Emerging Issues on Tropane Alkaloid Contamination of Food in Europe
Abstract
:1. Introduction
2. TAs in Food in Europe
2.1. TA-Containing Food Plants
2.1.1. Brassicaceae Food Plants
2.1.2. Convolvulaceae Food Plants
2.1.3. Moraceae Food Plants
2.1.4. Solanaceae Food Plants
2.1.5. Surveys on Inherent TAs in Food
2.1.6. Stability of Inherent TAs during Storage and Processing
2.2. TAs from Associated Weed Plants in Food of Plant Origin
2.2.1. Brassicaceae Weed Plants
2.2.2. Convolvulaceae Weed Plants
2.2.3. Solanaceae Weed Plants
2.2.4. Surveys and Reports on Associated TAs in Food in Europe
TAs from Associated Weed Plants in Cereal-Based Food on the European Market
TAs from Associated Weed Plants in Tea on the European Market
TAs from Associated Weed Plants in Vegetables on the European Market
TAs in Animal Derived Foods on the European Market
2.2.5. Stability of Associated TAs during Storage and Processing
2.2.6. Emerging TA-Containing Weeds
2.3. Notifications on TAs in the European Union RASFF
2.3.1. Atropine and Scopolamine
2.3.2. Datura
2.3.3. Hyoscyamus, Mandragora, and Solanum
2.4. Reported Cases of Human Intoxication in Europe
2.4.1. Atropa Belladonna-Human Intoxications in Europe
2.4.2. Datura-Human Intoxications in Europe
2.4.3. Other TA-Containing Plants-Human Intoxications in Europe
2.4.4. Poisoning Center Reports in Europe
2.5. Factors Influencing Exposure
2.5.1. Plant Cultivar, Agricultural Management and Climate
2.5.2. Consumption Pattern
2.5.3. Analytical Challenges
3. Challenges on Exposure of the European Population to TAs via Food
4. Future Perspectives
5. Conclusions
6. Methodology
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adamse, P.; van Egmond, H.P.; Noordam, M.Y.; Mulder, P.P.J.; de Nijs, M. Tropane alkaloids in food: Poisoning incidents. Qual. Assur. Saf. Crops 2014, 6, 15–24. [Google Scholar] [CrossRef]
- Dräger, B. Chemistry and biology of calystegines. Nat. Prod. Rep. 2004, 21, 211–223. [Google Scholar] [CrossRef] [PubMed]
- Jockovic, N.; Fischer, W.; Brandsch, M.; Brandt, W.; Drager, B. Inhibition of human intestinal alpha-glucosidases by calystegines. J. Agric. Food Chem. 2013, 61, 5550–5557. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Scientific Opinion on tropane alkaloids in food and feed. EFSA Panel on Contaminants in the Food Chain. EFSA J. 2013, 11, 3386. [Google Scholar] [CrossRef]
- Asano, N.; Kato, A.; Matsui, K.; Watson, A.A.; Nash, R.J.; Molyneux, R.J.; Hackett, L.; Topping, J.; Winchester, B. The effects of calystegines isolated from edible fruits and vegetables on mammalian liver glycosidases. Glycobiology 1997, 7, 1085–1088. [Google Scholar] [CrossRef] [Green Version]
- Griffin, W.J.; Lin, G.D. Chemotaxonomy and geographical distribution of tropane alkaloids. Phytochemistry 2000, 53, 623–637. [Google Scholar] [CrossRef]
- Schimming, T.; Jenett-Siems, K.; Mann, P.; Tofern-Reblin, B.; Milson, J.; Johnson, R.W.; Deroin, T.; Austin, D.F.; Eich, E. Calystegines as chemotaxonomic markers in the Convolvulaceae. Phytochemistry 2005, 66, 469–480. [Google Scholar] [CrossRef]
- Berkov, S.; Zayed, R.; Doncheva, T. Alkaloid patterns in some varieties of Datura stramonium. Fitoterapia 2006, 77, 179–182. [Google Scholar] [CrossRef]
- Romera-Torres, A.; Arrebola-Liebanas, J.; Vidal, J.L.M.; Frenich, A.G. Determination of calystegines in several tomato varieties based on GC-Q-Orbitrap analysis and their classification by ANOVA. J. Agric. Food Chem. 2019, 67, 1284–1291. [Google Scholar] [CrossRef]
- Ashtiania, F.; Sefidkonb, F. Tropane alkaloids of Atropa belladonna L. and Atropa acuminata Royle ex Miers plants. J. Med. Plants Res. 2011, 5, 6515–6522. [Google Scholar] [CrossRef]
- Petersson, E.V.; Arif, U.; Schulzova, V.; Krtkova, V.; Hajslova, J.; Meijer, J.; Andersson, H.C.; Jonsson, L.; Sitbon, F. Glycoalkaloid and calystegine levels in table potato cultivars subjected to wounding, light, and heat treatments. J. Agric. Food Chem. 2013, 61, 5893–5902. [Google Scholar] [CrossRef]
- Kariñho-Betancourt, E.; Agrawal, A.A.; Halitschke, R.; Núñez-Farfán, J. Phylogenetic correlations among chemical and physical plant defenses change with ontogeny. New Phytol. 2015, 206, 796–806. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, B.; Lu, B.B.; Kai, G.Y.; Wang, Z.N.; Xia, Y.; Ding, R.X.; Zhang, H.M.; Sun, X.F.; Chen, W.S.; et al. Tropane alkaloids production in transgenic Hyoscyamus niger hairy root cultures over-expressing putrescine N-methyltransferase is methyl jasmonate-dependent. Planta 2007, 225, 887–896. [Google Scholar] [CrossRef]
- Dräger, B.; Funck, C.; Hohler, A.; Mrachatz, G.; Nahrstedt, A.; Portsteffen, A.; Schaal, A.; Schmidt, R. Calystegines as a new group of tropane alkaloids in Solanaceae. Plant Cell Tiss. Org. 1994, 38, 235–240. [Google Scholar] [CrossRef]
- Wong, C.W.; Hamilton, J.T.G.; O’Hagan, D.; Robins, R.J. Tropic acid biosynthesis: The incorporation of (RS)-phenyl[2-O-18,2-H-2]lactate into littorine and hyoscyamine in Datura stramonium. Chem. Commun. 1998, 9, 1045–1046. [Google Scholar] [CrossRef]
- Maurya, V.K.; Kumar, S.; Kabir, R.; Shrivastava, G.; Shanker, K.; Nayak, D.; Khurana, A.; Manchanda, R.K.; Gadugu, S.; Kar, S.K.; et al. Dark classics in chemical neuroscience: An evidence-based systematic review of Belladonna. ACS Chem. Neurosci. 2020, 11, 3937–3954. [Google Scholar] [CrossRef]
- Perharič, L. Mass tropane alkaloid poisoning due to buckwheat flour contamination. Clin. Toxicol. 2005, 43, 413. [Google Scholar] [CrossRef] [Green Version]
- BfR. Poisoning Reported by Physicians. BfR Information Sheet. 2006. Available online: http://www.bfr.bund.de/cm/364/cases_of_poisoning_reported_by_physicians_2006.pdf (accessed on 31 December 2022).
