Botulinum Toxin Treatment of Motor Disorders in Parkinson Disease—A Systematic Review
Abstract
:1. Introduction
2. Method of Search and Design of the Review
3. Parkinson Tremor
4. Search Results
5. Yale Protocol
6. Western University-London (ON, Canada) Protocol
7. Comment
8. Foot and Toe Dystonia
9. Comment
10. Parkinson Rigidity
11. Comment
12. Botulinum Treatment for Freezing of Gait (FOG) in Parkinson Disease
13. Botulinum Toxin Treatment of FOG in PD
14. Comment
15. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tysnes, O.-B.; Storstein, A. Epidemiology of Parkinson’s disease. J. Neural Transm. 2017, 124, 901–905. [Google Scholar] [CrossRef]
- Postuma, R.B.; Berg, D.; Stern, M.; Poewe, W.; Olanow, C.W.; Oertel, W.; Obeso, J.; Marek, K.; Litvan, I.; Lang, A.E.; et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 2015, 30, 1591–1601. [Google Scholar] [CrossRef] [PubMed]
- Jankovic, J. Botulinum toxin: State of the art. Mov. Disord. 2017, 32, 1131–1138. [Google Scholar] [CrossRef] [PubMed]
- Simpson, D.M.; Gracies, J.M.; Graham, K.; Hallett, M.; Miyasaki, J.; Naumann, M.; Russman, B.; Simpson, L.; So, Y. Assessment: Botulinum neurotoxin for the treatment of spasticity (an evidence-based review). Neurology 2009, 73, 736–737, author reply 737–738. [Google Scholar] [PubMed]
- Matak, I. Evidence for central antispastic effect of botulinum toxin type A. Br. J. Pharmacol. 2019, 177, 65–76. [Google Scholar] [CrossRef]
- Cao, S.; Cui, Y.; Jin, J.; Li, F.; Liu, X.; Feng, T. Prevalence of axial postural abnormalities and their subtypes in Parkinson’s disease: A systematic review and meta-analysis. J. Neurol. 2022, 1–13. [Google Scholar] [CrossRef]
- Jankovic, J.; Tarakad, A. Diagnosis and Management of Parkinson’s Disease. Semin. Neurol. 2017, 37, 118–126. [Google Scholar] [CrossRef]
- Lance, J.W.; Schwab, R.S.; Peterson, E.A. Action Tremor and the cogwheel phenomenon in parkinson’s disease. Brain 1963, 86, 95–110. [Google Scholar] [CrossRef]
- Louis, E.D. More Time with Tremor: The Experience of Essential Tremor Versus Parkinson’s Disease Patients. Mov. Disord. Clin. Pr. 2015, 3, 36–42. [Google Scholar] [CrossRef] [Green Version]
- Truong, D.; Shaikh, A.; Hallett, M. Editorial: Tremors. J. Neurol. Sci. 2022, 435. [Google Scholar] [CrossRef]
- Andreasi, N.G.; Cilia, R.; Romito, L.M.; Bonvegna, S.; Straccia, G.; Elia, A.E.; Novelli, A.; Messina, G.; Tringali, G.; Levi, V.; et al. Magnetic Resonance–Guided Focused Ultrasound Thalamotomy May Spare Dopaminergic Therapy in Early-Stage Tremor-Dominant Parkinson’s Disease: A Pilot Study. Mov. Disord. 2022, 37, 2289–2295. [Google Scholar] [CrossRef] [PubMed]
- Mittal, S.O.; Machado, D.; Richardson, D.; Dubey, D.; Jabbari, B. Botulinum Toxin in Parkinson Disease Tremor: A Randomized, Double-Blind, Placebo-Controlled Study With a Customized Injection Approach. Mayo Clin. Proc. 2017, 92, 1359–1367. [Google Scholar] [CrossRef] [PubMed]
- Trosch, R.M.; Pullman, S.L. Botulinum toxin a injections for the treatment of hand tremors. Mov. Disord. 1994, 9, 601–609. [Google Scholar] [CrossRef]
