Streptavidin-Saporin: Converting Biotinylated Materials into Targeted Toxins
Abstract
:1. Introduction of Streptavidin-Saporin: Trade Name—Streptavidin-ZAP
1.1. History of Avidin/Streptavidin Conjugates
1.2. Modular Way of Screening Targeting Agents: In Vitro and In Vivo
1.3. Chemistry and Structure of Streptavidin-ZAP
2. Behavior, Disease, and Animal Models
2.1. Conditioning Regime for Engraftment
2.2. Cancer Research Applications and Target Screening
- A novel mesothelioma cell surface antigen, ALPPL2, was identified that could be specifically targeted by the antibody M25. Streptavidin-ZAP conjugated to M25 IgG1 was used in an immunotoxin assay to assess functional internalization and demonstrate potency and specificity against epithelioid and sarcomatoid mesothelioma [38].
- To determine whether an antibody can be developed as an immunotherapeutic drug, binding and internalization need to be proven. Berhani et al. used Streptavidin-ZAP in conjunction with a uniquely developed anti-human NKp46 monoclonal antibody to investigate the activity of human NKp46, a Natural Killer (NK) activating receptor, and its role in NK cell biology [32]. Streptavidin-ZAP was conjugated to the biotinylated human NKp46 antibody and tested on activated NK cells and an NK tumor cell line, which resulted in a decrease of cells and inhibition of cell growth, respectively. Therefore, the human NKp46 antibody can potentially be used to develop a drug to treat NKp46-dependent diseases like Type I diabetes and NK- and T-cell-related malignancies. This is just one example of the high value of saporin conjugates in effective drug development.
- Streptavidin-ZAP conjugated to biotinylated Chlorotoxin [97] (CTX-SAP) was used to selectively target Matrix Metallopeptidase 2 (MMP-2), which is known to be expressed by ML-1 thyroid cancer cells. Chlorotoxin inhibits the enzymatic activity of MMP-2 and therefore reduces the surface expression of MMP-2. The in vitro studies showed that CTX-SAP decreased the number of ML-1 thyroid cancer cells in a dose-dependent manner [37].
- A novel ADC to target HER2-positive breast cancer was prepared by conjugating biotinylated trastuzumab to Streptavidin-ZAP (T-ZAP) [34]. The study showed that the use of T-ZAP in trastuzumab-resistant cells resulted in more cell killing compared to T-DM1. Therefore, T-ZAP might be used to overcome trastuzumab resistance. Another way to overcome trastuzumab resistance is using a photochemical internalization technology. See Section 2.3.
- Triple-negative breast cancer (TNBC) is characterized by tumors lacking HER2, estrogen receptor, and progesterone receptor. TNBC has proven to be very difficult to treat, in large part because of the absence of consensus targets on the surface of the tumor cells. Damelin et al. [65] empirically established a set of surface markers associated with TNBC tumor-initiating cells, as produced by patient-derived xenografts. Ephrin-A4, which is overexpressed in TNBC and ovarian cancer, was selected as a therapeutic target, and a cell line transfected with the ephrin-A4 gene was challenged with two versions of biotinylated anti-ephrin-A4 coupled to Streptavidin-ZAP. Both the mouse monoclonal and the humanized antibodies reached an EC50 of 10 ng/mL, indicating that ephrin-A4 has promise as a therapeutic target for TNBC.
- A study published in 2018 [60] targeted the gastric adenocarcinoma cell line AGS with anti-CDH17, an antibody against the extracellular domain of Cadherin-17 (CDH17), which is expressed in gastric cancer. Since CDH17 is composed of seven extracellular cadherin domains, it was found that a cocktail in which immunotoxins recognize different epitopes on CDH17 resulted in additive/synergistic effects and, therefore, the best cytotoxic results.
- Streptavidin-ZAP was used to measure the internalization of antibodies against novel surface markers [40]. A novel single-chain variable fragment (scFv) 78 was tested against tumor endothelial marker 1 (TEM1). The scFv78 was evaluated as a tool for molecular imaging, immunotoxin-based therapy and nanotherapy. Streptavidin-ZAP was used to evaluate whether scFv78 can be used in vitro to deliver an immunotoxin selectively to TEM1-positive cells. The results showed dose-dependent cytotoxicity that was specific to TEM1-positive cells.
- Streptavidin-ZAP was used to evaluate therapies targeting human tumor vasculature and human cancer stem-like cells [102]. Targeting tumor vascular markers (TVM) is difficult since the vasculature expression profile of tumor types tends to be very different. Burgos-Ojeda et al. established a human embryonic stem-cell-derived teratoma and tested it as a model for TVM expression by challenging primary human mesenchymal stem cells (MSCs) in vitro. They also evaluated TVM expression in a human embryonic stem-cell-derived teratoma (hESCT) tumor model previously shown to have human vessels. The direct intravenous injection into subcutaneous tumors resulted in a temporary lack of tumor growth or regression of the tumor and tested the ability of the hESCT model to enhance the engraftment rate of primary human ovarian cancer stem-like cells.
- Toxicology studies of biotinylated anti-CD46 mixed with Streptavidin-ZAP were performed in non-human primates that showed the potential of CD46 for use as a target in adenocarcinoma and neuroendocrine types of metastatic castration-resistant prostate cancer (mCRPC) [61]. CD46 is a multifunctional protein that negatively regulates the innate immune response. Cytotoxicity data showed that the immunotoxin killed mCRPC cells but not control cell lines: a benign prostatic hyperplasia epithelial cell line and a primary normal human liver cell line that expressed low amounts of human CD46.
- Kuroda et al. examined the cytotoxic efficacy of anti-prostate-specific membrane antigen (PMSA) conjugated to saporin on PMSA-positive cell lines. hJ591, also known as rosopatamab, is a humanized anti-PMSA antibody that was biotinylated and combined with Streptavidin-ZAP [105]. The immunotoxin was specifically cytotoxic to PMSA-positive cells and exhibited anticancer activity in a xenograft model. This research demonstrates the anticancer potential of targeting PMSA.