- Glaizal, M.; Schmitt, C.; Tichadou, L.; Sapori, J.M.; Hayek-Lanthois, M.; de Haro, L. Food poisonings related to organic buckwheat contaminated with Datura sp.: A poison control and toxicovigilance center activity. Presse Med. 2013, 42, 1412–1415. [Google Scholar] [CrossRef]
- Van Riel, A.J.H.P.; Meulenbelt, J.; de Vries, I. Anticholinergic poisoning after drinking contaminated herbal tea. Clin. Toxicol. 2014, 52, 383. [Google Scholar]
- Termala, A.M.; Pohjalainen, T.; Hoppu, K. Datura contamination of a large batch of frozen vegetables-some poisonings and a big hassle. Clin. Toxicol. 2014, 52, 384. [Google Scholar]
- Tsiligianni, I.G.; Vasilopoulos, T.K.; Papadokostakis, P.K.; Arseni, G.K.; Eleni, A.; Lionis, C.D. A two cases clinical report of Mandragora poisoning in primary care in Crete, Greece: Two case report. Cases J. 2009, 2, 9331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fretz, R.; Schmid, D.; Brueller, W.; Girsch, L.; Pichler, A.M.; Riediger, K.; Safer, M.; Allerberger, F. Food poisoning due to Jimson weed mimicking Bacillus cereus food intoxication in Austria, 2006. Int. J. Infect. Dis. 2007, 11, 557–558. [Google Scholar] [CrossRef]
- Lazzarini, D.; Baffoni, M.T.; Cangiotti, C.; Di Fronzo, G.; Gerboni, S.; Micheli, R.; Morelli, S.; Morolli, L.; Ioli, G. Food poisoning by Datura stramonium: An unusual case report. Intern. Emerg. Med. 2006, 1, 88–90. [Google Scholar] [CrossRef] [PubMed]
- Mulder, P.P.J.; von Holst, C.; Nivarlet, N.; van Egmond, H.P. Intra- and inter-laboratory validation of a dipstick immunoassay for the detection of tropane alkaloids hyoscyamine and scopolamine in animal feed. Food Addit. Contam. Part A 2014, 31, 1165–1176. [Google Scholar] [CrossRef] [PubMed]
- Kwakye, G.F.; Jimenez, J.; Jimenez, J.A.; Aschner, M. Atropa belladonna neurotoxicity: Implications to neurological disorders. Food Chem. Toxicol. 2018, 116, 346–353. [Google Scholar] [CrossRef]
- EU. Commission Regulation (EU) 2016/239 amending Regulation (EC) No 1881/2006 as regards maximum levels of tropane alkaloids in certain cereal-based foods for infants and young children. Official J. Eur. Union 2016, L45, 3–5. [Google Scholar]
- EU. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Official J. Eur. Union 2006, L364, 5–24. [Google Scholar]
- EU. Commission Regulation (EU) 2021/1408 of 27 August 2021 amending Regulation (EC) No 1881/2006 as regards maximum levels of tropane alkaloids in certain foodstuffs. Official J. Eur. Union 2021, L304, 1–4. [Google Scholar]
- EFSA. Overview of available toxicity data for calystegines. EFSA J. 2019, 17, 5574. [Google Scholar] [CrossRef] [Green Version]
- Mulder, P.P.J.; de Nijs, M.; Castellari, M.; Hortos, M.; Macdonald, S.; Crews, C.; Hajslova, J.; Stranska, M. Occurrence of Tropane Alkaloids in Food; 2016:EN-1140; EFSA Supporting Publication: Parma, Italy, 2016; p. 200. [Google Scholar] [CrossRef]
- Brock, A.; Herzfeld, T.; Paschke, R.; Koch, M.; Dräger, B. Brassicaceae contain nortropane alkaloids. Phytochemistry 2006, 67, 2050–2057. [Google Scholar] [CrossRef]
- Asano, N.; Yamashita, T.; Yasuda, K.; Ikeda, K.; Kizu, H.; Kameda, Y.; Kato, A.; Nash, R.J.; Lee, H.S.; Ryu, K.S. Polyhydroxylated alkaloids isolated from mulberry trees (Morus alba L.) and silkworms (Bombyx mori L.). J. Agric. Food Chem. 2001, 49, 4208–4213. [Google Scholar] [CrossRef]
- Klenow, S.; Latté, K.P.; Wegewitz, U.; Dusemund, B.; Pöting, A.; Appel, K.E.; Großklaus, R.; Schumann, R.; Lampen, A. Risikobewertung von Pflanzen und Pflanzlichen Zubereitungen. Part B, Chapter 1: Lycium barbarum L. (Gojibeeren). BfR Wiss. 2012, pp. 19–39. (In German). Available online: https://www.bfr.bund.de/cm/350/risikobewertung-von-pflanzen-und-pflanzlichen-zubereitungen.pdf (accessed on 31 December 2022).
- Friedman, M.; Roitman, J.N.; Kozukue, N. Glycoalkaloid and calystegine contents of eight potato cultivars. J. Agric. Food Chem. 2003, 51, 2964–2973. [Google Scholar] [CrossRef]
- Watson, A.A.; Davies, D.R.; Asano, N.; Winchester, B.; Kato, A.; Molyneux, R.J.; Stegelmeier, B.L.; Nash, R.J. Calystegine alkaloids in the potato and other food plants. Nat. Select. Synth. Toxins 2000, 745, 129–139. [Google Scholar]
- Zhao, G.H.; Kan, J.Q.; Li, Z.X.; Chen, Z.D. Characterization and immunostimulatory activity of an (1 -> 6)-α-D-glucan from the root of Ipomoea batatas. Int. Immunopharmacol. 2005, 5, 1436–1445. [Google Scholar] [CrossRef]
- Bovell-Benjamin, A.C. Sweet potato: A review of its past, present, and future role in human nutrition. Adv. Food Nutr. Res. 2007, 52, 1–59. [Google Scholar] [CrossRef]
- Marcussen, H.; Joergensen, K.; Holm, P.E.; Brocca, D.; Simmons, R.W.; Dalsgaard, A. Element contents and food safety of water spinach (Ipomoea aquatica Forssk.) cultivated with wastewater in Hanoi, Vietnam. Environ. Monit. Assess. 2008, 139, 77–91. [Google Scholar] [CrossRef]
- Singhal, B.K.; Khan, M.A.; Dhar, A.; Baqual, F.M.; Bindroo, B.B. Approaches to industrial exploitation of mulberry (Mulberry sp.) fruits. J. Fruit Ornam. Plant Res. 2010, 18, 83–99. [Google Scholar]
- Potterat, O. Goji (Lycium barbarum and L. chinense): Phytochemistry, pharmacology and safety in the perspective of traditional uses and recent popularity. Planta Med. 2010, 76, 7–19. [Google Scholar] [CrossRef] [Green Version]
- Harsh, M.L. Tropane alkaloids from Lycium barbarum Linn in vivo and in vitro. Curr. Sci. 1989, 58, 817–818. [Google Scholar]
- Peng, Y. Pharmacognostical Study of Lycium Species. Doctoral Thesis, Dissertation Hong Kong Universtity, Hong Kong, China, 2005; p. 24. [Google Scholar]
- Adams, M.; Wiedenmann, M.; Tittel, G.; Bauer, R. HPLC-MS trace analysis of atropine in Lycium barbarum berries. Phytochem. Anal. 2006, 17, 279–283. [Google Scholar] [CrossRef]
