Prevalence and Concentration of Mycotoxins in Animal Feed in the Middle East and North Africa (MENA): A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Results
3. Discussion
4. Conclusions
5. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aranega, J.P.; Oliveira, C.A. Occurrence of mycotoxins in pastures: A systematic review. Qual. Assur. Saf. Crops Foods 2022, 14, 135–144. [Google Scholar] [CrossRef]
- Khaneghah, A.M.; Mostashari, P.; Oliveira, C.A.; Vanin, F.M.; Amiri, S.; Sant’Ana, A.S. Assessment of the concentrations of ochratoxin A, zearalenone, and deoxynivalenol during cracker production. J. Food Compos. Anal. 2023, 115, 104950. [Google Scholar] [CrossRef]
- Nourbakhsh, F.; Tajbakhsh, E. Neurotoxicity mechanism of Ochratoxin A. Qual. Assur. Saf. Crops Foods 2021, 13, 34–45. [Google Scholar] [CrossRef]
- Pires, R.C.; Portinari, M.R.; Moraes, G.Z.; Khaneghah, A.M.; Gonçalves, B.L.; Rosim, R.E.; Oliveira, C.A.; Corassin, C.H. Evaluation of Anti-Aflatoxin M1 effects of heat-killed cells of Saccharomyces cerevisiae in Brazilian commercial yogurts. Qual. Assur. Saf. Crops Foods 2022, 14, 75–81. [Google Scholar] [CrossRef]
- Mir, S.A.; Dar, B.; Shah, M.A.; Sofi, S.A.; Hamdani, A.M.; Oliveira, C.A.; Moosavi, M.H.; Khaneghah, A.M.; Sant’Ana, A.S. Application of new technologies in decontamination of mycotoxins in cereal grains: Challenges, and perspectives. Food Chem. Toxicol. 2021, 148, 111976. [Google Scholar] [CrossRef]
- Khaneghah, A.M.; Moosavi, M.H.; Oliveira, C.A.F.; Vanin, F.; Sant’Ana, A.S. Electron beam irradiation to reduce the mycotoxin and microbial contaminations of cereal-based products: An overview. Food Chem. Toxicol. 2020, 143, 111557. [Google Scholar] [CrossRef] [PubMed]
- Mokhtarian, M.; Tavakolipour, H.; Bagheri, F.; Oliveira, C.A.F.; Corassin, C.H.; Khaneghah, A.M. Aflatoxin B1 in the Iranian pistachio nut and decontamination methods: A systematic review. Qual. Assur. Saf. Crop. Foods 2020, 12, 15–25. [Google Scholar] [CrossRef]
- Rodrigues, I.; Naehrer, K. A Three-Year Survey on the Worldwide Occurrence of Mycotoxins in Feedstuffs and Feed. Toxins 2012, 4, 663–675. [Google Scholar] [CrossRef]
- Bangar, S.P.; Sharma, N.; Bhardwaj, A.; Phimolsiripol, Y. Lactic acid bacteria: A bio-green preservative against mycotoxins for food safety and shelf-life extension. Qual. Assur. Saf. Crop. Foods 2022, 14, 13–31. [Google Scholar] [CrossRef]
- Heshmati, A.; Khorshidi, M.; Khaneghah, A.M. The prevalence and risk assessment of aflatoxin in sesame based products. Ital. J. Food Sci. 2021, 33, 92–102. [Google Scholar] [CrossRef]
- Jafari, K.; Fathabad, A.E.; Fakhri, Y.; Shamsaei, M.; Miri, M.; Farahmandfar, R.; Khaneghah, A.M. Aflatoxin M1 in traditional and industrial pasteurized milk samples from Tiran County, Isfahan Province: A Probabilistic Health Risk Assessment. Ital. J. Food Sci. 2021, 33, 103–116. [Google Scholar] [CrossRef]
- De Souza, C.; Khaneghah, A.M.; Oliveira, C.A.F. The Occurrence of Aflatoxin M1 in Industrial and Traditional Fermented Milk: A Systematic Review Study. Ital. J. Food Sci. 2021, 33, 12–23. [Google Scholar] [CrossRef]
- Behfar, M.; Heshmati, A.; Mehri, F.; Khaneghah, A.M. Removal of Ochratoxin A from Grape Juice by Clarification: A Response Surface Methodology Study. Foods 2022, 11, 1432. [Google Scholar] [CrossRef] [PubMed]
- Santos Pereira, C.; Cunha, S.C.; Fernandes, J.O. Prevalent Mycotoxins in Animal Feed: Occurrence and Analytical Methods. Toxins 2019, 11, 290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinotti, L.; Dell’orto, V. Feed Safety in the Feed Supply Chain. Biotechnol. Agron. Soc. Environ. 2011, 15, 9–14. [Google Scholar]