- Ras-transformed cancers. According to Cancer.gov, approximately one-third of cancers, including a high percentage of pancreatic, lung, and colorectal cancers, are the result of mutations in RAS genes [106]. Macropinocytosis, the internalization of large endocytic vesicles called macropinosomes, is upregulated in Ras-transformed cancers. Ha, et al. demonstrate the screening and validation of antibodies that utilize the macropinosome pathway [33]. One method used was to biotinylate the antibodies and combine them with Streptavidin-ZAP at a 1:1 M ratio. The conjugate was applied to cells in a concentration curve starting at 200 nM to demonstrate internalization and cell killing. The results showed receptor-dependent micropinocytosis that allows tumor-targeting antibodies to be internalized via the macropinocytosis pathway.
- Breast and ovarian cancers. An antibody (A19) was produced in mice using human embryonic stem cells (hESCs) as the immunogen. A19 binding studies revealed that this antibody recognizes the N-glycan epitope on Erb-b2 (Erb-b2 receptor tyrosine kinase 2) that is expressed by many different breast cancer and ovarian cancer cell lines [62]. Biotinylated A19 was mixed with Streptavidin-ZAP and tested in vivo in nude mice [62]. Each nude mouse was injected in the right flank, subcutaneously, with 5 × 106 SKOV3 (a human ovarian cancer cell line) cells; the immunotoxin was administered intraperitoneally at 37.5 μg/dose. After 10 weeks, a 60% reduction in tumor size was observed, which indicates that A19-Saporin suppressed tumor growth.
- Small cell lung cancer and neuroblastoma. Streptavidin-ZAP was conjugated to a mouse anti-human-HuD monoclonal antibody to eliminate small cell lung cancer (SCLC) and neuroblastoma (NB) cells that express HuD, a neuronal RNA-binding protein [107]. The immunotoxin was tested in vitro and showed cytotoxicity at very low concentrations. After a killing baseline was established, Anti-HuD-Saporin was injected (1 mg/kg) directly into subcutaneous tumors generated in mice which resulted in a temporary lack of tumor growth or regression of the tumor. The results indicate the potential of HuD as a therapeutic target for SCLC and NB.
2.3. Photochemical Internalization
2.4. Immunology
2.5. Neurosciences
2.6. Gastroenterology & Cardiac Function
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ho, M.C.; Sturm, M.B.; Almo, S.C.; Schramm, V.L. Transition state analogues in structures of ricin and saporin ribosome-inactivating proteins. Proc. Natl. Acad. Sci. USA 2009, 106, 20276–20281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landi, N.; Hussain, H.Z.F.; Pedone, P.V.; Ragucci, S.; Di Maro, A. Ribotoxic Proteins, Known as Inhibitors of Protein Synthesis, from Mushrooms and Other Fungi According to Endo’s Fragment Detection. Toxins 2022, 14, 403. [Google Scholar] [PubMed]
- Huotari, J.; Helenius, A. Endosome maturation. EMBO J. 2011, 30, 3481–3500. [Google Scholar] [CrossRef]
- Wensley, H.J.; Johnston, D.A.; Smith, W.S.; Holmes, S.E.; Flavell, S.U.; Flavell, D.J. A Flow Cytometric Method to Quantify the Endosomal Escape of a Protein Toxin to the Cytosol of Target Cells. Pharm. Res. 2019, 37, 16. [Google Scholar] [CrossRef] [Green Version]
- Holmes, S.E.; Bachran, C.; Fuchs, H.; Weng, A.; Melzig, M.F.; Flavell, S.U.; Flavell, D.J. Triterpenoid saponin augmention of saporin-based immunotoxin cytotoxicity for human leukaemia and lymphoma cells is partially immunospecific and target molecule dependent. Immunopharmacol. Immunotoxicol. 2015, 37, 42–55. [Google Scholar] [CrossRef] [PubMed]
- Giansanti, F.; Flavell, D.J.; Angelucci, F.; Fabbrini, M.S.; Ippoliti, R. Strategies to Improve the Clinical Utility of Saporin-Based Targeted Toxins. Toxins 2018, 10, 82. [Google Scholar] [CrossRef] [Green Version]
- Vago, R.; Marsden, C.J.; Lord, J.M.; Ippoliti, R.; Flavell, D.J.; Flavell, S.U.; Ceriotti, A.; Fabbrini, M.S. Saporin and ricin A chain follow different intracellular routes to enter the cytosol of intoxicated cells. FEBS J. 2005, 272, 4983–4995. [Google Scholar] [CrossRef]
- Lappi, D.A.; Esch, F.S.; Barbieri, L.; Stirpe, F.; Soria, M. Characterization of a Saponaria officinalis seed ribosome-inactivating protein: Immunoreactivity and sequence homologies. Biochem. Biophys. Res. Commun. 1985, 129, 934–942. [Google Scholar] [CrossRef]
- Wiley, R.G.; Oeltmann, T.N.; Lappi, D.A. Immunolesioning: Selective destruction of neurons using immunotoxin to rat NGF receptor. Brain Res. 1991, 562, 149–153. [Google Scholar] [CrossRef]
- Kohls, M.D.; Lappi, D.A. Mab-ZAP: A tool for evaluating antibody efficacy for use in an immunotoxin. Biotechniques 2000, 28, 162–165. [Google Scholar] [CrossRef]
- Kohls, M.D. Evaluate Potential Targeting Molecules. Nat. Meth. 2006, 3. Available online: https://atsbio.com/wp-content/uploads/2019/06/Kohls-2006-StrepZAPNatureMethods.pdf (accessed on 1 February 2023).