- Zhao, W.H.; Shi, Y.P. Simultaneous quantification of three tropane alkaloids in goji berries by cleanup of the graphene/hexagonal boron nitride hybrids and Ultra-High-Performance Liquid Chromatography Tandem Mass Spectrometry. J. Sep. Sci. 2020, 43, 3636–3645. [Google Scholar] [CrossRef] [PubMed]
- Sahai, M.; Ray, A.B. Secotropane alkaloids of Physalis peruviana. J. Org. Chem. 1980, 45, 3265–3268. [Google Scholar] [CrossRef]
- Kubwabo, C.; Rollmann, B.; Tilquin, B. Analysis of alkaloids from Physalis peruviana by Capillary GC, Capillary GC-MS, and GC-FTIR. Planta Med. 1993, 59, 161–163. [Google Scholar] [CrossRef] [PubMed]
- Asano, N.; Kato, A.; Oseki, K.; Kizu, H.; Matsui, K. Calystegins of Physalis alkekengi var. francheti (Solanaceae)–Structure determination and their glycosidase inhibitory activities. Eur. J. Biochem. 1995, 229, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Azemi, M.E.; Mosaddegh, M.; Cheraghali, A.M.; Namjooyan, F.; Dräger, B. Isolation and identification of calystegines in root cultures of four Physalis species. Iran J. Pharm. Res. 2006, 1, 69–72. [Google Scholar]
- Nash, R.J.; Watson, A.A.; Asano, N.; Winchester, B.; Molyneux, R.J.; Stegelmeier, B.L. Calystegine alkaloids in the potato and other food plants. Abstr. Pap. Am. Chem. Soc. 1998, 216, U73. [Google Scholar]
- Keiner, R.; Dräger, B. Calystegine distribution in potato (Solanum tuberosum) tubers and plants. Plant Sci. 2000, 150, 171–179. [Google Scholar] [CrossRef]
- Todd, F.G.; Stermitz, F.R.; Schultheis, P.; Knight, A.P.; Traubdargatz, J. Tropane alkaloids and toxicity of Convolvulus arvensis. Phytochemistry 1995, 39, 301–303. [Google Scholar] [CrossRef]
- Arraez-Roman, D.; Zurek, G.; Bassmann, C.; Segura-Carretero, A.; Fernandez-Gutierrez, A. Characterization of Atropa belladonna L. compounds by Capillary Electrophoresis-Electrospray Ionization-Time of Flight-Mass Spectrometry and Capillary Electrophoresiselectrospray Ionization-Ion Trap-Mass Spectrometry. Electrophoresis 2008, 29, 2112–2116. [Google Scholar] [CrossRef]
- Bekkouche, K.; Daali, Y.; Cherkaoui, S.; Veuthey, J.L.; Christen, P. Calystegine distribution in some solanaceous species. Phytochemistry 2001, 58, 455–462. [Google Scholar] [CrossRef]
- Dräger, B.; van Almsick, A.; Mrachatz, G. Distribution of calystegines in several Solanaceae. Planta Med. 1995, 61, 577–579. [Google Scholar] [CrossRef]
- Gaillard, Y.; Pepin, G. Poisoning by plant material: Review of human cases and analytical determination of main toxins by High-Performance Liquid Chromatography-(Tandem) Mass Spectrometry. J. Chromatogr. B 1999, 733, 181–229. [Google Scholar] [CrossRef]
- John, H.; Rychlik, M.; Thiermann, H.; Schmidt, C. Simultaneous quantification of atropine and scopolamine in infusions of herbal tea and Solanaceae plant material by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight (Tandem) Mass Spectrometry. Rapid Commun. Mass Spectrom. 2018, 32, 1911–1921. [Google Scholar] [CrossRef]
- Nakanishi, F.; Sasaki, K.; Shimomura, K. Isolation and identification of littorine from hairy roots of Atropa belladonna. Plant Cell Rep. 1998, 18, 249–251. [Google Scholar] [CrossRef]
- Simola, L.K.; Nieminen, S.; Huhtikangas, A.; Ylinen, M.; Naaranlahti, T.; Lounasmaa, M. Tropane alkaloids from Atropa belladonna, Part II. Interaction of origin, age, and environment in alkaloid production of callus cultures. J. Nat. Prod. 1988, 51, 234–242. [Google Scholar] [CrossRef]
- Xia, K.; Liu, X.; Zhang, Q.; Qiang, W.; Guo, J.; Lan, X.; Chen, M.; Liao, Z. Promoting scopolamine biosynthesis in transgenic Atropa belladonna plants with pmt and h6h overexpression under field conditions. Plant Physiol. Bioch. 2016, 106, 46–53. [Google Scholar] [CrossRef]
- Dräger, B. Identification and quantification of calystegines, polyhydroxyl nortropane alkaloids. Phytochem. Anal. 1995, 6, 31–37. [Google Scholar] [CrossRef]
- Benítez, G.; March-Salas, M.; Villa-Kamel, A.; Cháves-Jiménez, U.; Hernández, J.; Montes-Osuna, N.; Moreno-Chocano, J.; Cariñanos, P. The genus Datura L. (Solanaceae) in Mexico and Spain—Ethnobotanical perspective at the interface of medical and illicit uses. J. Ethnopharmacol. 2018, 219, 133–151. [Google Scholar] [CrossRef]
- Doncheva, T.; Berkov, S.; Philipov, S. Comparative study of the alkaloids in tribe Datureae and their chemosystematic significance. Biochem. Syst. Ecol. 2006, 34, 478–488. [Google Scholar] [CrossRef]
- Philipov, S.; Berkov, S.; Doncheva, T. GC-MS survey of Datura stramonium alkaloids. Comptes Rendus L’Académie Bulg. Sci. 2007, 60, 239–250. [Google Scholar]
- Sramska, P.; Maciejka, A.; Topolewska, A.; Stepnowski, P.; Halinski, L.P. Isolation of atropine and scopolamine from plant material using Liquid-Liquid extraction and EXtrelut® columns. J. Chromatogr. B 2017, 1043, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Tsialtas, J.T.; Kostoglou, E.; Lazari, D.; Eleftherohorinos, I.G. Annual Datura accessions as source of alkaloids, oil and protein under Mediterranean conditions. Ind. Crops Prod. 2018, 121, 187–194. [Google Scholar] [CrossRef]
- Kaçan, K.; Tursun, N.; Uludağ, A. Determination of Weed Emergence in Sunflower. In Proceedings of the Joint Workshop of the EWRS Working Groups: Novel and Sustainable Weed Management in Arid and Semi-Arid Agro Ecosystems and Weed Mapping, 29 September–3 October 2013; Mediterranean Agronomic Institute of Chania Crete, Greece. Book of Abstracts. 2013. Available online: https://www.ewrs.org/en/Working-Groups/Weed-Management-in-Mediterranean-Cropping-Systems/Documents?highlight=2013 (accessed on 31 December 2022).