- Rahimi, F.; Samotus, O.; Lee, J.; Jog, M. Effective Management of Upper Limb Parkinsonian Tremor by IncobotulinumtoxinA Injections Using Sensor-based Biomechanical Patterns. Tremor Other Hyperkinet. Mov. 2015, 5, 348. [Google Scholar] [CrossRef]
- Samotus, O.; Lee, J.; Jog, M. Long-term tremor therapy for Parkinson and essential tremor with sensor-guided botulinum toxin type A injections. PLoS ONE 2017, 12, e0178670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samotus, O.; Lee, J.; Jog, M. Standardized algorithm for muscle selection and dosing of botulinum toxin for Parkinson tremor using kinematic analysis. Ther. Adv. Neurol. Disord. 2020, 13. [Google Scholar] [CrossRef]
- Niemann, N.; Jankovic, J. Botulinum Toxin for the Treatment of Hand Tremor. Toxins 2018, 10, 299. [Google Scholar] [CrossRef] [Green Version]
- Samotus, O.; Mahdi, Y.; Jog, M. Real-World Longitudinal Experience of Botulinum Toxin Therapy for Parkinson and Essential Tremor. Toxins 2022, 14, 557. [Google Scholar] [CrossRef]
- Jankovic, J.; Schwartz, K.; Clemence, W.; Aswad, A.; Mordaunt, J. A randomized, double-blind, placebo-controlled study to evaluate botulinum toxin type A in essential hand tremor. Mov. Disord. 1996, 11, 250–256. [Google Scholar] [CrossRef]
- Brin, M.; Lyons, K.; Doucette, J.; Adler, C.; Caviness, J.; Comella, C.; Dubinsky, R.; Friedman, J.; Manyam, B.; Matsumoto, J.; et al. A randomized, double masked, controlled trial of botulinum toxin type A in essential hand tremor. Neurology 2001, 56, 1523–1528. [Google Scholar] [CrossRef]
- Mittal, S.O.; Machado, D.; Richardson, D.; Dubey, D.; Jabbari, B. Botulinum toxin in essential hand tremor—A randomized double-blind placebo-controlled study with customized injection approach. Park. Relat. Disord. 2018, 56, 65–69. [Google Scholar] [CrossRef]
- Samotus, O.; Kumar, N.; Rizek, P.; Jog, M. Botulinum Toxin Type A Injections as Monotherapy for Upper Limb Essential Tremor Using Kinematics. Can. J. Neurol. Sci./J. Can. des Sci. Neurol. 2017, 45, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Mittal, S.O.; Jog, M.; Lee, J.; Jabbari, B. Novel Botulinum Toxin Injection Protocols for Parkinson Tremor and Essential Tremor—The Yale Technique and Sensor-Based Kinematics Procedure for Safe and Effective Treatment. Tremor Other Hyperkinet. Movements 2020, 10. [Google Scholar] [CrossRef]
- Tolosa, E.; Compta, Y. Dystonia in Parkinson’s disease. J. Neurol. 2006, 253, vii7–vii13. [Google Scholar] [CrossRef]
- Jost, W. Use of Botulinum Neurotoxin in Parkinson’s Disease: A Critical Appraisal. Toxins 2021, 13, 87. [Google Scholar] [CrossRef] [PubMed]
- Rieu, I.; Degos, B.; Castelnovo, G.; Vial, C.; Durand, E.; Pereira, B.; Simonetta-Moreau, M.; Sangla, S.; Fluchère, F.; Guehl, D.; et al. Incobotulinum toxin A in Parkinson’s disease with foot dystonia: A double blind randomized trial. Park. Relat. Disord. 2018, 46, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Pacchetti, C.; Albani, G.; Martignoni, E.; Godi, L.; Alfonsi, E.; Nappi, G. ?Off? painful dystonia in Parkinson’s disease treated with botulinum toxin. Mov. Disord. 1995, 10, 333–336. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.D.; Visvanathan, R. Botulinum toxin for foot dystonia in patients with Parkinson’s disease having deep brain stimulation: A case series and a pilot study. J. Rehabil. Med. 2016, 48, 559–562. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.D.; Tucker, G.; Koblar, S.; Visvanathan, R.; Cameron, I.D. Spatiotemporal Gait Analysis and Lower Limb Functioning in Foot Dystonia Treated with Botulinum Toxin. Toxins 2018, 10, 532. [Google Scholar] [CrossRef] [Green Version]