- Hartog, J.D. Feed for Food: HACCP in the animal feed industry. Food Control. 2003, 14, 95–99. [Google Scholar] [CrossRef]
- Jiang, Y.; Ogunade, I.; Vyas, D.; Adesogan, A. Aflatoxin in Dairy Cows: Toxicity, Occurrence in Feedstuffs and Milk and Dietary Mitigation Strategies. Toxins 2021, 13, 283. [Google Scholar] [CrossRef]
- Chen, J.; Wei, Z.; Wang, Y.; Long, M.; Wu, W.; Kuca, K. Fumonisin B1: Mechanisms of toxicity and biological detoxification progress in animals. Food Chem. Toxicol. 2021, 149, 111977. [Google Scholar] [CrossRef]
- Liu, J.; Applegate, T. Zearalenone (ZEN) in Livestock and Poultry: Dose, Toxicokinetics, Toxicity and Estrogenicity. Toxins 2020, 12, 377. [Google Scholar] [CrossRef] [PubMed]
- Polak-Śliwińska, M.; Paszczyk, B. Trichothecenes in Food and Feed, Relevance to Human and Animal Health and Methods of Detection: A Systematic Review. Molecules 2021, 26, 454. [Google Scholar] [CrossRef]
- Tao, Y.; Xie, S.; Xu, F.; Liu, A.; Wang, Y.; Chen, D.; Pan, Y.; Huang, L.; Peng, D.; Wang, X.; et al. Ochratoxin A: Toxicity, oxidative stress and metabolism. Food Chem. Toxicol. 2018, 112, 320–331. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhai, S.; Xia, Y.; Wang, H.; Ruan, D.; Zhou, T.; Zhu, Y.; Zhang, H.; Zhang, M.; Ye, H.; et al. Ochratoxin A induces liver inflammation: Involvement of intestinal microbiota. Microbiome 2019, 7, 151. [Google Scholar] [CrossRef] [PubMed]
- Suganthi, R.U.; Suresh, K.P.; Parvatham, R. Effect of Aflatoxin on Feed Conversion Ratio in Broilers: A Meta-analysis. Asian-Australas. J. Anim. Sci. 2011, 24, 1757–1762. [Google Scholar] [CrossRef]
- Gallo, A.; Minuti, A.; Bani, P.; Bertuzzi, T.; Cappelli, F.P.; Doupovec, B.; Faas, J.; Schatzmayr, D.; Trevisi, E. A mycotoxin-deactivating feed additive counteracts the adverse effects of regular levels of Fusarium mycotoxins in dairy cows. J. Dairy Sci. 2020, 103, 11314–11331. [Google Scholar] [CrossRef] [PubMed]
- Andretta, I.; Kipper, M.; Lehnen, C.R.; Hauschild, L.; Vale, M.M.; Lovatto, P.A. Meta-analytical study of productive and nutritional interactions of mycotoxins in growing pigs. Animal 2012, 6, 1476–1482. [Google Scholar] [CrossRef]
- Andretta, I.; Kipper, M.; Lehnen, C.; Lovatto, P. Meta-analysis of the relationship of mycotoxins with biochemical and hematological parameters in broilers. Poult. Sci. 2012, 91, 376–382. [Google Scholar] [CrossRef]
- Grenier, B.; Applegate, T.J. Modulation of Intestinal Functions Following Mycotoxin Ingestion: Meta-Analysis of Published Experiments in Animals. Toxins 2013, 5, 396–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huss, A.; Cochrane, R.; Muckey, M.; Jones, C. Animal Feed Mill Biosecurity: Prevention of Biological Hazards. In Food and Feed Safety Systems and Analysis; Elsevier: Amsterdam, The Netherlands, 2018; pp. 63–81. ISBN 9780128498880. [Google Scholar]
- Fumagalli, F.; Ottoboni, M.; Pinotti, L.; Cheli, F. Integrated Mycotoxin Management System in the Feed Supply Chain: Innovative Approaches. Toxins 2021, 13, 572. [Google Scholar] [CrossRef]
- Khaneghah, A.M.; Eş, I.; Raeisi, S.; Fakhri, Y. Aflatoxins in cereals: State of the art. J. Food Saf. 2018, 38, e12532. [Google Scholar] [CrossRef]
- Oteiza, J.M.; Khaneghah, A.M.; Campagnollo, F.B.; Granato, D.; Mahmoudi, M.R.; Sant’Ana, A.S.; Gianuzzi, L. Influence of production on the presence of patulin and ochratoxin A in fruit juices and wines of Argentina. LWT 2017, 80, 200–207. [Google Scholar] [CrossRef]
- Khaneghah, A.M.; Chaves, R.D.; Akbarirad, H. Detoxification of Aflatoxin M1 (AFM1) in Dairy Base Beverages (Acidophilus Milk) by Using Different Types of Lactic Acid Bacteria-Mini Review. Curr. Nutr. Food Sci. 2017, 13, 78–81. [Google Scholar] [CrossRef]
