Integration, Visualization and Analysis of Multi-Source Monitoring Data
5.5. Performance Validation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fang, C.; Song, K.; Paerl, H.W.; Jacinthe, P.A.; Wen, Z.; Liu, G.; Tao, H.; Xu, X.; Kutser, T.; Wang, Z.; et al. Global divergent trends of algal blooms detected by satellite during 1982–2018. Glob. Change Biol. 2022, 28, 2327–2340. [Google Scholar] [CrossRef] [PubMed]
- Huisman, J.; Codd, G.A.; Paerl, H.W.; Ibelings, B.W.; Verspagen, J.M.; Visser, P.M. Cyanobacterial blooms. Nat. Rev. Microbiol. 2018, 16, 471–483. [Google Scholar] [CrossRef]
- Wang, K.; Razzano, M.; Mou, X. Cyanobacterial blooms alter the relative importance of neutral and selective processes in assembling freshwater bacterioplankton community. Sci. Total Environ. 2020, 706, 135724. [Google Scholar] [CrossRef] [PubMed]
- Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 2000, 31, 343–366. [Google Scholar] [CrossRef]
- Codd, G.A.; Lindsay, J.; Young, F.M.; Morrison, L.F.; Metcalf, J.S. Harmful cyanobacteria. In: Harmful Cyanobacteria. Aquat. Ecol. Ser. 2005, 3, 1–23. [Google Scholar] [CrossRef]
- Ma, J.; Loiselle, S.; Cao, Z.; Qi, T.; Shen, M.; Luo, J.; Song, K.; Duan, H. Unbalanced impacts of nature and nurture factors on the phenology, area and intensity of algal blooms in global large lakes: MODIS observations. Sci. Total Environ. 2023, 880, 163376. [Google Scholar] [CrossRef] [PubMed]
- Qin, B.; Paerl, H.W.; Brookes, J.D.; Liu, J.; Jeppesen, E.; Zhu, G.; Zhang, Y.; Xu, H.; Shi, K.; Deng, J. Why Lake Taihu continues to be plagued with cyanobacterial blooms through 10 years (2007–2017) efforts. Sci. Bull. 2019, 64, 354–356. [Google Scholar] [CrossRef]
- Brittain, S.M.; Wang, J.; Babcock-Jackson, L.; Carmichael, W.W.; Rinehart, K.L.; Culver, D.A. Isolation and characterization of microcystins, cyclic heptapeptide hepatotoxins from a Lake Erie strain of Microcystis aeruginosa. Toxicon 2000, 26, 241–249. [Google Scholar] [CrossRef]
- Michalak, A.M.; Anderson, E.J.; Beletsky, D.; Boland, S.; Bosch, N.S.; Bridgeman, T.B.; Chaffin, J.D.; Cho, K.; Confesor, R.; Daloglu, I.; et al. Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions. Proc. Natl. Acad. Sci. USA 2013, 110, 6448–6452. [Google Scholar] [CrossRef]
- Chaffin, J.D.; Mishra, S.; Kane, D.D.; Bade, D.L.; Stanislawczyk, K.; Slodysko, K.N.; Jones, K.W.; Parker, E.M.; Fox, E.L. Cyanobacterial blooms in the central basin of Lake Erie: Potentials for cyanotoxins and environmental drivers. J. Great Lakes Res. 2019, 45, 277–289. [Google Scholar] [CrossRef]
- Levy, S. Microcystis Rising: Why Phosphorus Reduction Isn’t Enough to Stop CyanoHABs. Environ. Health Perspect. 2017, 125, A34–A39. [Google Scholar] [CrossRef] [PubMed]
- Steffen, M.M.; Davis, T.W.; McKay, R.M.L.; Bullerjahn, G.S.; Krausfeldt, L.E.; Stough, J.M.A.; Neitzey, M.L.; Gilbert, N.E.; Boyer, G.L.; Johengen, T.H.; et al. Ecophysiological Examination of the Lake Erie Microcystis Bloom in 2014: Linkages between Biology and the Water Supply Shutdown of Toledo, OH. Environ. Sci. Technol. 2017, 51, 6745–6755. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhang, J. Current techniques for detecting and monitoring algal toxins and causative harmful algal blooms. J. Environ. Anal. Chem. 2015, 2, 1. [Google Scholar] [CrossRef]
- Chen, N.; Wang, S.; Zhang, X.; Yang, S. A risk assessment method for remote sensing of cyanobacterial blooms in inland waters. Sci. Total Environ. 2020, 740, 140012. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, Y.; Arhonditsis, G.B.; Gao, J.; Chen, Q.; Peng, J. The magnitude and drivers of harmful algal blooms in China’s lakes and reservoirs: A national-scale characterization. Water Res. 2020, 181, 115902. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, D.; Li, J.; Qiu, Z.; Wang, S.; He, Y. Remote sensing algorithm for detecting green tide in China coastal waters based on GF1-WFV and HJ-CCD data. Acta Opt. Sin. 2016, 36, 28–36. [Google Scholar] [CrossRef]