- Romera-Torres, A.; Romero-Gonzale, R.; Vida, J.L.M.; Frenich, A.G. Simultaneous analysis of tropane alkaloids in teas and herbal teas by Liquid Chromatography coupled to High-Resolution Mass Spectrometry (Orbitrap). J. Sep. Sci. 2018, 41, 1938–1946. [Google Scholar] [CrossRef] [PubMed]
- Kato, A.; Asano, N.; Kizu, H.; Matsui, K.; Suzuki, S.; Arisawa, M. Calystegine alkaloids from Duboisia leichhardtii. Phytochemistry 1997, 45, 425–429. [Google Scholar] [CrossRef]
- Bahmanzadegan, A.; Sefidkon, F.; Sonboli, A. Determination of hyoscyamine and scopolamine in four Hyoscyamus species from Iran. Iran J. Pharm. Res. 2009, 8, 65–70. [Google Scholar]
- Hanus, L.O.; Rezanka, T.; Spizek, J.; Dembitsky, V.M. Substances isolated from Mandragora species. Phytochemistry 2005, 66, 2408–2417. [Google Scholar] [CrossRef]
- Jackson, B.P.; Berry, M.I. Hydroxytropane tiglates in roots of Mandragora species. Phytochemistry 1973, 12, 1165–1166. [Google Scholar] [CrossRef]
- Asano, N.; Kato, A.; Kizu, H.; Matsui, K.; Watson, A.A.; Nash, R.J. Calystegine B4, a novel trehalase inhibitor from Scopolia japonica. Carbohyd. Res. 1996, 293, 195–204. [Google Scholar] [CrossRef]
- Russo, R.; Reggiani, R. Antinutritive compounds in twelve Camelina sativa genotypes. Am. J. Plant Sci. 2012, 3, 1408–1412. [Google Scholar] [CrossRef] [Green Version]
- Austin, D.F. Bindweed (Convolvulus arvensis, Convolvulaceae) in North America—From medicine to menace. J. Torrey Bot. Soc. 2000, 127, 172–177. [Google Scholar] [CrossRef]
- Jenett-Siems, K.; Eich, E. Hygrines and tropane alkaloids, alkaloids of considerable importance for the chemotaxonomy of the Convolvulaceae. Eur. J. Pharm. Sci. 1994, 2, 122. [Google Scholar] [CrossRef]
- De Simone, R.; Margarucci, L.; De Feo, V. Tropane alkaloids: An overview. Pharmacologyonline 2008, 1, 70–89. [Google Scholar]
- Jan, S.; Kamili, A.N.; Parray, J.A.; Bedi, Y.S.; Ahmad, P. Microclimatic variation in UV perception and related disparity in tropane and quinolizidine alkaloid composition of Atropa acuminata, Lupinus polyphyllus and Hyoscyamus niger. J. Photochem. Photobiol. B Biol. 2016, 161, 230–235. [Google Scholar] [CrossRef]
- Piccillo, G.A.; Mondati, E.G.; Moro, P.A. Six clinical cases of Mandragora autumnalis poisoning: Diagnosis and treatment. Eur. J. Emerg. Med. 2002, 9, 342–347. [Google Scholar] [CrossRef]
- napolike.it. Naples: Poisonous Plant Sold as Spinach, 12 Intoxicated One is Serious. Available online: https://www.napolike.com/pozzuoli-poisonous-plant-sold-as-spinach-8-intoxicated-one-and-serious (accessed on 11 January 2023).
- Pledge Times. Mandrake in “Il Gigante” Frozen Foods: The Ministry Orders the Collection of Spinach in Bags. Available online: https://pledgetimes.com/mandrake-in-il-gigante-frozen-foods-the-ministry-orders-the-collection-of-spinach-in-bags/ (accessed on 11 January 2023).
- Rancic, D.; Spasic, A. Identification of atropine and scopolamine by HPLC in buckwheat flour contamination with Datura stramonium seeds. Toxicol. Lett. 2009, 189, S234. [Google Scholar] [CrossRef]
- Perharič, L.; Juvan, K.A.; Stanovnik, L. Acute effects of a low-dose atropine/scopolamine mixture as a food contaminant in human volunteers. J. Appl. Toxicol. 2013, 33, 980–990. [Google Scholar] [CrossRef]
- Perharič, L.; Kozelj, G.; Druzina, B.; Stanovnik, L. Risk assessment of buckwheat flour contaminated by thorn-apple (Datura stramonium L.) alkaloids: A case study from Slovenia. Food Addit. Contam. Part A 2013, 30, 321–330. [Google Scholar] [CrossRef]
- AFSSA. Avis de l’Agence Française de Securité Sanitaire des Aliments Relative à la Presence D’alcaloïdes (Atropine et Scopolamine) en Tant Que Substances Indésirables Dans la Farine de Sarrasin Destinée à la Consommation Humaine et à la Pertinence du Seuil de Gestion Provisoire Proposé par la DGCCRF. Saisine n° 2008-SA-0221. 2008, p. 11. Available online: https://www.anses.fr/sites/default/files/documents/RCCP2008sa0221.pdf (accessed on 31 December 2022).