- Huang, P.; Li, Y.-Y.; Park, J.E.; Huang, P.; Xiao, Q.; Wang, Y.; Chen, S.; Liu, J.; Wu, Y.-W. Effects of Onabotulinum Toxin A on Gait in Parkinson’s Disease Patients with Foot Dystonia. Can. J. Neurol. Sci. 2021, 49, 123–128. [Google Scholar] [CrossRef]
- Grazko, M.A.; Polo, K.B.; Jabbari, B. Botulinum toxin A for spasticity, muscle spasms, and rigidity. Neurology 1995, 45, 712–717. [Google Scholar] [CrossRef] [PubMed]
- Shehata, H.S.; Shalaby, N.; Esmail, E.H.; Fahmy, E. Corticobasal degeneration: Clinical characteristics and multidisciplinary therapeutic approach in 26 patients. Neurol. Sci. 2015, 36, 1651–1657. [Google Scholar] [CrossRef] [PubMed]
- Davis, D.; Jabbari, B. Significant improvement of stiff-person syndrome after paraspinal injection of botulinum toxin A. Mov. Disord. 1993, 8, 371–373. [Google Scholar] [CrossRef]
- Liguori, R.; Cordivari, C.; Lugaresi, E.; Montagna, P. Botulinum toxin a improves muscle spasms and rigidity in stiff-person syndrome. Mov. Disord. 1997, 12, 1060–1063. [Google Scholar] [CrossRef] [PubMed]
- Perez-Lloret, S.; Negre-Pages, L.; Damier, P.; Delval, A.; Derkinderen, P.; Destée, A.; Meissner, W.; Schelosky, L.; Tison, F.; Rascol, O. Prevalence, Determinants, and Effect on Quality of Life of Freezing of Gait in Parkinson Disease. JAMA Neurol. 2014, 71, 884–890. [Google Scholar] [CrossRef] [Green Version]
- Walton, C.C.; Shine, J.M.; Hall, J.M.; O’Callaghan, C.; Mowszowski, L.; Gilat, M.; Szeto, J.Y.Y.; Naismith, S.L.; Lewis, S.J.G. The major impact of freezing of gait on quality of life in Parkinson’s disease. J. Neurol. 2015, 262, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Forsaa, E.; Larsen, J.; Wentzel-Larsen, T.; Alves, G. A 12-year population-based study of freezing of gait in Parkinson’s disease. Park. Relat. Disord. 2015, 21, 254–258. [Google Scholar] [CrossRef]
- Zhang, W.S.; Gao, C.; Tan, Y.Y.; Chen, S.D. Prevalence of freezing of gait in Parkinson’s disease: A systematic review and metanalysis. J. Neurol. 2021. [Google Scholar] [CrossRef]
- Okuma, Y.; de Lima, A.L.S.; Fukae, J.; Bloem, B.R.; Snijders, A.H. A prospective study of falls in relation to freezing of gait and response fluctuations in Parkinson’s disease. Park. Relat. Disord. 2018, 46, 30–35. [Google Scholar] [CrossRef]
- Lieberman, A.; Deep, A.; Olson, M.C.; Hussain, V.S.; Frames, C.W.; McCauley, M.; Lockhart, T.E. Falls When Standing, Falls When Walking: Different Mechanisms, Different Outcomes in Parkinson Disease. Cureus 2019, 11, e5329. [Google Scholar] [CrossRef]
- Martens, K.E.; Ellard, C.G.; Almeida, Q.J. Does Anxiety Cause Freezing of gait in Parkinson’s disease? PLoS ONE 2014, 9, e106561. [Google Scholar] [CrossRef] [Green Version]