- Ancheta, L.R.; Shramm, P.A.; Bouajram, R.; Higgins, D.; Lappi, D.A. Saporin as a Commercial Reagent: Its Uses and Unexpected Impacts in the Biological Sciences-Tools from the Plant Kingdom. Toxins 2022, 14, 184. [Google Scholar] [CrossRef] [PubMed]
- Wiley, R.G.; Lappi, D.A. Destruction of neurokinin-1 receptor expressing cells in vitro and in vivo using substance P-saporin in rats. Neurosci. Lett. 1997, 230, 97–100. [Google Scholar] [CrossRef]
- Köhler, G.; Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975, 256, 495–497. [Google Scholar] [CrossRef]
- Lazar, R.M.; Mohr, J.P. Revisiting the contributions of Paul Broca to the study of aphasia. Neuropsychol. Rev. 2011, 21, 236–239. [Google Scholar] [CrossRef]
- Luzzatti, C.; Whitaker, H. Jean-Baptiste Bouillaud, Claude-François Lallemand, and the role of the frontal lobe: Location and mislocation of language in the early 19th century. Arch. Neurol. 2001, 58, 1157–1162. [Google Scholar] [CrossRef]
- Szigeti, C.; Bencsik, N.; Simonka, A.J.; Legradi, A.; Kasa, P.; Gulya, K. Long-term effects of selective immunolesions of cholinergic neurons of the nucleus basalis magnocellularis on the ascending cholinergic pathways in the rat: A model for Alzheimer’s disease. Brain Res. Bull. 2013, 94, 9–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llorente-Ovejero, A.; Manuel, I.; Giralt, M.T.; Rodríguez-Puertas, R. Increase in cortical endocannabinoid signaling in a rat model of basal forebrain cholinergic dysfunction. Neuroscience 2017, 362, 206–218. [Google Scholar] [CrossRef] [PubMed]
- Laursen, B.; Mørk, A.; Kristiansen, U.; Bastlund, J.F. Hippocampal P3-like auditory event-related potentials are disrupted in a rat model of cholinergic degeneration in Alzheimer’s disease: Reversal by donepezil treatment. J. Alzheimer’s. Dis. 2014, 42, 1179–1189. [Google Scholar] [CrossRef]
- Dobryakova, Y.V.; Volobueva, M.N.; Manolova, A.O.; Medvedeva, T.M.; Kvichansky, A.A.; Gulyaeva, N.V.; Markevich, V.A.; Stepanichev, M.Y.; Bolshakov, A.P. Cholinergic Deficit Induced by Central Administration of 192IgG-Saporin Is Associated With Activation of Microglia and Cell Loss in the Dorsal Hippocampus of Rats. Front. Neurosci. 2019, 13, 146. [Google Scholar] [CrossRef] [Green Version]
- Dobryakova, Y.V.; Spivak, Y.S.; Zaichenko, M.I.; Koryagina, A.A.; Markevich, V.A.; Stepanichev, M.Y.; Bolshakov, A.P. Intrahippocampal Adeno-Associated Virus-Mediated Overexpression of Nerve Growth Factor Reverses 192IgG-Saporin-Induced Impairments of Hippocampal Plasticity and Behavior. Front. Neurosci. 2021, 15, 745050. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Pan, C.; Xuan, A.; Xu, L.; Bao, G.; Liu, F.; Fang, J.; Long, D. Treatment Efficacy of NGF Nanoparticles Combining Neural Stem Cell Transplantation on Alzheimer’s Disease Model Rats. Med. Sci. Monit. 2015, 21, 3608–3615. [Google Scholar] [CrossRef] [Green Version]
- Torres, E.M.; Perry, T.A.; Blockland, A.; Wilkinson, L.S.; Wiley, R.G.; Lappi, D.A.; Dunnet, S.B. Behavioural, histochemical and biochemical consequences of selective immunolesions in discrete regions of the basal forebrain cholinergic system. Neuroscience 1994, 63, 95–122. [Google Scholar] [CrossRef] [PubMed]
- Ohtake, T.; Heckers, S.; Wiley, R.G.; Lappi, D.A.; Mesulam, M.M.; Geula, C. Retrograde degeneration and colchicine protection of basal forebrain cholinergic neurons following hippocampal injections of an immunotoxin against the P75 nerve growth factor receptor. Neuroscience 1997, 78, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, O.G.; Leanza, G.; Rosenblad, C.; Lappi, D.A.; Wiley, R.G.; Björklund, A. Spatial learning impairments in rats with selective immunolesion of the forebrain cholinergic system. Neuroreport 1992, 3, 1005–1008. [Google Scholar] [CrossRef]
- Heckers, S.; Ohtake, T.; Wiley, R.G.; Lappi, D.A.; Geula, C.; Mesulam, M.M. Complete and selective cholinergic denervation of rat neocortex and hippocampus but not amygdala by an immunotoxin against the p75 NGF receptor. J. Neurosci. 1994, 14, 1271–1289. [Google Scholar] [CrossRef] [Green Version]
- Till, M.; May, R.D.; Uhr, J.W.; Thorpe, P.E.; Vitetta, E.S. An assay that predicts the ability of monoclonal antibodies to form potent ricin A chain-containing immunotoxins. Cancer Res. 1988, 48, 1119–1123. [Google Scholar]
- György, P.; Rose, C.S.; Hofmann, K.; Melville, D.B.; Du Vigneaud, V. A further note on the identity of vitamin h with biotin. Science 1940, 92, 609. [Google Scholar] [CrossRef]
- György, P.; Rose, C.S.; Eakin, R.E.; Snell, E.E.; Williams, R.J. Egg-white injury as the result of nonabsorption or inactivation of biotin. Science 1941, 93, 477–478. [Google Scholar] [CrossRef]
- Pugliese, L.; Coda, A.; Malcovati, M.; Bolognesi, M. Three-dimensional structure of the tetragonal crystal form of egg-white avidin in its functional complex with biotin at 2.7 A resolution. J. Mol. Biol. 1993, 231, 698–710. [Google Scholar] [CrossRef]
- Green, N.M. Avidin and streptavidin. Methods Enzymol. 1990, 184, 51–67. [Google Scholar] [CrossRef] [PubMed]
- Berhani, O.; Glasner, A.; Kahlon, S.; Duev-Cohen, A.; Yamin, R.; Horwitz, E.; Enk, J.; Moshel, O.; Varvak, A.; Porgador, A.; et al. Human anti-NKp46 antibody for studies of NKp46-dependent NK cell function and its applications for type 1 diabetes and cancer research. Eur. J. Immunol. 2019, 49, 228–241. [Google Scholar] [CrossRef] [PubMed]
- Ha, K.D.; Bidlingmaier, S.M.; Su, Y.; Lee, N.K.; Liu, B. Identification of Novel Macropinocytosing Human Antibodies by Phage Display and High-Content Analysis. Methods Enzymol. 2017, 585, 91–110. [Google Scholar] [CrossRef]