- Qiu, Y.; Duan, H.; Wan, N.; Gao, R.; Huang, J.; Xue, K.; Peng, Z.; Xiao, P. Design and practice of a platform for monitoring, early-warning and simulation of algal blooms in Lake Chaohu. J. Lake Sci. 2022, 34, 38–48. [Google Scholar] [CrossRef]
- Yang, J.; Holbach, A.; Wilhelms, A.; Qin, Y.; Zheng, B.; Zou, H.; Qin, B.; Zhu, G.; Norra, S. Highly time-resolved analysis of seasonal water dynamics and algal kinetics based on in-situ multi-sensor-system monitoring data in Lake Taihu, China. Sci. Total Environ. 2019, 660, 329–339. [Google Scholar] [CrossRef]
- Gong, P.; Antrim, A.K.; Bickman, S.R.; Cooley, E.G.; Chung, S.H. Sandwich hybridization assay for in situ real-time cyanobacterial detection and monitoring: A review. Biosensors 2022, 12, 640. [Google Scholar] [CrossRef]
- Qi, L.; Hu, C.; Visser, P.M.; Ma, R. Diurnal changes of cyanobacteria blooms in Taihu Lake as derived from GOCI observations. Limnol. Oceanogr. 2018, 63, 1711–1726. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, X.; Chen, N.; Wang, W. Classifying diurnal changes of cyanobacterial blooms in Lake Taihu to identify hot patterns, seasons and hotspots based on hourly GOCI observations. J. Environ. Manag. 2022, 310, 114782. [Google Scholar] [CrossRef] [PubMed]
- Kutser, T. Passive optical remote sensing of cyanobacteria and other intense phytoplankton blooms in coastal and inland waters. Int. J. Remote Sens. 2009, 30, 4401–4425. [Google Scholar] [CrossRef]
- Shi, K.; Zhang, Y.; Qin, B.; Zhou, B. Remote sensing of cyanobacterial blooms in inland waters: Present knowledge and future challenges. Sci. Bull. 2019, 64, 1540–1556. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Xie, G.; Yu, L.; Yang, S. Distribution of bluealga bloom over Dianchi Lake monitored with MODIS remote sensing images. Meteorol. Sci. Technol. 2009, 37, 618–620. [Google Scholar] [CrossRef]
- Tao, M.; Duan, H.; Cao, Z.; Loiselle, S.A.; Ma, R. A hybrid EOF algorithm to improve MODIS cyanobacteria phycocyanin data quality in a highly turbid lake: Bloom and nonbloom condition. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4430–4444. [Google Scholar] [CrossRef]
- Molkov, A.A.; Fedorov, S.V.; Pelevin, V.V.; Korchemkina, E.N. Regional Models for High-Resolution Retrieval of Chlorophyll a and TSM Concentrations in the Gorky Reservoir by Sentinel-2 Imagery. Remote Sens. 2019, 11, 1215. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, R.; Duan, H.; Loiselle, S.A.; Xu, J.; Ma, M. A novel algorithm to estimate algal bloom coverage to subpixel resolution in Lake Taihu. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3060–3068. [Google Scholar] [CrossRef]
- Hou, X.; Feng, L.; Dai, Y.; Hu, C.; Gibson, L.; Tang, J.; Lee, Z.; Wang, Y.; Cai, X.; Liu, J.; et al. Global mapping reveals increase in lacustrine algal blooms over the past decade. Nat. Geosci. 2022, 15, 130–134. [Google Scholar] [CrossRef]
- Hu, C. A novel ocean color index to detect floating algae in the global oceans. Remote Sens. Environ. 2009, 113, 2118–2129. [Google Scholar] [CrossRef]
- Chen, X.; Shang, S.; Lee, Z.; Qi, L.; Yan, J.; Li, Y. High-frequency observation of floating algae from AHI on Himawari-8. Remote Sens. Environ. 2019, 227, 151–161. [Google Scholar] [CrossRef]
- Duan, H.; Wan, N.; Qiu, Y.; Liu, G.; Chen, Q.; Luo, J.; Chen, Y.; Qi, T. Discussions and practices on the framework of monitoring system in eutrophic lakes and reservoirs. J. Lake Sci. 2020, 32, 1396–1405. [Google Scholar] [CrossRef]