- Nutt, J.G.; Bloem, B.R.; Giladi, N.; Hallett, M.; Horak, F.B.; Nieuwboer, A. Freezing of gait: Moving forward on a mysterious clinical phenomenon. Lancet Neurol. 2011, 10, 734–744. [Google Scholar] [CrossRef] [PubMed]
- Giladi, N.; Treves, T.A.; Simon, E.S.; Shabtai, H.; Orlov, Y.; Kandinov, B.; Paleacu, D.; Korczyn, A. Freezing of gait in patients with advanced Parkinson’s disease. J. Neural Transm. 2001, 108, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Gilat, M.; Ginis, P.; Zoetewei, D.; De Vleeschhauwer, J.; Hulzinga, F.; D’Cruz, N.; Nieuwboer, A. A systematic review on exercise and training-based interventions for freezing of gait in Parkinson’s disease. Npj Park. Dis. 2021, 7, 1–18. [Google Scholar] [CrossRef]
- Cui, C.K.; Lewis, S.J.G. Future Therapeutic Strategies for Freezing of Gait in Parkinson’s Disease. Front. Hum. Neurosci. 2021, 15. [Google Scholar] [CrossRef]
- Fasano, A.; Daniele, A.; Albanese, A. Treatment of motor and non-motor features of Parkinson’s disease with deep brain stimulation. Lancet Neurol. 2012, 11, 429–442. [Google Scholar] [CrossRef]
- Vercruysse, S.; Vandenberghe, W.; Munks, L.; Nuttin, B.; Devos, H.; Nieuwboer, A. Effects of deep brain stimulation of the subthalamic nucleus on freezing of gait in Parkinson’s disease: A prospective controlled study. J. Neurol. Neurosurg. Psychiatry 2014, 85, 871–877. [Google Scholar] [CrossRef]
- Schlenstedt, C.; Shalash, A.; Muthuraman, M.; Falk, D.; Witt, K.; Deuschl, G. Effect of high-frequency subthalamic neurostimulation on gait and freezing of gait in Parkinson’s disease: A systematic review and meta-analysis. Eur. J. Neurol. 2016, 24, 18–26. [Google Scholar] [CrossRef]
- Barbe, M.T.; Cepuran, F.; Amarell, M.; Schoenau, E.; Timmermann, L. Long-term effect of robot-assisted treadmill walking reduces freezing of gait in Parkinson’s disease patients: A pilot study. J. Neurol. 2012, 260, 296–298. [Google Scholar] [CrossRef]
- Fietzek, U.; Zwosta, J.; Schroeteler, F.E.; Ziegler, K.; Ceballos-Baumann, A.O. Levodopa changes the severity of freezing in Parkinson’s disease. Park. Relat. Disord. 2013, 19, 894–896. [Google Scholar] [CrossRef]
- Nonnekes, J.; Snijders, A.H.; Nutt, J.G.; Deuschl, G.; Giladi, N.; Bloem, B.R. Freezing of gait: A practical approach to management. Lancet Neurol. 2015, 14, 768–778. [Google Scholar] [CrossRef]
- Schaafsma, J.D.; Balash, Y.; Gurevich, T.; Bartels, A.L.; Hausdorff, J.M.; Giladi, N. Characterization of freezing of gait subtypes and the response of each to levodopa in Parkinson’s disease. Eur. J. Neurol. 2003, 10, 391–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espay, A.J.; Fasano, A.; van Nuenen, B.F.L.; Payne, M.M.; Snijders, A.H.; Bloem, B.R. "On" state freezing of gait in Parkinson disease: A paradoxical levodopa-induced complication. Neurology 2012, 78, 454–457. [Google Scholar] [CrossRef] [Green Version]
- Cossu, G.; Ricchi, V.; Pilleri, M.; Mancini, F.; Murgia, D.; Ricchieri, G.; Mereu, A.; Melis, M.; Antonini, A. Levodopa–carbidopa intrajejunal gel in advanced Parkinson disease with “on” freezing of gait. Neurol. Sci. 2015, 36, 1683–1686. [Google Scholar] [CrossRef] [PubMed]