- Hoffmann, R.M.; Crescioli, S.; Thurston, D.E.; Karagiannis, S.N. Development and evaluation of T-Zap: A novel antibody-drug conjugate for the treatment of Her2 positive breast cancer. In Proceedings of the AACR Ann Mtg 2018, Chicago, IL, USA, 14–18 April 2018; p. Abstract LB-001. [Google Scholar]
- Lelieveldt, L. Chapter 2: Sequential prodrug strategy to target and eliminate ACPA-selective autoreactive B cells. In Chemical Strategies for Antigen-Selective Targeting of Autoreactive B Cells; Radboud Universiteit Nijmegen: Nijmegen, The Netherlands, 2019. [Google Scholar]
- Perez, M.C.; Conceição, M.; Raz, R.; Wood, M.J.A.; Roberts, T.C. Enhancing the Therapeutic Potential of Extracellular Vesicles Using Peptide Technology. Methods Mol. Biol. 2022, 2383, 119–141. [Google Scholar] [CrossRef]
- Rizvanovic, H.; Pinheiro, A.D.; Kim, K.; Thomas, J. Chlorotoxin Conjugated with Saporin Reduces Viability of ML-1 Thyroid Cancer Cells In Vitro. bioRxiv 2019. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, X.; Bidlingmaier, S.; Behrens, C.R.; Lee, N.K.; Liu, B. ALPPL2 Is a Highly Specific and Targetable Tumor Cell Surface Antigen. Cancer Res. 2020, 80, 4552–4564. [Google Scholar] [CrossRef]
- Wong, J.J.W.; Selbo, P.K. Light-controlled elimination of PD-L1+ cells. J. Photochem. Photobiol. B 2021, 225, 112355. [Google Scholar] [CrossRef]
- Yuan, X.; Yang, M.; Chen, X.; Zhang, X.; Sukhadia, S.; Musolino, N.; Bao, H.; Chen, T.; Xu, C.; Wang, Q.; et al. Characterization of the first fully human anti-TEM1 scFv in models of solid tumor imaging and immunotoxin-based therapy. Cancer Immunol. Immunother. 2017, 66, 367–378. [Google Scholar] [CrossRef]
- Abadir, E.; Bryant, C.; Larsen, S.; Clark, G.J. Targeting the niche: Depleting haemopoietic stem cells with targeted therapy. Bone Marrow Transplant. 2019, 54, 961–968. [Google Scholar] [CrossRef]
- Castiello, M.C.; Bosticardo, M.; Sacchetti, N.; Calzoni, E.; Fontana, E.; Yamazaki, Y.; Draghici, E.; Corsino, C.; Bortolomai, I.; Sereni, L.; et al. Efficacy and safety of anti-CD45-saporin as conditioning agent for RAG deficiency. J. Allergy Clin. Immunol. 2021, 147, 309–320. [Google Scholar] [CrossRef]
- Czechowicz, A.; Palchaudhuri, R.; Scheck, A.; Hu, Y.; Hoggatt, J.; Saez, B.; Pang, W.W.; Mansour, M.K.; Tate, T.A.; Chan, Y.Y.; et al. Selective hematopoietic stem cell ablation using CD117-antibody-drug-conjugates enables safe and effective transplantation with immunity preservation. Nat. Commun. 2019, 10, 617. [Google Scholar] [CrossRef] [Green Version]
- Goodyer, W.R.; Beyersdorf, B.M.; Duan, L.; van den Berg, N.S.; Mantri, S.; Galdos, F.X.; Puluca, N.; Buikema, J.W.; Lee, S.; Salmi, D.; et al. In vivo visualization and molecular targeting of the cardiac conduction system. J. Clin. Investig. 2022, 132. [Google Scholar] [CrossRef]
- Penna, S.; Villa, A.; Capo, V. Autosomal recessive osteopetrosis: Mechanisms and treatments. Dis. Model. Mech. 2021, 14, dmm048940. [Google Scholar] [CrossRef]
- Persaud, S.P.; Ritchey, J.K.; Kim, S.; Lim, S.; Ruminski, P.G.; Cooper, M.L.; Rettig, M.P.; Choi, J.; DiPersio, J.F. Antibody-drug conjugates plus Janus kinase inhibitors enable MHC-mismatched allogeneic hematopoietic stem cell transplantation. J. Clin. Investig. 2021, 131. [Google Scholar] [CrossRef]
- Van Hentenryck, M.; Li, Z.; Murphy, P.M.; Czechowicz, A. Antibody-Based Preparative Regimens for Cell, Tissue and Organ Transplantation. OBM Transplant. 2022, 06, 162. [Google Scholar] [CrossRef]
- Holmberg, A.; Blomstergren, A.; Nord, O.; Lukacs, M.; Lundeberg, J.; Uhlén, M. The biotin-streptavidin interaction can be reversibly broken using water at elevated temperatures. Electrophoresis 2005, 26, 501–510. [Google Scholar] [CrossRef] [PubMed]
- Savino, C.; Federici, L.; Ippoliti, R.; Lendaro, E.; Tsernoglou, D. The crystal structure of saporin SO6 from Saponaria officinalis and its interaction with the ribosome. FEBS Lett. 2000, 470, 239–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Trong, I.; Wang, Z.; Hyre, D.E.; Lybrand, T.P.; Stayton, P.S.; Stenkamp, R.E. Streptavidin and its biotin complex at atomic resolution. Acta Crystallogr. D Biol. Crystallogr. 2011, 67, 813–821. [Google Scholar] [CrossRef] [Green Version]
- Elson-Schwab, L.; Garner, O.B.; Schuksz, M.; Crawford, B.E.; Esko, J.D.; Tor, Y. Guanidinylated neomycin delivers large, bioactive cargo into cells through a heparan sulfate-dependent pathway. J. Biol. Chem. 2007, 282, 13585–13591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hess, S.M.; Young, E.F.; Miller, K.R.; Vincent, B.G.; Buntzman, A.S.; Collins, E.J.; Frelinger, J.A.; Hess, P.R. Deletion of naïve T cells recognizing the minor histocompatibility antigen HY with toxin-coupled peptide-MHC class I tetramers inhibits cognate CTL responses and alters immunodominance. Transpl. Immunol. 2013, 29, 138–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penaloza-MacMaster, P.; Masopust, D.; Ahmed, R. T-cell reconstitution without T-cell immunopathology in two models of T-cell-mediated tissue destruction. Immunology 2009, 128, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Selbo, P.K.; Weyergang, A.; Eng, M.S.; Bostad, M.; Mælandsmo, G.M.; Høgset, A.; Berg, K. Strongly amphiphilic photosensitizers are not substrates of the cancer stem cell marker ABCG2 and provides specific and efficient light-triggered drug delivery of an EGFR-targeted cytotoxic drug. J. Control. Release 2012, 159, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Vincent, B.G.; Young, E.F.; Buntzman, A.S.; Stevens, R.; Kepler, T.B.; Tisch, R.M.; Frelinger, J.A.; Hess, P.R. Toxin-coupled MHC class I tetramers can specifically ablate autoreactive CD8+ T cells and delay diabetes in nonobese diabetic mice. J. Immunol. 