- Ma, T.; Xiao, P.; Zhang, X.; Duan, H.; Qiu, Y. Real-time monitoring of cyanobacterial blooms dynamics around Lake Chaohu based on video surveillance images. J. Lake Sci. 2022, 34, 1840–1853. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, C.; Liu, Y.; Wang, J.; Qiu, Y. Real-time identification of cyanobacteria blooms in lakeshore zone using camera and semantic segmentation: A case study of Lake Chaohu (eastern China). Sustainability 2023, 15, 1215. [Google Scholar] [CrossRef]
- Qiu, Y.; Duan, H.; Xie, H.; Ding, X.; Jiao, Y. Design and development of a web-based interactive twin platform for watershed management. Trans. GIS 2022, 26, 1299–1317. [Google Scholar] [CrossRef]
- Chen, H.; Fang, C.; Xiao, X. Visualization of Environmental Sensing Data in the Lake-Oriented Digital Twin World: Poyang Lake as an Example. Remote Sens. 2023, 15, 1193. [Google Scholar] [CrossRef]
- Bezborodova, O.E.; Bodin, O.; Gerasimov, A.I.; Kramm, M.N.; Rahmatullov, R.F.; Ubiennykh, A.G. «Digital Twin» technology in medical information systems. J. Phys. Conf. Ser. 2020, 1515, 052022. [Google Scholar] [CrossRef]
- Lee, J.; Azamfar, M.; Singh, J. A blockchain enabled Cyber-Physical System architecture for Industry 4.0 manufacturing systems. Manuf. Lett. 2019, 20, 34–39. [Google Scholar] [CrossRef]
- Deng, T.; Zhang, K.; Shen, Z.J. A systematic review of a digital twin city: A new pattern of urban governance toward smart cities. J. Manag. Sci. Eng. 2021, 6, 125–134. [Google Scholar] [CrossRef]
- Wang, S.; Qing, L.; He, X.; Zhang, Y. Granular cumulative probability curve drawing system based on Canvas. Microcomput. Its Appl. 2017, 36, 97–100. [Google Scholar] [CrossRef]
- Rengarajan, P. A Comparison of 3D and 2D U-Net Convolutional Networks for Segmentation in FIB-SEM Imagery. Microsc. Microanal. 2022, 28, 3064–3066. [Google Scholar] [CrossRef]
- Rittger, K.; Painter, T.H.; Dozier, J. Assessment of Methods for Mapping Snow Cover from MODIS. Adv. Water Resour. 2013, 51, 367–380. [Google Scholar] [CrossRef]
CPU | RAM | Bandwidth | OS | Hard Disk Space |
---|---|---|---|---|
Intel Core i7-11370H | 32 GB | 8 Mbps | Windows Server 2019 | 2048 GB |
ID | Test Case | Consumed Time | Remarks |
---|---|---|---|
1 | Land-based video monitoring | 0.1 s | Contains the processes of real-time image capturing, HAB pixels identification and HAB monitoring results expression |
2 | Satellite remote sensing | 176 min | Contains the processes of satellite imagery download, data processing, result storing and data distribution. And the actual efficiency may be different in different network environments. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, Y.; Liu, H.; Liu, J.; Li, D.; Liu, C.; Liu, W.; Wang, J.; Jiao, Y. A Digital Twin Lake Framework for Monitoring and Management of Harmful Algal Blooms. Toxins 2023, 15, 665. https://doi.org/10.3390/toxins15110665
Qiu Y, Liu H, Liu J, Li D, Liu C, Liu W, Wang J, Jiao Y. A Digital Twin Lake Framework for Monitoring and Management of Harmful Algal Blooms. Toxins. 2023; 15(11):665. https://doi.org/10.3390/toxins15110665
Chicago/Turabian StyleQiu, Yinguo, Hao Liu, Jiaxin Liu, Dexin Li, Chengzhao Liu, Weixin Liu, Jindi Wang, and Yaqin Jiao. 2023. "A Digital Twin Lake Framework for Monitoring and Management of Harmful Algal Blooms" Toxins 15, no. 11: 665. https://doi.org/10.3390/toxins15110665
APA StyleQiu, Y., Liu, H., Liu, J., Li, D., Liu, C., Liu, W., Wang, J., & Jiao, Y. (2023). A Digital Twin Lake Framework for Monitoring and Management of Harmful Algal Blooms. Toxins, 15(11), 665. https://doi.org/10.3390/toxins15110665