- Campagnollo, F.B.; Ganev, K.C.; Khaneghah, A.M.; Portela, J.B.; Cruz, A.G.; Granato, D.; Corassin, C.H.; Oliveira, C.A.F.; Sant’Ana, A.S. The occurrence and effect of unit operations for dairy products processing on the fate of aflatoxin M1: A review. Food Control. 2016, 68, 310–329. [Google Scholar] [CrossRef]
- Masri, M.S.; Lundin, R.E.; Page, J.R.; Garcia, V.C. Crystalline Aflatoxin M1 from Urine and Milk. Nature 1967, 215, 753–755. [Google Scholar] [CrossRef]
- Škrbić, B.; Živančev, J.; Antić, I.; Godula, M. Levels of aflatoxin M1 in different types of milk collected in Serbia: Assessment of human and animal exposure. Food Control. 2014, 40, 113–119. [Google Scholar] [CrossRef]
- Fallah, A.A.; Fazlollahi, R.; Emami, A. Seasonal study of aflatoxin M1 contamination in milk of four dairy species in Yazd, Iran. Food Control. 2016, 68, 77–82. [Google Scholar] [CrossRef]
- Turna, N.S.; Wu, F. Aflatoxin M1 in milk: A global occurrence, intake, & exposure assessment. Trends Food Sci. Technol. 2021, 110, 183–192. [Google Scholar] [CrossRef]
- Pinotti, L.; Ottoboni, M.; Giromini, C.; Dell’Orto, V.; Cheli, F. Mycotoxin Contamination in the EU Feed Supply Chain: A Focus on Cereal Byproducts. Toxins 2016, 8, 45. [Google Scholar] [CrossRef] [Green Version]
- Ajikah, L.B.; Alebiosu, O.S.; Orijemie, E.A.; Onah, D. A review of aeropalynology research in Nigeria: Implication on public health and environmental research collaboration. Allergol. Immunopathol. 2021, 49, 31–38. [Google Scholar] [CrossRef]
- Katsimpris, P.; Nikolaidis, C.; Deftereou, T.-E.; Balatsouras, D.; Printza, A.; Iliou, T.; Alexiadis, T.; Chatzisouleiman, I.; Samara, M.; Constantinidis, J. Three-year pollen and fungi calendar in a Mediterranean region of the Northeast Greece. Allergol. Immunopathol. 2022, 50, 65–74. [Google Scholar] [CrossRef]
- Hallit, S.; Sacre, H.; Kheir, N.; Hallit, R.; Waked, M.; Salameh, P. Prevalence of asthma, its correlates, and validation of the Pre-School Asthma Risk Factors Scale (PS-ARFS) among preschool children in Lebanon. Allergol. Immunopathol. 2021, 49, 40–49. [Google Scholar] [CrossRef]
- Murgia, V.; Ciprandi, G.; Votto, M.; De Filippo, M.; Tosca, M.A.; Marseglia, G.L. Natural remedies for acute post-viral cough in children. Allergol. Immunopathol. 2021, 49, 173–184. [Google Scholar] [CrossRef]
- Szczawinska-Poplonyk, A.; Begier, K.; Dorota, A.; Dabrowska, M.; Galecka, D.; Wawrzeniak, K.; Wroblewski, K. Syndromic immunodeficiencies: A pediatrician’s perspective on selected diseases. Allergol. Immunopathol. 2021, 49, 117–136. [Google Scholar] [CrossRef]
- Szczawińska-Popłonyk, A.; Bernat-Sitarz, K.; Schwartzmann, E.; Piechota, M.; Badura-Stronka, M. Clinical and immunological assessment of APDS2 with features of the SHORT syndrome related to a novel mutation in PIK3R1 with reduced penetrance. Allergol. Immunopathol. 2022, 50, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ünsal, H.; Ocak, M.; Akarsu, A.; Şahiner, Ü.M.; Soyer, Ö.; Şekerel, B.E. Oral food challenge in IgE mediated food allergy in eastern Mediterranean children. Allergol. Immunopathol. 2021, 49, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Zang, L.; Chi, J.; Bi, S.; Tao, Y.; Wang, R.; Li, L. SIRT3 improves alveolar epithelial cell damage caused by bronchopulmonary dysplasia through deacetylation of FOXO1. Allergol. Immunopathol. 2023, 51, 191–204. [Google Scholar] [CrossRef]