2010, 184, 4196–4204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wüstemann, T.; Haberkorn, U.; Babich, J.; Mier, W. Targeting prostate cancer: Prostate-specific membrane antigen based diagnosis and therapy. Med. Res. Rev. 2019, 39, 40–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sélo, I.; Négroni, L.; Créminon, C.; Grassi, J.; Wal, J.M. Preferential labeling of alpha-amino N-terminal groups in peptides by biotin: Application to the detection of specific anti-peptide antibodies by enzyme immunoassays. J. Immunol. Methods 1996, 199, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Shao, X.; Wang, Q.; Pan, X.; Dai, Y.; Yao, S.; Yin, T.; Wang, Z.; Zhu, J.; Xi, X.; et al. Activated factor X targeted stored in platelets as an effective gene therapy strategy for both hemophilia A and B. Clin. Transl. Med. 2021, 11, e375. [Google Scholar] [CrossRef]
- Eng, M.S.; Kaur, J.; Prasmickaite, L.; Engesæter, B.; Weyergang, A.; Skarpen, E.; Berg, K.; Rosenblum, M.G.; Mælandsmo, G.M.; Høgset, A.; et al. Enhanced targeting of triple-negative breast carcinoma and malignant melanoma by photochemical internalization of CSPG4-targeting immunotoxins. Photochem. Photobiol. Sci. 2018, 17, 539–551. [Google Scholar] [CrossRef]
- Kusano-Arai, O.; Iwanari, H.; Kudo, S.; Kikuchi, C.; Yui, A.; Akiba, H.; Matsusaka, K.; Kaneda, A.; Fukayama, M.; Tsumoto, K.; et al. Synergistic Cytotoxic Effect on Gastric Cancer Cells of an Immunotoxin Cocktail in Which Antibodies Recognize Different Epitopes on CDH17. Monoclon. Antib. Immunodiagn. Immunother. 2018, 37, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Liu, Y.; Behrens, C.R.; Bidlingmaier, S.; Lee, N.K.; Aggarwal, R.; Sherbenou, D.W.; Burlingame, A.L.; Hann, B.C.; Simko, J.P.; et al. Targeting CD46 for both adenocarcinoma and neuroendocrine prostate cancer. JCI Insight 2018, 3. [Google Scholar] [CrossRef] [Green Version]
- Tan, H.L.; Yong, C.; Tan, B.Z.; Fong, W.J.; Padmanabhan, J.; Chin, A.; Ding, V.; Lau, A.; Zheng, L.; Bi, X.; et al. Conservation of oncofetal antigens on human embryonic stem cells enables discovery of monoclonal antibodies against cancer. Sci. Rep. 2018, 8, 11608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komatsu, N.; Mitsui, K.; Arai, O.; Iwanari, H.; Hoshi, K.; Takato, T.; Abe, T.; Hamakubo, T. Enhancement of Anti-Robo1 Immunotoxin Cytotoxicity to Head and Neck Squamous Cell Carcinoma via Photochemical Internalization. Arch. Cancer Res. 2017, 05, 157. [Google Scholar] [CrossRef]
- Huang, L.; Yuan, T.; Tan, M.; Xi, Y.; Hu, Y.; Tao, Q.; Zhao, Z.; Zheng, J.; Han, Y.; Xu, F.; et al. A retinoraphe projection regulates serotonergic activity and looming-evoked defensive behaviour. Nat. Commun. 2017, 8, 14908. [Google Scholar] [CrossRef] [Green Version]
- Damelin, M.; Bankovich, A.; Park, A.; Aguilar, J.; Anderson, W.; Santaguida, M.; Aujay, M.; Fong, S.; Khandke, K.; Pulito, V.; et al. Anti-EFNA4 Calicheamicin Conjugates Effectively Target Triple-Negative Breast and Ovarian Tumor-Initiating Cells to Result in Sustained Tumor Regressions. Clin. Cancer Res. 2015, 21, 4165–4173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sims, S.; Bolinger, B.; Klenerman, P. Increasing inflationary T-cell responses following transient depletion of MCMV-specific memory T cells. Eur. J. Immunol. 2015, 45, 113–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alonso, M.N.; Gregorio, J.G.; Davidson, M.G.; Gonzalez, J.C.; Engleman, E.G. Depletion of inflammatory dendritic cells with anti-CD209 conjugated to saporin toxin. Immunol. Res. 2014, 58, 374–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dickey, D.D.; Thomas, G.S.; Dassie, J.P.; Giangrande, P.H. Method for Confirming Cytoplasmic Delivery of RNA Aptamers. Methods Mol. Biol. 2016, 1364, 209–217. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, L.I.; Flenker, K.S.; Hernandez, F.J.; Klingelhutz, A.J.; McNamara, J.O., 2nd; Giangrande, P.H. Methods for Evaluating Cell-Specific, Cell-Internalizing RNA Aptamers. Pharmaceuticals 2013, 6, 295–319. [Google Scholar] [CrossRef] [Green Version]
- Burnett, J.C.; Rossi, J.J. RNA-based therapeutics: Current progress and future prospects. Chem. Biol. 2012, 19, 60–71. [Google Scholar] [CrossRef] [Green Version]
- Ifediba, M.A.; Moore, A. In vivo imaging of the systemic delivery of small interfering RNA. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2012, 4, 428–437. [Google Scholar] [CrossRef]
- Rettig, G.R.; Behlke, M.A. Progress toward in vivo use of siRNAs-II. Mol. Ther. 2012, 20, 483–512. [Google Scholar] [CrossRef]
- Chu, T.C.; Twu, K.Y.; Ellington, A.D.; Levy, M. Aptamer mediated siRNA delivery. Nucleic Acids Res. 2006, 34, e73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dassie, J.P.; Liu, X.Y.; Thomas, G.S.; Whitaker, R.M.; Thiel, K.W.; Stockdale, K.R.; Meyerholz, D.K.; McCaffrey, A.P.; McNamara, J.O., 2nd; Giangrande, P.H. Systemic administration of optimized aptamer-siRNA chimeras promotes regression of PSMA-expressing tumors. Nat. Biotechnol. 2009, 27, 839–849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNamara, J.O., 2nd; Andrechek, E.R.; Wang, Y.; Viles, K.D.; Rempel, R.E.; Gilboa, E.; Sullenger, B.A.; Giangrande, P.H. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat. Biotechnol. 2006, 24, 1005–1015. [Google Scholar] [CrossRef] [PubMed]