- Caligiani, A.; Palla, G.; Bonzanini, F.; Bianchi, A.; Bruni, R. A validated GC-MS method for the detection of tropane alkaloids in buckwheat (Fagopyron esculentum L.) fruits, flours and commercial foods. Food Chem. 2011, 127, 204–209. [Google Scholar] [CrossRef]
- Mulder, P.P.J.; Pereboom-de Fauw, D.P.K.H.; Hoogenboom, R.L.A.P.; de Stoppelaar, J.; de Nijs, M. Tropane and ergot alkaloids in grain-based products for infants and young children in the Netherlands in 2011–2014. Food Addit. Contam. Part B 2015, 8, 284–290. [Google Scholar] [CrossRef]
- Cirlini, M.; Demuth, T.M.; Biancardi, A.; Rychlik, M.; Dall’Asta, C.; Bruni, R. Are tropane alkaloids present in organic foods? Detection of scopolamine and atropine in organic buckwheat (Fagopyron esculentum L.) products by UHPLC-MS/MS. Food Chem. 2018, 239, 141–147. [Google Scholar] [CrossRef]
- Marin-Saez, J.; Romero-Gonzalez, R.; Frenich, A.G. Reliable determination of tropane alkaloids in cereal based baby foods coupling on-line SPE to Mass Spectrometry avoiding chromatographic step. Food Chem. 2019, 275, 746–753. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Gomez, L.; Ganan, J.; Morante-Zarcero, S.; Perez-Quintanilla, D.; Sierra, I. Sulfonic acid-functionalized SBA-15 as strong cation-exchange sorbent for Solid-Phase Extraction of atropine and scopolamine in gluten-free grains and flours. Foods 2020, 9, 1854. [Google Scholar] [CrossRef] [PubMed]
- Vukovic, G.; Stojanovic, T.; Konstantinovic, B.; Bursic, V.; Puvaca, N.; Popov, M.; Samardzic, N.; Petrovic, A.; Marinkovic, D.; Roljevic Nikolic, S.; et al. Atropine and scopolamine in maize products from the retail stores in the Republic of Serbia. Toxins 2022, 14, 621. [Google Scholar] [CrossRef] [PubMed]
- Shimshoni, J.A.; Duebecke, A.; Mulder, P.P.J.; Cuneah, O.; Barel, S. Pyrrolizidine and tropane alkaloids in teas and the herbal teas peppermint, rooibos and chamomile in the Israeli market. Food Addit. Contam. Part A 2015, 32, 2058–2067. [Google Scholar] [CrossRef] [PubMed]
- Cirlini, M.; Cappucci, V.; Galaverna, G.; Dall’Asta, C.; Bruni, R. A sensitive UHPLC-ESI-MS/MS method for the determination of tropane alkaloids in herbal teas and extracts. Food Control 2019, 105, 285–291. [Google Scholar] [CrossRef]
- Martinello, M.; Manzinello, C.; Gallina, A.; Mutinelli, F. In-house validation and application of UHPLC-MS/MS method for the quantification of pyrrolizidine and tropane alkaloids in commercial honey bee-collected pollen, teas and herbal infusions purchased on Italian market in 2019–2020 referring to recent European Union regulations. Int. J. Food Sci. Technol. 2022, 57, 7505–7516. [Google Scholar] [CrossRef]
- Castilla-Fernandez, D.; Moreno-Gonzalez, D.; Garcia-Reyes, J.F.; Ballesteros, E.; Molina-Diaz, A. Determination of atropine and scopolamine in spinach-based products contaminated with genus Datura by UHPLC-MS/MS. Food Chem. 2021, 347, 129020. [Google Scholar] [CrossRef]
- Lamp, J.; Knappstein, K.; Walte, H.G.; Krause, T.; Steinberg, P.; Schwake-Anduschus, C. Transfer of tropane alkaloids (atropine and scopolamine) into the milk of subclinically exposed dairy cows. Food Control 2021, 126, 108056. [Google Scholar] [CrossRef]
- Zheng, W.; Yoo, K.H.; Choi, J.M.; Park, D.H.; Kim, S.K.; Kang, Y.S.; Abd El-Aty, A.M.; Hacimuftuoglu, A.; Jeong, J.H.; Bekhit, A.E.; et al. A modified QuEChERS method coupled with Liquid Chromatography-Tandem Mass Spectrometry for the simultaneous detection and quantification of scopolamine, L-hyoscyamine, and sparteine residues in animal-derived food products. J. Adv. Res. 2019, 15, 95–102. [Google Scholar] [CrossRef]
- Martinello, M.; Borin, A.; Stella, R.; Bovo, D.; Biancotto, G.; Gallina, A.; Mutinelli, F. Development and validation of a QuEChERS method coupled to Liquid Chromatography and High Resolution Mass Spectrometry to determine pyrrolizidine and tropane alkaloids in honey. Food Chem. 2017, 234, 295–302. [Google Scholar] [CrossRef]
- Romera-Torres, A.; Romero-Gonzalez, R.; Vidal, J.L.M.; Frenich, A.G. Comprehensive tropane alkaloids analysis and retrospective screening of contaminants in honey samples using liquid Chromatography-High Resolution Mass Spectrometry (Orbitrap). Food Res. Int. 2020, 133, 9. [Google Scholar] [CrossRef]
- Begemann, J.; Ostovar, S.; Schwake-Anduschus, C. Facing tropane alkaloid contamination in millet–Analytical and processing aspects. Qual. Assur. Saf. Crops 2021, 13, 79–86. [Google Scholar] [CrossRef]
- Marin-Saez, J.; Romero-Gonzalez, R.; Frenich, A.G. Degradation of tropane alkaloids in baked bread samples contaminated with Solanaceae seeds. Food Res. Int. 2019, 122, 585–592. [Google Scholar] [CrossRef]
- Marin-Saez, J.; Romero-Gonzalez, R.; Frenich, A.G. Effect of tea making and boiling processes on the degradation of tropane alkaloids in tea and pasta samples contaminated with Solanaceae seeds and coca leaf. Food Chem. 2019, 287, 265–272. [Google Scholar] [CrossRef]
- Vera-Baquero, F.L.; Morante-Zarcero, S.; Sierra, I. Evaluation of thermal degradation of tropane and opium alkaloids in gluten-free corn breadsticks samples contaminated with stramonium seeds and baked with poppy seeds under different conditions. Foods 2022, 11, 2196. [Google Scholar] [CrossRef]
- Williams, G.H. Elseviers’s Dictionary of Weeds of Western Europe; Elsevier: Amsterdam, The Netherlands, 1982. [Google Scholar]
- Williams, G.; Hunyadi, K. Dictionary of Weeds of Eastern Europe: Their Common Names and Importance in Latin, Albanian, Bulgarian, Czech, German, English, Greek, Hungarian, Polish, Romanian, Russian, Serbo-Croat and Slovak; Elsevier: Amsterdam, The Netherlands, 1987. [Google Scholar]
- Hanf, M. The Arable Weeds of Europe, with Their Seedlings and Seeds; BASF: Stockport, UK, 1983. [Google Scholar]
- AgroAtlas Project. Interactive Agricultural Ecological Atlas of Russia and Neighbouring Countries. Economic Plants and Their Diseases, Pests and Weeds. 2009. Available online: http://www.agroatlas.ru/en/content/weeds/ (accessed on 30 September 2015).
- Schroeder, D.; Mueller-schaerer, H.; Stinson, C.S.A. A European weed survey in 10 major crop systems to identify targets for biological-control. Weed Res. 1993, 33, 449–458. [Google Scholar] [CrossRef]
- EU. RASFF—The Rapid Alert System for Food and Feed. 2022. Available online: https://webgate.ec.europa.eu/rasff-window/screen/search (accessed on 31 December 2022). Historical data. 2022. Available online: https://data.europa.eu/data/datasets/restored_rasff?locale=en (accessed on 31 December 2022).