- Jardim-Botelho, A.; de Oliveira, L.C.L.; Motta-Franco, J.; Solé, D. Nutritional management of immediate hypersensitivity to legumes in vegetarians. Allergol. Immunopathol. 2022, 50, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Liu, J.; He, J.; Wu, L.; Li, S.; Cheng, B.; Shao, Y.; Zhang, Y.; Wang, Y.; Tang, L. Effects of subcutaneous immunotherapy in allergic rhinitis children sensitive to dust mites. Allergol. Immunopathol. 2023, 51, 84–91. [Google Scholar] [CrossRef]
- Qiu, T.; Lv, Y.; Niu, L.; Zhang, Y. Knockdown of TRIM8 alleviates dextran sulfate sodium-induced colitis in mice by inhibiting the NF-κB signaling pathway. Allergol. Immunopathol. 2023, 51, 92–97. [Google Scholar] [CrossRef]
- Huang, H.; Gao, S.; Xu, X. Echinococcus multilocularis induces surface high expression of inhibitory killer immunoglobulin-like receptor on natural killer cells. Allergol. Immunopathol. 2021, 49, 78–86. [Google Scholar] [CrossRef]
- Magnoli, A.P.; Poloni, V.L.; Cavaglieri, L. Impact of mycotoxin contamination in the animal feed industry. Curr. Opin. Food Sci. 2019, 29, 99–108. [Google Scholar] [CrossRef]
- Focker, M.; van der Fels-Klerx, H.J.; Lansink, A.G.J.M.O. Financial losses for Dutch stakeholders during the 2013 aflatoxin incident in Maize in Europe. Mycotoxin Res. 2021, 37, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Imade, F.; Ankwasa, E.M.; Geng, H.; Ullah, S.; Ahmad, T.; Wang, G.; Zhang, C.; Dada, O.; Xing, F.; Zheng, Y.; et al. Updates on food and feed mycotoxin contamination and safety in Africa with special reference to Nigeria. Mycology 2021, 12, 245–260. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, I.; Handl, J.; Binder, E. Mycotoxin occurrence in commodities, feeds and feed ingredients sourced in the Middle East and Africa. Food Addit. Contam. Part B 2011, 4, 168–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahmani, J.; Alipour, S.; Miri, A.; Fakhri, Y.; Riahi, S.-M.; Keramati, H.; Moradi, M.; Amanidaz, N.; Pouya, R.H.; Bahmani, Z.; et al. The prevalence of aflatoxin M1 in milk of Middle East region: A systematic review, meta-analysis and probabilistic health risk assessment. Food Chem. Toxicol. 2018, 118, 653–666. [Google Scholar] [CrossRef]
- Khaneghah, A.M.; Farhadi, A.; Nematollahi, A.; Vasseghian, Y.; Fakhri, Y. A systematic review and meta-analysis to investigate the concentration and prevalence of trichothecenes in the cereal-based food. Trends Food Sci. Technol. 2020, 102, 193–202. [Google Scholar] [CrossRef]
- Mardones, F.; Perez, A.; Sanchez, J.; Alkhamis, M.; Carpenter, T. Parameterization of the duration of infection stages of serotype O foot-and-mouth disease virus: An analytical review and meta-analysis with application to simulation models. Vet. Res. 2010, 41, 45. [Google Scholar] [CrossRef] [Green Version]
- Compton, C.; Heuer, C.; Thomsen, P.; Carpenter, T.; Phyn, C.; McDougall, S. Invited review: A systematic literature review and meta-analysis of mortality and culling in dairy cattle. J. Dairy Sci. 2017, 100, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scharnböck, B.; Roch, F.-F.; Richter, V.; Funke, C.; Firth, C.L.; Obritzhauser, W.; Baumgartner, W.; Käsbohrer, A.; Pinior, B. A meta-analysis of bovine viral diarrhoea virus (BVDV) prevalences in the global cattle population. Sci. Rep. 2018, 8, 14420 . [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khorrami, B.; Khiaosa-Ard, R.; Zebeli, Q. Models to predict the risk of subacute ruminal acidosis in dairy cows based on dietary and cow factors: A meta-analysis. J. Dairy Sci. 2021, 104, 7761–7780. [Google Scholar] [CrossRef] [PubMed]
- Raboisson, D.; Mounié, M.; Maigné, E. Diseases, reproductive performance, and changes in milk production associated with subclinical ketosis in dairy cows: A meta-analysis and review. J. Dairy Sci. 2014, 97, 7547–7563. [Google Scholar] [CrossRef] [Green Version]