- Neff, C.P.; Zhou, J.; Remling, L.; Kuruvilla, J.; Zhang, J.; Li, H.; Smith, D.D.; Swiderski, P.; Rossi, J.J.; Akkina, R. An aptamer-siRNA chimera suppresses HIV-1 viral loads and protects from helper CD4+ T cell decline in humanized mice. Sci. Transl. Med. 2011, 3, 66ra66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ni, X.; Zhang, Y.; Ribas, J.; Chowdhury, W.H.; Castanares, M.; Zhang, Z.; Laiho, M.; DeWeese, T.L.; Lupold, S.E. Prostate-targeted radiosensitization via aptamer-shRNA chimeras in human tumor xenografts. J. Clin. Investig. 2011, 121, 2383–2390. [Google Scholar] [CrossRef] [Green Version]
- Pastor, F.; Kolonias, D.; Giangrande, P.H.; Gilboa, E. Induction of tumour immunity by targeted inhibition of nonsense-mediated mRNA decay. Nature 2010, 465, 227–230. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, L.A.; Trifonova, R.; Vrbanac, V.; Basar, E.; McKernan, S.; Xu, Z.; Seung, E.; Deruaz, M.; Dudek, T.; Einarsson, J.I.; et al. Inhibition of HIV transmission in human cervicovaginal explants and humanized mice using CD4 aptamer-siRNA chimeras. J. Clin. Investig. 2011, 121, 2401–2412. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Li, H.; Li, S.; Zaia, J.; Rossi, J.J. Novel dual inhibitory function aptamer-siRNA delivery system for HIV-1 therapy. Mol. Ther. 2008, 16, 1481–1489. [Google Scholar] [CrossRef]
- Zhou, J.; Swiderski, P.; Li, H.; Zhang, J.; Neff, C.P.; Akkina, R.; Rossi, J.J. Selection, characterization and application of new RNA HIV gp 120 aptamers for facile delivery of Dicer substrate siRNAs into HIV infected cells. Nucleic Acids Res. 2009, 37, 3094–3109. [Google Scholar] [CrossRef] [Green Version]
- Cornetta, K.; Bonamino, M.; Mahlangu, J.; Mingozzi, F.; Rangarajan, S.; Rao, J. Gene therapy access: Global challenges, opportunities, and views from Brazil, South Africa, and India. Mol. Ther. 2022, 30, 2122–2129. [Google Scholar] [CrossRef]
- U.S. National Library of Medicine. Explore 441,524 Research Studies in All 50 States and in 221 Countries. Available online: https://clinicaltrials.gov/ (accessed on 8 February 2023).
- Allers, K.; Hütter, G.; Hofmann, J.; Loddenkemper, C.; Rieger, K.; Thiel, E.; Schneider, T. Evidence for the cure of HIV infection by CCR5Δ32/Δ32 stem cell transplantation. Blood 2011, 117, 2791–2799. [Google Scholar] [CrossRef]
- Bhatia, S. Long-term health impacts of hematopoietic stem cell transplantation inform recommendations for follow-up. Expert Rev. Hematol. 2011, 4, 437–452, quiz 453–434. [Google Scholar] [CrossRef] [Green Version]
- Khaddour, K.; Hana, C.K.; Mewawalla, P. Hematopoietic Stem Cell Transplantation. In StatPearls; StatPearls Publishing LLC: Treasure Island, FL, USA, 2022. [Google Scholar]
- Logan, A.C.; Weissman, I.L.; Shizuru, J.A. The road to purified hematopoietic stem cell transplants is paved with antibodies. Curr. Opin. Immunol. 2012, 24, 640–648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffin, J.M.; Healy, F.M.; Dahal, L.N.; Floisand, Y.; Woolley, J.F. Worked to the bone: Antibody-based conditioning as the future of transplant biology. J. Hematol. Oncol. 2022, 15, 65. [Google Scholar] [CrossRef] [PubMed]
- Palchaudhuri, R.; Saez, B.; Hoggatt, J.; Schajnovitz, A.; Sykes, D.B.; Tate, T.A.; Czechowicz, A.; Kfoury, Y.; Ruchika, F.; Rossi, D.J.; et al. Non-genotoxic conditioning for hematopoietic stem cell transplantation using a hematopoietic-cell-specific internalizing immunotoxin. Nat. Biotechnol. 2016, 34, 738–745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schiroli, G.; Ferrari, S.; Conway, A.; Jacob, A.; Capo, V.; Albano, L.; Plati, T.; Castiello, M.C.; Sanvito, F.; Gennery, A.R.; et al. Preclinical modeling highlights the therapeutic potential of hematopoietic stem cell gene editing for correction of SCID-X1. Sci. Transl. Med. 2017, 9, eaan0820. [Google Scholar] [CrossRef] [PubMed]
- Koeniger, T.; Bell, L.; Mifka, A.; Enders, M.; Hautmann, V.; Mekala, S.R.; Kirchner, P.; Ekici, A.B.; Schulz, C.; Wörsdörfer, P.; et al. Bone marrow-derived myeloid progenitors in the leptomeninges of adult mice. Stem Cells 2021, 39, 227–239. [Google Scholar] [CrossRef]
- Li, Z.; Czechowicz, A.; Scheck, A.; Rossi, D.J.; Murphy, P.M. Hematopoietic chimerism and donor-specific skin allograft tolerance after non-genotoxic CD117 antibody-drug-conjugate conditioning in MHC-mismatched allotransplantation. Nat. Commun. 2019, 10, 616. [Google Scholar] [CrossRef]
- Gao, C.; Schroeder, J.A.; Xue, F.; Jing, W.; Cai, Y.; Scheck, A.; Subramaniam, S.; Rao, S.; Weiler, H.; Czechowicz, A.; et al. Nongenotoxic antibody-drug conjugate conditioning enables safe and effective platelet gene therapy of hemophilia A mice. Blood Adv. 2019, 3, 2700–2711. [Google Scholar] [CrossRef] [Green Version]
- van Gerwen, M.; Alpert, N.; Flores, R.; Taioli, E. An overview of existing mesothelioma registries worldwide, and the need for a US Registry. Am. J. Ind. Med. 2020, 63, 115–120. [Google Scholar] [CrossRef]
- World Health Organization. Mesothelioma—Global Cancer Observatory; Cancer Today—IARC: Lyon, France, 2022. [Google Scholar]
- Pizzato, M.; Li, M.; Vignat, J.; Laversanne, M.; Singh, D.; La Vecchia, C.; Vaccarella, S. The epidemiological landscape of thyroid cancer worldwide: GLOBOCAN estimates for incidence and mortality rates in 2020. Lancet Diabetes Endocrinol. 2022, 10, 264–272. [Google Scholar] [CrossRef] [PubMed]
- DeBin, J.A.; Maggio, J.E.; Strichartz, G.R. Purification and characterization of chlorotoxin, a chloride channel ligand from the venom of the scorpion. Am. J. Physiol. 1993, 264, C361–C369. [Google Scholar] [CrossRef] [PubMed]
- Society, A.C. Cancer A-Z. Available online: https://www.cancer.org/cancer/breast-cancer.html (accessed on 7 February 2023).