- Boumba, V.A.; Mitselou, A.; Vougiouklakis, T. Fatal poisoning from ingestion of Datura stramonium seeds. Vet. Hum. Toxicol. 2004, 46, 81–82. [Google Scholar]
- Trabattoni, G.; Visintini, D.; Terzano, G.M.; Lechi, A. Accidental poisoning with deadly nightshade berries—A case report. Hum. Toxicol. 1984, 3, 513–516. [Google Scholar] [CrossRef]
- Lange, A.; Toft, P. Poisoning with nightshade, Atropa belladonna. Ugeskr. Laeger 1990, 152, 1096. [Google Scholar]
- Jellema, K.; Groeneveld, G.J.; van Gijn, J. Koorts, grote ogen en verwardheid; het anticholinergisch syndroom. Ned. Tijdschr. Geneeskd. 2002, 146, 2173–2176. (In Dutch) [Google Scholar]
- Bogan, R.; Zimmermann, T.; Zilker, T.; Eyer, F.; Thiermann, H. Plasma level of atropine after accidental ingestion of Atropa belladonna. Clin. Toxicol. 2009, 47, 602–604. [Google Scholar] [CrossRef] [PubMed]
- Schneider, F.; Lutun, P.; Kintz, P.; Astruc, D.; Flesch, F.; Tempe, J.D. Plasma and urine concentrations of atropine after the ingestion of cooked deadly nightshade berries. J. Toxicol. Clin. Toxicol. 1996, 34, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Scholz, H.; Kascha, S.; Zingerle, H. Atropin-vergiftung durch “gesundheitstee”. Fortschr. Med. 1980, 98, 1525–1526. (In German) [Google Scholar] [PubMed]
- Galizia, E. Clinical curio hallucinations in elderly tea drinkers. BMJ 1983, 287, 979. [Google Scholar]
- Routledge, P.A.; Spriggs, T.L.B. Atropine as possible contaminant of comfrey tea. Lancet 1989, 1, 963–964. [Google Scholar] [CrossRef]
- Chan, T.Y.K. Worldwide occurrence and investigations of contamination of herbal medicines by tropane alkaloids. Toxins 2017, 9, 284. [Google Scholar] [CrossRef]
- Baca-Garcia, E.; Blasco-Fontecilla, H.; Blanco, C.; Diaz-Sastre, C.; Perez-Rodriguez, M.M.; Saiz-Ruiz, J. Acute atropine intoxication with psychiatric symptoms by herbal infusion of Pulmonaria officinalis (Lungwort). Eur. J. Psychiat. 2007, 21, 93–97. [Google Scholar] [CrossRef] [Green Version]
- Oerlemans, C.; de Vries, I.; van Riel, A.J.H.P. Anticholinerg syndroom door verontreinigde kruidenthee (Althaea officinalis). Ned. Tijdschr. Geneeskd. 2017, 161, D1261. (In Dutch) [Google Scholar]
- Le Parisien. Rappel de Conserves de Haricots Verts des Marques U et Notre Jardin. 2010. Available online: https://www.ladepeche.fr/article/2010/05/05/829440-rappel-conserves-haricots-verts-marques-u-jardin.html#:~:text=Les%20conserves%20de%20haricots%20verts,sant%C3%A9%20ce%20mercredi%205%20mai (accessed on 1 July 2022).
- CAFIA. CAFIA Banned Unsafe Spinach with Tropane Alkaloids. 2021. Available online: https://www.szpi.gov.cz/en/article/cafia-banned-unsafe-spinach-with-tropane-alkaloids.aspx (accessed on 1 July 2022).
- Van der Heide, R.M. Vergiftiging door ‘Hustentee’. Ned. Tijdschr. Geneeskd. 1988, 132, 1993. (In Dutch) [Google Scholar]
- Papoutsis, I.; Nikolaou, P.; Athanaselis, S.; Stefanidou, M.; Pistos, C.; Spiliopoulou, C.; Maravelias, C. Mass intoxication with Datura innoxia—Case series and confirmation by analytical toxicology. Clin. Toxicol. 2010, 48, 143–145. [Google Scholar] [CrossRef]
- Finland Times. Sale of Toxic Valio Product Also Banned: 3 More Poisoned by Rainbow Toxic Vegetables. 2013. Available online: http://www.finlandtimes.fi/national/2013/05/24/1155/Sale-of-toxic-Valio-product-also-banned (accessed on 1 July 2022).
- Jimenez-Mejias, M.E.; Montano-Diaz, M.; Pardo, F.L.; Jimenez, E.C.; Cordero, M.C.M.; Gonzalez, M.J.A.; de la Puente, M.A.G. Atropine poisoning by Mandragora autumnalis: Report of 15 cases. Med. Clin. 1990, 95, 689–692. [Google Scholar]
- Pietsch, J.; Koch, I.; Hermanns-Clausen, M.; Huller, G.; Wagner, R.; Dressler, J. Pediatric plant exposures in Germany, 1998–2004. Clin. Toxicol. 2008, 46, 686–691. [Google Scholar] [CrossRef]
- Jaspersen-Schib, R.; Theus, L.; Guirguis-Oeschger, M.; Gossweiler, B.; Meier-Abt, P.J. Serious plant poisonings in Switzerland 1966-1994. Case analysis from the Swiss Toxicology Information Center. Schweiz. Med. Wochenschr. 1996, 126, 1085–1098. (In German) [Google Scholar]
- Vichova, P.; Jahodar, L. Plant poisonings in children in the Czech Republic, 1996–2001. Hum. Exp. Toxicol. 2003, 22, 467–472. [Google Scholar] [CrossRef]
- Chadha, A.; Florentine, S.; Javaid, M.; Welgama, A.; Turville, C. Influence of elements of climate change on the growth and fecundity of Datura stramonium. Environ. Sci. Pollut. Res. 2020, 27, 35859–35869. [Google Scholar] [CrossRef]
- Crotser, M.P.; Witt, W.W. Effect of Glycine max canopy characteristics, G. max interference, and weed-free period on Solanum ptycanthum growth. Weed Sci. 2000, 48, 20–26. [Google Scholar] [CrossRef]
- Heap, I.; Duke, S.O. Overview of glyphosate-resistant weeds worldwide. Pest Manag. Sci. 2018, 74, 1040–1049. [Google Scholar] [CrossRef]
- Jank, B.; Rath, J. Emerging tropane alkaloid contaminations under climate change. Trends Plant Sci. 2021, 26, 1101–1103. [Google Scholar] [CrossRef]
- Abia, W.A.; Montgomery, H.; Nugent, A.P.; Elliott, C.T. Tropane alkaloid contamination of agricultural commodities and food products in relation to consumer health: Learnings from the 2019 Uganda food aid outbreak. Compr. Rev. Food Sci. Food Saf. 2021, 20, 501–525. [Google Scholar] [CrossRef]
- WHO. Healthy Diet. 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/healthy-diet (accessed on 15 December 2022).