- Nonnekes, J.; Bereau, M.; Bloem, B.R. Freezing of Gait and Its Levodopa Paradox. JAMA Neurol. 2020, 77, 287. [Google Scholar] [CrossRef] [PubMed]
- Iijima, M.; Mitoma, H.; Uchiyama, S.; Kitagawa, K. Long-term Monitoring Gait Analysis Using a Wearable Device in Daily Lives of Patients with Parkinson’s Disease: The Efficacy of Selegiline Hydrochloride for Gait Disturbance. Front. Neurol. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Giladi, N.; Gurevich, T.; Shabtai, H.; Paleacu, D.; Simon, E. The effect of botulinum toxin injections to the calf muscles on freezing of gait in parkinsonism: A pilot study. J. Neurol. 2001, 248, 572–576. [Google Scholar] [CrossRef]
- Fernandez, H.H.; Lannon, M.C.; Trieschmann, M.E.; Friedman, J.H. Botulinum toxin type B for gait freezing in Parkinson’s disease. Med. Sci. Monit. 2004, 10, CR282–CR284. [Google Scholar]
- Wieler, M.; Camicioli, R.; Jones, C.A.; Martin, W.R.W. Botulinum toxin injections do not improve freezing of gait in Parkinson disease. Neurology 2005, 65, 626–628. [Google Scholar] [CrossRef]
- Gurevich, T.; Peretz, C.; Moore, O.; Weizmann, N.; Giladi, N. The effect of injecting botulinum toxin type a into the calf muscles on freezing of gait in Parkinson’s disease: A double blind placebo-controlled pilot study. Mov. Disord. 2007, 22, 880–883. [Google Scholar] [CrossRef]
- Vastik, M.; Hok, P.; Hlustik, P.; Otruba, P.; Tüdös, Z.; Kanovsky, P. Botulinum toxin treatment of freezing of gait in Parkinson’s disease patients as reflected in functional magnetic resonance imaging of leg movement. Neuro Endocrinol. Lett. 2016, 37, 147–153. [Google Scholar]
- Jocson, A.; Lew, M. Use of botulinum toxin in Parkinson’s disease. Park. Relat. Disord. 2018, 59, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Malaty, I.A.; Shukla, A.W. Botulinum Toxin Therapy for Parkinson’s Disease. Semin. Neurol. 2017, 37, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Albanese, A.; Bhatia, K.; Bressman, S.B.; DeLong, M.R.; Fahn, S.; Fung, V.S.; Hallett, M.; Jankovic, J.; Jinnah, H.A.; Klein, C.; et al. Phenomenology and classification of dystonia: A consensus update. Mov. Disord. 2013, 28, 863–873. [Google Scholar] [CrossRef] [Green Version]
- Defazio, G.; Berardelli, A. Is Adult-Onset Dystonia a Rare Disease? Time for Population-Based Studies. Mov. Disord. 2021, 36, 1119–1124. [Google Scholar] [CrossRef]
- Romano, M.; Bagnato, S.; Altavista, M.C.; Avanzino, L.; Belvisi, D.; Bologna, M.; Bono, F.; Carecchio, M.; Castagna, A.; Ceravolo, R.; et al. Diagnostic and therapeutic recommendations in adult dystonia: A joint document by the Italian Society of Neurology, the Italian Academy for the Study of Parkinson’s Disease and Movement Disorders, and the Italian Network on Botulinum Toxin. Neurol. Sci. 2022, 43, 6929–6945. [Google Scholar] [CrossRef] [PubMed]