- McAloon, C.G.; Whyte, P.; More, S.J.; Green, M.J.; O’Grady, L.; Garcia, A.; Doherty, M.L. The effect of paratuberculosis on milk yield—A systematic review and meta-analysis. J. Dairy Sci. 2016, 99, 1449–1460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khaneghah, A.M.; Moosavi, M.; Omar, S.S.; Oliveira, C.A.; Karimi-Dehkordi, M.; Fakhri, Y.; Huseyn, E.; Nematollahi, A.; Farahani, M.; Sant’Ana, A.S. The prevalence and concentration of aflatoxin M1 among different types of cheeses: A global systematic review, meta-analysis, and meta-regression. Food Control. 2021, 125, 107960. [Google Scholar] [CrossRef]
- Khaneghah, A.M.; Fakhri, Y.; Raeisi, S.; Armoon, B.; Sant’Ana, A.S. Prevalence and concentration of ochratoxin A, zearalenone, deoxynivalenol and total aflatoxin in cereal-based products: A systematic review and meta-analysis. Food Chem. Toxicol. 2018, 118, 830–848. [Google Scholar] [CrossRef] [PubMed]
- Khaneghah, A.M.; Martins, L.M.; von Hertwig, A.M.; Bertoldo, R.; Sant’Ana, A.S. Deoxynivalenol and its masked forms: Characteristics, incidence, control and fate during wheat and wheat based products processing—A review. Trends Food Sci. Technol. 2018, 71, 13–24. [Google Scholar] [CrossRef]
- Farhadi, A.; Fakhri, Y.; Kachuei, R.; Vasseghian, Y.; Huseyn, E.; Khaneghah, A.M. Prevalence and concentration of fumonisins in cereal-based foods: A global systematic review and meta-analysis study. Environ. Sci. Pollut. Res. 2021, 28, 20998–21008. [Google Scholar] [CrossRef]
- Vanrolleghem, W.; Tanghe, S.; Verstringe, S.; Bruggeman, G.; Papadopoulos, D.; Trevisi, P.; Zentek, J.; Sarrazin, S.; Dewulf, J. Potential dietary feed additives with antibacterial effects and their impact on performance of weaned piglets: A meta-analysis. Veter. J. 2019, 249, 24–32. [Google Scholar] [CrossRef]
- Moula, N.; Detilleux, J. A Meta-Analysis of the Effects of Insects in Feed on Poultry Growth Performances. Animals 2019, 9, 201. [Google Scholar] [CrossRef] [Green Version]
- Grenier, B.; Oswald, I. Mycotoxin co-contamination of food and feed: Meta-analysis of publications describing toxicological interactions. World Mycotoxin J. 2011, 4, 285–313. [Google Scholar] [CrossRef]
- Karami-Osboo, R.; Mirabolfathy, M.; Aliakbari, F. Natural Deoxynivalenol Contamination of Corn Produced in Golestan and Moqan Areas in Iran. J. Agric. Sci. Technol. 2010, 12, 233–239. [Google Scholar]
- Demir, C.; Simsek, O.; Arici, M. Incidence of Fusarium verticillioides and levels of fumonisin B1 and B2 in corn in Turkey. Food Sci. Biotechnol. 2010, 19, 1103–1106. [Google Scholar] [CrossRef]
- Khatoon, S.; Hanif, N.Q.; Tahira, I.; Sultana, N.; Sultana, K.; Ayub, N. Natural Occurrence of Aflatoxins, Zearalenone and Trichothecenes in Maize Grown in Pakistan. Pak. J. Bot. 2012, 44, 231–236. [Google Scholar]
- Oruç, H.H.; Sorucu, A.; Türkmen, I.I.; Arslan, E. Determination of Various Mycotoxin Concentrations in the Feedstuffs and Feed Produced by A Feed Manufacturer in Turkey. Kafkas Univ. Vet. Fak. Derg. 2012, 18, 633–638. [Google Scholar] [CrossRef] [Green Version]
- Abbès, S.; Ben Salah-Abbès, J.; Bouraoui, Y.; Oueslati, S.; Oueslati, R. Natural occurrence of aflatoxins (B1 and M1) in feed, plasma and raw milk of lactating dairy cows in Beja, Tunisia, using ELISA. Food Addit. Contam. Part B 2012, 5, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Mohamed, A. Determination of Aflatoxins in Selected Foods and Animal Feed in Khartoum State, Sudan. Acta Hortic. 2012, 963, 231–235. [Google Scholar] [CrossRef]