- Mithril, C.; Dragsted, L.O. Safety evaluation of some wild plants in the New Nordic Diet. Food Chem. Toxicol. 2012, 50, 4461–4467. [Google Scholar] [CrossRef]
- Kowalski, S.; Mikulec, A.; Mickowska, B.; Buksa, K. Nutritional properties and amino acid profile of buckwheat bread. J. Food Sci. Technol. 2022, 59, 3020–3030. [Google Scholar] [CrossRef] [PubMed]
- Dzuman, Z.; Jonatova, P.; Stranska-Zachariasova, M.; Prusova, N.; Brabenec, O.; Novakova, A.; Fenclova, M.; Hajslova, J. Development of a new LC-MS method for accurate and sensitive determination of 33 pyrrolizidine and 21 tropane alkaloids in plant-based food matrices. Anal. Bioanal. Chem. 2020, 412, 7155–7167. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Gomez, L.; Morante-Zarcero, S.; Perez-Quintanilla, D.; Sierra, I. Occurrence and chemistry of tropane alkaloids in foods, with a focus on sample analysis methods: A review on recent trends and technological advances. Foods 2022, 11, 407. [Google Scholar] [CrossRef] [PubMed]
- Kaltner, F.; Kukula, V.; Gottschalk, C. Screening of food supplements for toxic pyrrolizidine alkaloids. J. Consum. Prot. Food Saf. 2020, 15, 237–243. [Google Scholar] [CrossRef]
- Engel, A.M.; Klevenhusen, F.; Moenning, J.L.; Numata, J.; Fischer-Tenhagen, C.; Sachse, B.; Schafer, B.; Fry, H.; Kappenstein, O.; Pieper, R. Investigations on the transfer of quinolizidine alkaloids from Lupinus angustifolius into the milk of dairy cows. J. Agric. Food. Chem. 2021, 70, 11749–11758. [Google Scholar] [CrossRef] [PubMed]
- Mulder, P.P.J.; de Witte, S.L.; Stoopen, G.M.; van der Meulen, J.; van Wikselaar, P.G.; Gruys, E.; Groot, M.J.; Hoogenboom, R.L.A.P. Transfer of pyrrolizidine alkaloids from various herbs to eggs and meat in laying hens. Food Addit. Contam. Part A 2016, 33, 1826–1839. [Google Scholar] [CrossRef] [Green Version]
- Mulder, P.P.J.; Klijnstra, M.D.; Goselink, R.M.A.; van Vuuren, A.M.; Cone, J.W.; Stoopen, G.; Hoogenboom, R.L.A.P. Transfer of pyrrolizidine alkaloids from ragwort, common groundsel and viper’s bugloss to milk from dairy cows. Food Addit. Contam. Part A 2020, 37, 1906–1921. [Google Scholar] [CrossRef]
- Diaz, G.J.; Almeida, L.X.; Gardner, D.R. Effects of dietary Crotalaria pallida seeds on the health and performance of laying hens and evaluation of residues in eggs. Res. Vet. Sci. 2014, 97, 297–303. [Google Scholar] [CrossRef]
- Romera-Torres, A.; Romero-Gonzalez, R.; Vidal, J.L.M.; Frenich, A.G. Study of the occurrence of tropane alkaloids in animal feed using LC-HRMS. Anal. Methods 2018, 10, 3340–3346. [Google Scholar] [CrossRef]
- O’Driscoll, C.; Ramwell, C.; Harhen, B.; Morrison, L.; Clauson-Kaas, F.; Hansen, H.C.B.; Campbell, G.; Sheahan, J.; Misstear, B.; Xiao, L.W. Ptaquiloside in Irish bracken ferns and receiving waters, with implications for land managers. Molecules 2016, 21, 543. [Google Scholar] [CrossRef]
- Griffiths, M.R.; Strobel, B.W.; Hama, J.R.; Cedergreen, N. Toxicity and risk of plant-produced alkaloids to Daphnia magna. Environ. Sci. Eur. 2021, 33, 10. [Google Scholar] [CrossRef]
- Hellenas, K.E.; Branzell, C.; Johnsson, H.; Slanina, P. High levels of glycoalkaloids in the established Swedish potato variety Magnum-Bonum. J. Sci. Food Agric. 1995, 68, 249–255. [Google Scholar] [CrossRef]
Family/Genus | Species | Common Name | Tropane Alkaloid(s) Reported in the Species | Reference | |
---|---|---|---|---|---|
Atropine | Calystegines (Country of Origin if Known: Tropane Alkaloids) | ||||
Brassicaeae | |||||
Brassica | B. nigra | Black mustard | NR * | A3; A5; B2 | [32] |
B. oleracea | Broccoli, cauliflower, kale, Brussels sprouts | NR | A3; A5; B2 | [32] | |
Crambe | C. maritima | Sea kale | NR | A3; A5; B3 | [32] |
Lepidium | L. sativum | Garden cress | NR | A3; A5 | [32] |
Convolvulaceae | |||||
Ipomoea | I. aquatica | Water spinach | NR | Thailand: A3; B1; B2; B4 | [7] |
I. batatas | Sweet potato | NR | Japan: B1; B2; C1 UK 1: A3; B1; B2; C1 Mexico, Panama, Japan: A3; B1; B2 | [5,7] | |
Moraceae | |||||
Morus | M. alba | White mulberry | NR | Japan: B2 | [5,33] |
Solanaceae | |||||
Capsicum | C. annuum var. angulosum | Bell pepper | NR | Japan: B1; B2; C1 | [5] |
C. frutescens | Chili peppers | NR | UK: A3; B2 | [5] | |
Lycium | L. barbarum and L. chinense | Goji berry | Atropine | NR | [34] |
L. europaeum | Goji berry | Atropine | NR | [34] | |
Physalis | P. peruviana | Cape gooseberry | NR | UK: A3; B1; B2; C1 | [5] |
Solanum | S. betaceum (syn. Cyphomandra betaceae) | Tomatillo | NR | UK: B2 | [5] |
S. esculentum (syn. Lycopersicum esculentum) | Tomato | NR | UK: A3; B2 Spain: A3; A5; B2; C1 | [5,9] | |
S. melanocerasum (syn. S. Scabrum) | Garden huckleberry | NR | UK: B2 | [5] | |
S. melongena | Eggplant or aubergine | NR | Japan: B1; B2 UK: A3; B2 | [5] | |
S. tuberosum | Potato (fresh tuber flesh) | NR | Japan: B2 Sweden: A3; B2; B4 UK: A3; B2 USA 2: A3; B2 UK: A3; B2 (French fries for microwave cooking, oven-ready chips, instant mashed potato granules, potato waffles, potato crisps, crisps from freeze-dried potato granules, hula hoops) | [5,11,35,36] |
Family/ Genus | Species (Invasive Weed in Europe 1) | Common Name | Tropane Alkaloids Reported in the Species | Reference | |
---|---|---|---|---|---|
Tropane Alkaloids Except Calystegines | Caly-Stegines Reported | ||||
Brassicaceae | |||||
Brassica | B. campestris (M) | Wild turnip | NR * | A3; A5 | [32] |
Camelina | C. sativa (U) | False flax | NR | A3; A5; B2; B3 | [32] |
Cochlearia | C. spp. (L) | Scurvy grass | Tropine, pseudotropine | A3; A5; B2; B3 | [32] |
Convolvulaceae | |||||
Convolvulus | C. arvensis (H) | Field bindweed | Tropine, pseudotropine, tropinone | A3; A5; B1; B2; B3; B4 | [7,52] |
Solanaceae | |||||
Atropa | A. belladonna (L) | Deadly nightshade | Atropine, scopolamine, apoatropine, norhyoscyamine, hyoscyamine, 6β-hydroxyhyoscyamine, aposcopolamine, littorine, tigloyltropeine, tigloyloxytropane, tropine, anisodamine | A3; B1; B2; B3 | [4,10,14,53,54,55,56,57,58,59,60,61] |