- Simpson, D.M.; Hallett, M.; Ashman, E.J.; Comella, C.L.; Green, M.W.; Gronseth, G.S.; Armstrong, M.J.; Gloss, D.; Potrebic, S.; Jankovic, J.; et al. Practice guideline update summary: Botulinum neurotoxin for the treatment of blepharospasm, cervical dystonia, adult spasticity, and headache. Neurology 2016, 86, 1818–1826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, D.K.; Marano, M.; Zweber, C.; Boyd, J.T.; Kuo, S.-H. Prevalence and Relationship of Rest Tremor and Action Tremor in Parkinson’s Disease. Tremor Other Hyperkinetic Movements 2020, 10, 58. [Google Scholar] [CrossRef]
- Wissel, J.; Bensmail, D.; Ferreira, J.J.; Molteni, F.; Satkunam, L.; Moraleda, S.; Rekand, T.; McGuire, J.; Scheschonka, A.; Flatau-Baqué, B.; et al. Safety and efficacy of incobotulinumtoxinA doses up to 800 U in limb spasticity. Neurology 2017, 88, 1321–1328. [Google Scholar] [CrossRef] [Green Version]
- Dressler, D.; Altavista, M.C.; Altenmueller, E.; Bhidayasiri, R.; Bohlega, S.; Chana, P.; Chung, T.M.; Colosimo, C.; Fheodoroff, K.; Garcia-Ruiz, P.J.; et al. Consensus guidelines for botulinum toxin therapy: General algorithms and dosing tables for dystonia and spasticity. J. Neural Transm. 2021, 128, 321–335. [Google Scholar] [CrossRef]
- Palmisano, C.; Beccaria, L.; Haufe, S.; Volkmann, J.; Pezzoli, G.; Isaias, I.U. Gait Initiation Impairment in Patients with Parkinson’s Disease and Freezing of Gait. Bioengineering 2022, 9, 639. [Google Scholar] [CrossRef] [PubMed]
- Lepers, R. The role of anticipatory postural adjustments and gravity in gait initiation. Exp. Brain Res. 1995, 107, 118–124. [Google Scholar] [CrossRef] [PubMed]
Author(s), and Year | Study Type | # of Pts | Type of BoNT | Total Dose/Units | Method to Locate Involved Muscles | Assessment of Improvement | Results | Adverse Effects |
---|---|---|---|---|---|---|---|---|
Trosch & Pullman, 1994 [13] | Pro, OL | 12 | onaA | 50–200 | EMG screening | Measured by linear finger acceleration | Only 2 of 12 patients showed a satisfactory response (>50 decrease in tremor amplitude) | Minimal finger weakness in two patients; no disability |
Rahimi et al., 2015 [14] | Pro, OL | 28 | incoA | 100 to 320 | KTA | FTM scale, UPDRS-items 20 & 21, & KTA | Tremor intensity, & hand function improved especially on KTA | Moderate finger and hand weakness in 3 of 28 patients (13%) |
Mittal et al., 2017 [12] | DB-PC | 30 | incoA | 80 to 120 | Yale Method, using extended EMG | FTM Scale, UPDRS-items 20 & 16, PGIC | Significant improvement in tremor intensity (FTM and UPDRS), and by PGIC | Moderate finger weakness in 2 of 30 patients (6.6%) |
Samotus et al., 2017 [15] | Pro, OL | 28: PD, 24: ET | incoA six injections over 96 wks | 174 to 240 | KTA | FTM tremor rating scale, sensor- based tremor assessment (KTA) | 70% had decrease in tremor amplitude by KTA, quality of life improved | Extensor weakness developed in 5.8% and 13.4% at wk 6 and wk 38 post injection. |
Samotus et al., 2020 [16] | Pro, OL | 47 | incoA 4 injections over 42 weeks | 55 to 260 | KTA | KTA, FTM | Tremor amplitude and arm functionality improved | 6 patients withdrew from the study due to hand weakness (12.7%) |
Authors and Date | Study Type | # of Pts | Type of Toxin | Dose | Injected Muscles | Rating Scales | Results | Adverse Effects (AE) |
---|---|---|---|---|---|---|---|---|