- Kocasari, F.S.; Mor, F.; Oguz, M.N.; Oguz, F.K. Occurrence of mycotoxins in feed samples in Burdur Province, Turkey. Environ. Monit. Assess. 2012, 185, 4943–4949. [Google Scholar] [CrossRef]
- Mahmoudi, R.; Norian, R.; Katiraee, F.; Pajohi Alamoti, M.R. Total Aflatoxin Contamination of Maize Produced in Different Regions of Qazvin-Iran. Int. Food Res. J. 2013, 20, 2901–2904. [Google Scholar]
- Ahsan, S.; Batti, I.A.; Hussain, Z.; Bukhari, S.A.; Naqvi, S.A.R.; Khan, Z.A.; Asi, M.R. HPLC Determination of Aflatoxins in Wheat Grains Collected from Central Areas of the Punjab, Pakistan. Asian J. Chem. 2013, 25, 7463–7466. [Google Scholar] [CrossRef]
- Sadegh, M.; Sani, A.M.; Ghiasvand, R. Determination of Aflatoxin B1 in Animal Feed in Mashhad. Iran. Biotechnol. Indian J. 2013, 7, 334–336. [Google Scholar]
- Azizi, I.G.; Azarmi, M.; Pouya, N.D.; Rouhi, S. T-2 toxin Analysis in Poultry and Cattle Feedstuff. Jundishapur J. Nat. Pharm. Prod. 2014, 9, e13734. [Google Scholar] [CrossRef] [Green Version]
- Eskandari, M.; Pakfetrat, S. Aflatoxins and heavy metals in animal feed in Iran. Food Addit. Contam. Part B 2014, 7, 202–207. [Google Scholar] [CrossRef]
- Bilal, T.; Aksakal, D.H.; Sünnetci, S.; Keser, O.; Eseceli, H. Detection of Aflatoxin, Zearalenone and Deoxynivalenol in Some Feed and Feedstuffs in Turkey. Pak. Vet. J. 2014, 34, 459–463. [Google Scholar]
- Shar, Z.; Sumbal, G.; Sherazi, S.; Bhanger, M.; Nizamani, S. Natural co-occurrence of aflatoxins and deoxynivalenol in poultry feed in Pakistan. Food Addit. Contam. Part B 2014, 7, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Sherazi, S.T.H.; Shar, Z.; Sumbal, G.A.; Tan, E.T.; Bhanger, M.I.; Kara, H.; Nizamani, S.M. Occurrence of ochratoxin A in poultry feeds and feed ingredients from Pakistan. Mycotoxin Res. 2014, 31, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Bahrami, R.; Shahbazi, Y.; Nikousefat, Z. Occurrence and seasonal variation of aflatoxin in dairy cow feed with estimation of aflatoxin M1 in milk from Iran. Food Agric. Immunol. 2015, 27, 388–400. [Google Scholar] [CrossRef] [Green Version]
- Namjoo, M.; Salamat, F.; Rajabli, N.; Hajihoseeini, R.; Niknejad, F.; Kohsar, F.; Joshaghani, H. Quantitative Determination of Aflatoxin by High Performance Liquid Chromatography in Wheat Silos in Golestan Province, North of Iran. Iran. J. Public Health 2016, 45, 905–910. [Google Scholar]
- Sahin, H.Z.; Celik, M.; Kotay, S.; Kabak, B. Aflatoxins in dairy cow feed, raw milk and milk products from Turkey. Food Addit. Contam. Part B 2016, 9, 152–158. [Google Scholar] [CrossRef]
- Ehsani, A.; Barani, A.; Nasiri, Z. Occurrence of aflatoxin B1 contamination in dairy cows feed in Iran. Toxin Rev. 2016, 35, 54–57. [Google Scholar] [CrossRef]
- Hashemi, M. Aflatoxin B1 levels in feedstuffs from dairy cow farms in south of Iran. Food Agric. Immunol. 2015, 27, 251–258. [Google Scholar] [CrossRef]
- Asghar, M.A.; Ahmed, A.; Iqbal, J.; Zahir, E.; Nauman, H. Fungal flora and aflatoxin contamination in Pakistani wheat kernels (Triticum aestivum L.) and their attribution in seed germination. J. Food Drug Anal. 2016, 24, 635–643. [Google Scholar] [CrossRef] [Green Version]
- Chohan, K.A.; Awan, F.; Ali, M.M.; Iqbal, U.; Ijaz, M. Assessment of Aflatoxin in Dairy Concentrate Feeds, Total Mixed Rations, Silage and Various Feed Ingredients in Pakistan. Pak. J. Zool. 2016, 48, 277–280. [Google Scholar]
- Abdolmaleki, K.; Javanmardi, F.; Gavahian, M.; Phimolsiripol, Y.; Ruksiriwanich, W.; Mir, S.A.; Mousavi Khaneghah, A. Emerging technologies in combination with probiotics for aflatoxins removal: An updated review. Int. J. Food Sci. Technol. 2022, 57, 5712–5721. [Google Scholar] [CrossRef]