Datura | D. stramonium (H) | Jimson weed, Devil’s snare | Scopolamine, atropine, hyoscyamine, 6β-hydroxyhyoscyamine, apoatropine, 3α-phenylacetoxytropane, 3-hydroxy-6-isobutyryloxytropane, 3-hydroxy-6-(2-methylbutyryloxy)-tropane, 3-(2-methylbutyryloxy)-6-hydroxytropane, 3-(3′-acetoxytropoyloxy)-tropane, 3α-hydroxy-6β-tigloyloxytropane, littorine, aponorscopolamine, aposcopolamine, 3-tigloyloxy-6-propionyloxy-7-hydroxytropane | NR | [4,12,62,63,64,65,66,67,68] |
Duboisia | D. leichhardtii (L) | Not known | (-)-hyoscyamine, scopolamine | B1; B2; B4; C1; C2 | [2,13,56,69] |
D. myrporoïdes (L) | Corkwood | (-)-hyoscyamine, scopolamine | NR | [56] | |
Hyoscyamus | H. albus (H) | Henbane | (-)-hyoscyamine, scopolamine | A3; B1; B2; B3 | [54,56] |
H. niger (H) | Black henbane | (-)-hyoscyamine, scopolamine | A3; A5; A6; B1; B2; B3; N1 | [2,56,70] | |
Mandragora | M. autumnalis (L) | Autumn mandrake | Hyoscyamine, hyoscine, atropine, scopolamine, apoatropine, 3α-tigloyloxytropane, 3,6-ditigloyloxytropane | B2; B3 | [2,54,71,72] |
Scopolia | S. japonica (L) | Japanese belladonna | Atropine, scopolamine | A3; A5; B1; B2; B3; B4; C1 | [73] |
Product Category/ Sub-Product Category as Used by RASFF | RASFF Reference Number | Contaminant (Tropane Alkaloid or Plant Part) |
---|---|---|
Cereals and bakery products | ||
Buckwheat | 2021.4323; 2019.3045; 2018.3720; 2013.0829; 2013.0706; 2012.0794; 2009.0558; 2006.0424; 2006.BMT | Atropine, scopolamine |
Corn-based food, popcorn | 2022.4374; 2022.4371; 2022.3840; 2022.6084; 2021.0236; 2020.5394; 2019.1214; 2018.1447; 2016.0975; 2015.1190; 2015.0684; 2015.0210 | Atropine, scopolamine |
Millet and millet-based food | 2021.1741; 2020.5696; 2020.3576; 2016.1298; 2015.0399; 2015.0388; 2015.0387; 2015.0339; 2015.0338; 2015.0203; 2014.1652 2006.0833; 2006.0737; 2006.CRE; 2006.COH; 2006.CFX | Atropine, scopolamine Datura stramonium seeds |
Sorghum-based food | 2016.0106; 2015.1487 | Atropine, scopolamine |
Flax seed meal | 2021.6052 | Atropine |
Muesli | 2018.2695 | Atropine, scopolamine |
Breakfast cereals | 2020.2867 | Atropine, scopolamine |
Oatmeal | 2020.5838 | Datura stramonium seeds |
Soy flakes | 2020.0366 | Atropine, scopolamine |
Cocoa and cocoa preparations, coffee and tea | ||
Tea (herbal), blackberry leaves | 2020.2159; 2017.0239; 2017.0153; 2016.1818; 1994.18 1984.03; 1983.03 | Atropine, scopolamine Atropa belladonna |
Peppermint | 2019.0315 | Atropine, scopolamine |
Infusion | 2021.6059 | Atropine, scopolamine |
Dietetic foods, food supplements, fortified foods | ||
Porridge (baby) | 2016.0144; 2014.1596 | Atropine |
Millet and millet-based food | 2014.1724; 2014.1694 | Atropine |
Dried herbs (Ruscus aculeatus) | 2017.0803 | NR * |
Food additives and flavorings | ||
Soybean meal | 2022.2074 | Atropine, scopolamine |
Fruits and vegetables | ||
Fresh spinach | 2022.5877 | Mandragora |
Frozen spinach puree | 2021.1390 | Atropine, scopolamine |
Vegetable mix | 2019.0993; 2013.0696; 2007.CGO; | Datura stramonium seeds |
Canned beans | 2007.0613; 2006.0835; | Datura stramonium fruit |
Frozen peas | 2021.7140 | Solanum nigrum |
Canned tomatoes | 2019.3340 | Datura stramonium fruit |
Herbs and spices | ||
Tea, herbal infusion, peppermint | 2020.4733; 2018.2009 2013.0079; 1989.15 | Atropine, scopolamine Atropa belladonna |
Parsley stalks | 2021.3836 | Not mentioned |
Savory | 2022.2692 | Atropine, scopolamine |
Nuts, nut products and seeds | ||
Whole cumin seeds | 2018.0774 | Atropine, scopolamine |
Poppy seeds | 2008.0520; 2007.0267; 2007.0256 | Hyoscyamus niger seeds |
Feed, feed materials, pet food | ||
Sunflower or red millet seeds | 2019.3256; 2019.0379; 2012.0354; 2006.BYZ | Datura stramonium seeds |
Plant Involved | Product Involved | Reference |
---|---|---|
Atropa belladonna | Berries-accidental-Italy Berries-accidental-Denmark Berries-accidental-Netherlands Berries-accidental-Germany Berries, raw and cooked-accidental-France Tea, nettle-co-contamination-Austria Tea, comfrey-co-contamination-United Kingdom Tea, medicinal herb-Germany Tea, lungwort-co-contamination-Spain Tea, Althea officinalis-co-contamination-Netherlands | [111] [112] [113] [114] [115] [1,116] [117,118,119] [18] [119,120] [20,121] |
Datura sp. | Buckwheat flour, bakery products-co-contamination-France | [19] |
Datura stramonium | Buckwheat flour-co-contamination-Slovenia Buckwheat flour-co-contamination-France Millet flour/millet-carrot balls-co-contamination-Austria Green beans, canned-Datura-co-contamination-France Vegetables, mixed frozen-Datura seeds-co-contamination-Finland Frozen spinach puree-co-contamination-Slovakia (RASFF 2021.1390) Tea, Datura leaves-Germany D. stramonium leaves in pumpkin flower fritters-accidental-Italy | [17] [85] [23] [122] [21] [123] [124] [24] |
Datura innoxia | Salad leaves, collected in the wild-co-contamination-Greece | [125] |
Mandragora officinarum or autumnalis | Leaves-co-contamination-Greece Leaves-co-contamination-Italy Spinach-co-contamination-Italy | [22] [79] [80,81] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Nijs, M.; Crews, C.; Dorgelo, F.; MacDonald, S.; Mulder, P.P.J. Emerging Issues on Tropane Alkaloid Contamination of Food in Europe. Toxins 2023, 15, 98. https://doi.org/10.3390/toxins15020098
de Nijs M, Crews C, Dorgelo F, MacDonald S, Mulder PPJ. Emerging Issues on Tropane Alkaloid Contamination of Food in Europe. Toxins. 2023; 15(2):98. https://doi.org/10.3390/toxins15020098
Chicago/Turabian Stylede Nijs, Monique, Colin Crews, Folke Dorgelo, Susan MacDonald, and Patrick P. J. Mulder. 2023. "Emerging Issues on Tropane Alkaloid Contamination of Food in Europe" Toxins 15, no. 2: 98. https://doi.org/10.3390/toxins15020098
APA Stylede Nijs, M., Crews, C., Dorgelo, F., MacDonald, S., & Mulder, P. P. J. (2023). Emerging Issues on Tropane Alkaloid Contamination of Food in Europe. Toxins, 15(2), 98. https://doi.org/10.3390/toxins15020098