Rieux et al, 2018 [26] | DB-PC | 45 | incoA | 100 units per muscle | FDB, FDL | GCI of change | dystonic plantar flexion (toes) improved | One patient reported loss of sensation for a few days in the foot |
Pachetti et al., 1995 [27] | Pro-OL | 30 | onaA | 40 units per muscle | TA, TP, GC, FDL, EDL | Dystonic disability scale 1–5 | After 10 days, pain stopped in 22 pts. Dystonic disability also improved (p = 0.05) | No AE |
Gupta et al., 2016 [28] | Pro-OL | 6 | onaA | 100 to 150 units per muscle | TA, TP, GC, FDB, FDL, FHL, EHL | VAS, FMT dystonia score, UPDRS, 6 MWT | FTM improved 2 to 4 grades; Pain improved 2 to 5 grades; 6 MWT improved in all | No AE |
Gupta et al., 2018 [29] | Pro-OL | 14 | onaA | 100 to 200 units per muscle | FHL/FDL, TP, GC/S, FDB, EHL | STL, STPL, FTM dystonia severity scale, VAS, gait velocity | STL and STPL improved (p = 0.02); FTM improved (p = 0.01) | No AE |
Huang et al., 2020 [30] | Pro-OL | 6 | onaA | 10 to 70 units per muscle | TP, GC, FDL, FDB, FHL, FHB | STL, STL, VAS, FTM dystonia severity scale, Gait velocity and balance, Foot pressure | STL & STPL & gait velocity did not improve; balance ability and foot pressure improved (p = 0.03) | No AE |
Authors & Date | Study Type | # Pts | Toxin Type | Dose (Units) | Method(s) of Evaluation | Follow-Up in Weeks | Results | Side Effects |
---|---|---|---|---|---|---|---|---|
Gilardi et al., 2001 [57] | OL-P | 10 | BoNT-A | 100–300 per leg (5 both legs, 5 one leg) | Patient subjective report scale −1 to +3 | 1–12 (mean 6) | 7 patients reported improvement lasting 12 weeks | One patient reported transient weakness of the injected leg |
Fernandez et al., 2004 [58] | DB-PC | 14 | BoNT-B | 5000 into GS muscle (one leg) | UPDRS Parts II & III, VAS, CGIS, Webster step-seconds test | 4 | FOG did not improve | Two patients reported dry mouth and one had festina-tion |
Wieler et al., 2005 [59] | DB-PC, cross-over | 13 | BoNT-A | 100–150 per leg | FOG-Q UPDRDS-FOG, UPDRS-Q39, TUG | 12 | FOG did not improve | No adverse effect |
Gurevich et al., 2007 [60] | DB-PC | 11 | BoNT-A | 150 per leg | UPDRS subsets for ADL, falls, FOG-motor, FOG-Q | 26 | FOG did not improve | Increase in falls: 2 pts; Leg weakness: 3 pts |
Vastik et al., 2016 [61] | OL | 20 | BoNT-A | 50 per leg, into tensor fasciae latae, bilaterally | FOG-Q, TUG, BOLD, CGSI, UPDRS, H-Y staging | 4 | Improvement of FOG-Q scores | No adverse effects |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jabbari, B.; Comtesse, S.M. Botulinum Toxin Treatment of Motor Disorders in Parkinson Disease—A Systematic Review. Toxins 2023, 15, 81. https://doi.org/10.3390/toxins15020081
Jabbari B, Comtesse SM. Botulinum Toxin Treatment of Motor Disorders in Parkinson Disease—A Systematic Review. Toxins. 2023; 15(2):81. https://doi.org/10.3390/toxins15020081
Chicago/Turabian StyleJabbari, Bahman, and Samira Marie Comtesse. 2023. "Botulinum Toxin Treatment of Motor Disorders in Parkinson Disease—A Systematic Review" Toxins 15, no. 2: 81. https://doi.org/10.3390/toxins15020081
APA StyleJabbari, B., & Comtesse, S. M. (2023). Botulinum Toxin Treatment of Motor Disorders in Parkinson Disease—A Systematic Review. Toxins, 15(2), 81. https://doi.org/10.3390/toxins15020081