- Mahdavi-Yekta, M.; Karimi-Dehkordi, M.; Hadian, Z.; Salehi, A.; Deylami, S.; Rezaei, M.; Mousavi Khaneghah, A. Silver nanoparticles and quinoa peptide enriched nanocomposite films for the detoxification of aflatoxins in pistachio. Int. J. Environ. Anal. Chem. 2022, 1–14. [Google Scholar] [CrossRef]
- Smaoui, S.; Agriopoulou, S.; D’Amore, T.; Tavares, L.; Mousavi Khaneghah, A. The control of Fusarium growth and decontamination of produced mycotoxins by lactic acid bacteria. Crit. Rev. Food Sci. Nutr. 2022, 1–28. [Google Scholar] [CrossRef]
- Sifou, A.; Mahnine, N.; Manyes, L.; Adlouni, C.E.; Azzouzi, M.E.; Zinedine, A. Determination of Ochratoxin A in Poultry Feeds Available in Rabat Area (Morocco) by High Performance Liquid Chromatography. J. Mater. Environ. Sci. 2016, 7, 2229–2234. [Google Scholar]
- Iqbal, S.Z.; Asi, M.R.; Nisar, S.; Zia, K.M.; Jinap, S.; Malik, N. A Limited Survey of Aflatoxins and Zearalenone in Feed and Feed Ingredients from Pakistan. J. Food Prot. 2016, 79, 1798–1801. [Google Scholar] [CrossRef] [PubMed]
- Abudabos, A.M.; Al-Atiyat, R.M.; Khan, R.U. A survey of mycotoxin contamination and chemical composition of distiller’s dried grains with solubles (DDGS) imported from the USA into Saudi Arabia. Environ. Sci. Pollut. Res. 2017, 24, 15401–15405. [Google Scholar] [CrossRef]
- Abdallah, M.F.; Girgin, G.; Baydar, T.; Krska, R.; Sulyok, M. Occurrence of multiple mycotoxins and other fungal metabolites in animal feed and maize samples from Egypt using LC-MS/MS. J. Sci. Food Agric. 2017, 97, 4419–4428. [Google Scholar] [CrossRef]
- Ismail, A.; Riaz, M.; Akhtar, S.; Yoo, S.; Park, S.; Abid, M.; Aziz, M.; Ahmad, Z. Seasonal variation of aflatoxin B1 content in dairy feed. J. Anim. Feed. Sci. 2017, 26, 33–37. [Google Scholar] [CrossRef]
- Yalçin, N.F.; Işik, M.K.; Avci, T.; Oğuz, H.; Yurduseven, T. Investigation of mycotoxin residues in poultry feeds by LC MS/MS method. Ank. Üniversitesi Vet. Fakültesi Derg. 2017, 64, 111–116. [Google Scholar] [CrossRef] [Green Version]
- Jedidi, I.; Cruz, A.; González-Jaén, M.T.; Said, S. Aflatoxins and ochratoxin A and their Aspergillus causal species in Tunisian cereals. Food Addit. Contam. Part B 2016, 10, 51–58. [Google Scholar] [CrossRef]
- Yilidirim, E.; Macun, H.C.; Yalçinkaya, İ.; Kocasari, F.Ş.; Ekici, H. Survey of aflatoxin residue in feed and milk samples in Kırıkkale province, Turkey. Ank. Üniversitesi Vet. Fakültesi Derg. 2018, 65, 199–204. [Google Scholar] [CrossRef]
- Al Khalail, N. Prevalence of Ochratoxin A in Poultry Feed and Meat from Jordan. Pak. J. Biol. Sci. 2018, 21, 239–244. [Google Scholar] [CrossRef] [Green Version]
- Ghiasian, S.A.; Shephard, G.S.; Yazdanpanah, H. Natural Occurrence of Aflatoxins from Maize in Iran. Mycopathologia 2011, 172, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Zebiri, S.; Mokrane, S.; Verheecke-Vaessen, C.; Choque, E.; Reghioui, H.; Sabaou, N.; Mathieu, F.; Riba, A. Occurrence of ochratoxin A in Algerian wheat and its milling derivatives. Toxin Rev. 2018, 38, 206–211. [Google Scholar] [CrossRef] [Green Version]
- Abdallah, M.F.; Girgin, G.; Baydar, T. Mycotoxin Detection in Maize, Commercial Feed, and Raw Dairy Milk Samples from Assiut City, Egypt. Veter. Sci. 2019, 6, 57. [Google Scholar] [CrossRef] [Green Version]
- Iram, S.; Fareed, S.K.; Chaudhary, M.; Iqbal, M.U.N.; Ghani, R.; Khan, T.A.; Abbas, T. Identification of Aspergillus flavus and aflatoxin in home mix layer poultry feed in relation to seasons in Karachi, Pakistan. Trop. Anim. Health Prod. 2019, 51, 1321–1327. [Google Scholar] [CrossRef] [PubMed]