- Sun, X.; Ponte, J.F.; Yoder, N.C.; Laleau, R.; Coccia, J.; Lanieri, L.; Qiu, Q.; Wu, R.; Hong, E.; Bogalhas, M.; et al. Effects of Drug-Antibody Ratio on Pharmacokinetics, Biodistribution, Efficacy, and Tolerability of Antibody-Maytansinoid Conjugates. Bioconjug. Chem. 2017, 28, 1371–1381. [Google Scholar] [CrossRef]
- Morgan, E.; Arnold, M.; Camargo, M.C.; Gini, A.; Kunzmann, A.T.; Matsuda, T.; Meheus, F.; Verhoeven, R.H.A.; Vignat, J.; Laversanne, M.; et al. The current and future incidence and mortality of gastric cancer in 185 countries, 2020–2040: A population-based modelling study. eClinicalMedicine 2022, 47, 101404. [Google Scholar] [CrossRef] [PubMed]
- Institute, N.C. Cancer Stat Facts: Ovarian Cancer. Available online: https://seer.cancer.gov/statfacts/html/ovary.html (accessed on 7 February 2023).
- Burgos-Ojeda, D.; McLean, K.; Bai, S.; Pulaski, H.; Gong, Y.; Silva, I.; Skorecki, K.; Tzukerman, M.; Buckanovich, R.J. A novel model for evaluating therapies targeting human tumor vasculature and human cancer stem-like cells. Cancer Res. 2013, 73, 3555–3565. [Google Scholar] [CrossRef] [Green Version]
- Moalem, S.; Reidenberg, J.S. Does female ejaculation serve an antimicrobial purpose? Med. Hypotheses 2009, 73, 1069–1071. [Google Scholar] [CrossRef] [PubMed]
- International, W.C.R.F. Prostate Cancer Statistics. Available online: https://www.wcrf.org/cancer-trends/prostate-cancer-statistics/ (accessed on 30 January 2023).
- Kuroda, K.; Liu, H.; Kim, S.; Guo, M.; Navarro, V.; Bander, N.H. Saporin toxin-conjugated monoclonal antibody targeting prostate-specific membrane antigen has potent anticancer activity. Prostate 2010, 70, 1286–1294. [Google Scholar] [CrossRef]
- The RAS Initiative. Available online: https://www.cancer.gov/research/key-initiatives/ras (accessed on 1 December 2022).
- Ehrlich, D.; Wang, B.; Lu, W.; Dowling, P.; Yuan, R. Intratumoral anti-HuD immunotoxin therapy for small cell lung cancer and neuroblastoma. J. Hematol. Oncol. 2014, 7, 91. [Google Scholar] [CrossRef] [Green Version]
- Ohtsuki, T.; Miki, S.; Kobayashi, S.; Haraguchi, T.; Nakata, E.; Hirakawa, K.; Sumita, K.; Watanabe, K.; Okazaki, S. The molecular mechanism of photochemical internalization of cell penetrating peptide-cargo-photosensitizer conjugates. Sci. Rep. 2015, 5, 18577. [Google Scholar] [CrossRef] [Green Version]
- Jerjes, W.; Theodossiou, T.A.; Hirschberg, H.; Høgset, A.; Weyergang, A.; Selbo, P.K.; Hamdoon, Z.; Hopper, C.; Berg, K. Photochemical Internalization for Intracellular Drug Delivery. From Basic Mechanisms to Clinical Research. J. Clin. Med. 2020, 9, 528. [Google Scholar] [CrossRef] [Green Version]
- Lenneman, C.G.; Sawyer, D.B. Cardio-Oncology: An Update on Cardiotoxicity of Cancer-Related Treatment. Circ. Res. 2016, 118, 1008–1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berstad, M.B.; Weyergang, A.; Berg, K. Photochemical internalization (PCI) of HER2-targeted toxins: Synergy is dependent on the treatment sequence. Biochim. Biophys. Acta 2012, 1820, 1849–1858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bostad, M.; Kausberg, M.; Weyergang, A.; Olsen, C.E.; Berg, K.; Høgset, A.; Selbo, P.K. Light-Triggered, Efficient Cytosolic Release of IM7-Saporin Targeting the Putative Cancer Stem Cell Marker CD44 by Photochemical Internalization. Mol. Pharm. 2014, 11, 2764–2776. [Google Scholar] [CrossRef] [PubMed]
- Bostad, M.; Berg, K.; Hogset, A.; Skarpen, E.; Stenmark, H.; Selbo, P.K. Photochemical internalization (PCI) of immunotoxins targeting CD133 is specific and highly potent at femtomolar levels in cells with cancer stem cell properties. J. Control. Release 2013, 168, 317–326. [Google Scholar] [CrossRef]
- Lund, K.; Bostad, M.; Skarpen, E.; Braunagel, M.; Kiprijanov, S.; Krauss, S.; Duncan, A.; Høgset, A.; Selbo, P.K. The novel EpCAM-targeting monoclonal antibody 3–17I linked to saporin is highly cytotoxic after photochemical internalization in breast, pancreas and colon cancer cell lines. mAbs 2014, 6, 1038–1050. [Google Scholar] [CrossRef] [Green Version]
- Yip, W.L.; Weyergang, A.; Berg, K.; Tønnesen, H.H.; Selbo, P.K. Targeted delivery and enhanced cytotoxicity of cetuximab-saporin by photochemical internalization in EGFR-positive cancer cells. Mol. Pharm. 2007, 4, 241–251. [Google Scholar] [CrossRef]
- Collins, B.E.; Blixt, O.; Han, S.; Duong, B.; Li, H.; Nathan, J.K.; Bovin, N.; Paulson, J.C. High-affinity ligand probes of CD22 overcome the threshold set by cis ligands to allow for binding, endocytosis, and killing of B cells. J. Immunol. 2006, 177, 2994–3003. [Google Scholar] [CrossRef] [Green Version]
- Lelieveldt, L.; Kristyanto, H.; Pruijn, G.J.M.; Scherer, H.U.; Toes, R.E.M.; Bonger, K.M. Sequential Prodrug Strategy To Target and Eliminate ACPA-Selective Autoreactive B Cells. Mol. Pharm. 2018, 15, 5565–5573. [Google Scholar] [CrossRef]
- Akiyoshi, H.; Chung, J.S.; Tomihari, M.; Cruz, P.D., Jr.; Ariizumi, K. Depleting syndecan-4+ T lymphocytes using toxin-bearing dendritic cell-associated heparan sulfate proteoglycan-dependent integrin ligand: A new opportunity for treating activated T cell-driven disease. J. Immunol. 2010, 184, 3554–3561. [Google Scholar]
- Chung, J.S.; Shiue, L.H.; Duvic, M.; Pandya, A.; Cruz, P.D., Jr.; Ariizumi, K. Sézary syndrome cells overexpress syndecan-4 bearing distinct heparan sulfate moieties that suppress T-cell activation by binding DC-HIL and trapping TGF-beta on the cell surface. Blood 2011, 117, 3382–3390. [Google Scholar] [CrossRef] [Green Version]
- Hess, P.R.; Barnes, C.; Woolard, M.D.; Johnson, M.D.; Cullen, J.M.; Collins, E.J.; Frelinger, J.A. Selective deletion of antigen-specific CD8+ T cells by MHC class I tetramers coupled to the type I ribosome-inactivating protein saporin. Blood 2007, 109, 3300–3307. [Google Scholar] [CrossRef] [PubMed]
- Blasius, A.; Vermi, W.; Krug, A.; Facchetti, F.; Cella, M.; Colonna, M. A cell-surface molecule selectively expressed on murine natural interferon-producing cells that blocks secretion of interferon-alpha. Blood 2004, 103, 4201–4206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Facciabene, A.; Peng, X.; Hagemann, I.S.; Balint, K.; Barchetti, A.; Wang, L.P.; Gimotty, P.A.; Gilks, C.B.; Lal, P.; Zhang, L.; et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature 2011, 475, 226–230. [Google Scholar] [CrossRef]
- Rothenberg, M.E.; Nusse, Y.; Kalisky, T.; Lee, J.J.; Dalerba, P.; Scheeren, F.; Lobo, N.; Kulkarni, S.; Sim, S.; Qian, D.; et al. Identification of a cKit+ Colonic Crypt Base Secretory Cell That Supports Lgr5+ Stem Cells in Mice. Gastroenterology 2012, 142, 1195–1205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alferiev, I.S.; Hooshdaran, B.; Pressly, B.B.; Zoltick, P.W.; Stachelek, S.J.; Chorny, M.; Levy, R.J.; Fishbein, I. Intraprocedural endothelial cell seeding of arterial stents via biotin/avidin targeting mitigates in-stent restenosis. Sci. Rep. 2022, 12, 19212. [Google Scholar] [CrossRef]
- Laitinen, O.H.; Hytönen, V.P.; Nordlund, H.R.; Kulomaa, M.S. Genetically engineered avidins and streptavidins. Cell. Mol. Life Sci. 2006, 63, 2992–3017. [Google Scholar] [CrossRef]
Biotinylated Targeting Agent (TA) | Size of TA | Biotinylated TA Needed to React Equimolar with 25 μg Streptavidin-ZAP (MW: 136 kDa) |
---|---|---|
Antibody: Whole IgG | ~150 kDa | 29.41 μg |
Antibody: F(ab’)2 | 110 kDa | 20.22 μg |
Antibody: F(ab) | 55 kDa | 10.11 μg |
Antibody: single-chain variable fragment (scFv) | 28 kDa | 5.15 μg |
Lectin (e.g., Isolectin B4) | 28 kDa | 5.15 μg |
Growth Factor (e.g., Fibroblast Growth Factor) | 16.5 kDa | 3.03 μg |
RNA Aptamers | 13–17 kDa | 2.4–3.1 μg |
Peptides | 6 kDa | 1.1 μg (1100 ng) |
Peptides | 5 kDa | 0.92 μg (920 ng) |
Peptides | 4 kDa | 0.74 μg (740 ng) |
Peptides | 3 kDa | 0.55 μg (550 ng) |
Peptides | 2 kDa | 0.37 μg (370 ng) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ancheta, L.R.; Shramm, P.A.; Bouajram, R.; Higgins, D.; Lappi, D.A. Streptavidin-Saporin: Converting Biotinylated Materials into Targeted Toxins. Toxins 2023, 15, 181. https://doi.org/10.3390/toxins15030181
Ancheta LR, Shramm PA, Bouajram R, Higgins D, Lappi DA. Streptavidin-Saporin: Converting Biotinylated Materials into Targeted Toxins. Toxins. 2023; 15(3):181. https://doi.org/10.3390/toxins15030181
Chicago/Turabian StyleAncheta, Leonardo R., Patrick A. Shramm, Raschel Bouajram, Denise Higgins, and Douglas A. Lappi. 2023. "Streptavidin-Saporin: Converting Biotinylated Materials into Targeted Toxins" Toxins 15, no. 3: 181. https://doi.org/10.3390/toxins15030181
APA StyleAncheta, L. R., Shramm, P. A., Bouajram, R., Higgins, D., & Lappi, D. A. (2023). Streptavidin-Saporin: Converting Biotinylated Materials into Targeted Toxins. Toxins, 15(3), 181. https://doi.org/10.3390/toxins15030181