- Ahmed Abdullah Murshed, S.; Bacha, N.; Alharazi, T. Detection of Total Aflatoxins in Groundnut and Soybean Samples in Yemen Using Enzyme-Linked Immunosorbent Assay. J. Food Qual. 2019, 2019, 1614502. [Google Scholar] [CrossRef] [Green Version]
- Juan, C.; Oueslati, S.; Mañes, J.; Berrada, H. Multimycotoxin Determination in Tunisian Farm Animal Feed. J. Food Sci. 2019, 84, 3885–3893. [Google Scholar] [CrossRef]
- Shar, Z.H.; Pirkash, O.; Sherazi, S.T.H.; Mahesar, S.A. Aflatoxins in cotton seeds and cotton seed cake from Pakistan. Food Addit. Contam. Part B 2019, 13, 72–76. [Google Scholar] [CrossRef]
- Juan, C.; Mannai, A.; Ben Salem, H.; Oueslati, S.; Berrada, H.; Juan-García, A.; Mañes, J. Mycotoxins presence in pre- and post-fermented silage from Tunisia. Arab. J. Chem. 2020, 13, 6753–6761. [Google Scholar] [CrossRef]
- Waqas, M.; Pervaiz, W.; Zia, K.M.; Iqbal, S.Z. Assessment of aflatoxin B 1 in animal feed and aflatoxin M 1 in raw milk samples of different species of milking animals from Punjab, Pakistan. J. Food Saf. 2021, 41, e12893. [Google Scholar] [CrossRef]
- Azizi, I.; Ghadi, H.; Azarmi, M. Determination of Aflatoxin B1 Levels of the Feedstuffs in Traditional and Semi-industrial Cattle Farms in Amol, Northern Iran. Asian J. Anim. Vet. Adv. 2012, 7, 528–534. [Google Scholar] [CrossRef] [Green Version]
- Feizy, J.; Beheshti, H.R.; Asadi, M. A survey of aflatoxin in cotton seed in Iran by HPLC with on-line photochemical derivatisation and fluorescence detection. Food Addit. Contam. Part B 2012, 5, 200–203. [Google Scholar] [CrossRef] [PubMed]
- Rashid, N.; Bajwa, M.A.; Rafeeq, M.; Khan, M.A.; Ahmad, Z.; Tariq, M.M.; Wadood, A.; Abbas, F. Prevalence of Aflatoxin B1 in Finished Commercial Broiler Feed from West Central Pakistan. J. Anim. Plant Sci. 2012, 22, 6–10. [Google Scholar]
- Rashedi, M.; Sohrabi, H.R.; Ashjaazadeh, M.A.; Azizi, H.; Rahimi, E. Zearalenone contamination in barley, corn, silage and wheat bran. Toxicol. Ind. Health 2011, 28, 779–782. [Google Scholar] [CrossRef]
- Değirmencioğlu, N.; Eseceli, H.; Demir, E.; Şentürklü, S. Evaluation of total aflatoxin, nitrate and nitrite levels in layer feed samples of companies producing their own feed in Edincik and Bandırma province of Turkey. Food Addit. Contam. Part B 2012, 5, 133–139. [Google Scholar] [CrossRef]
- Claeys, L.; Romano, C.; De Ruyck, K.; Wilson, H.; Fervers, B.; Korenjak, M.; Zavadil, J.; Gunter, M.J.; De Saeger, S.; De Boevre, M.; et al. Mycotoxin exposure and human cancer risk: A systematic review of epidemiological studies. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1449–1464. [Google Scholar] [CrossRef]
- Franco, L.T.; Khaneghah, A.M.; Lee, S.H.I.; Oliveira, C.A.F. Biomonitoring of mycotoxin exposure using urinary biomarker approaches: A review. Toxin Rev. 2019, 40, 383–403. [Google Scholar] [CrossRef]
- Ganesan, A.R.; Balasubramanian, B.; Park, S.; Jha, R.; Andretta, I.; Bakare, A.G.; Kim, I.H. Ochratoxin A: Carryover from animal feed into livestock and the mitigation strategies. Anim. Nutr. 2020, 7, 56–63. [Google Scholar] [CrossRef]
- Streit, E.; Schatzmayr, G.; Tassis, P.; Tzika, E.; Marin, D.; Taranu, I.; Tabuc, C.; Nicolau, A.; Aprodu, I.; Puel, O.; et al. Current Situation of Mycotoxin Contamination and Co-occurrence in Animal Feed—Focus on Europe. Toxins 2012, 4, 788–809. [Google Scholar] [CrossRef] [Green Version]
- Bahn, R.; Yehya, A.; Zurayk, R. Digitalization for Sustainable Agri-Food Systems: Potential, Status, and Risks for the MENA Region. Sustainability 2021, 13, 3223. [Google Scholar] [CrossRef]
- Olawuyi, D.S. Climate Change Law and Policy in the Middle East and North Africa Region; Routledge: New York, NY, USA, 2021; ISBN 9781003044109. [Google Scholar]
- Cendoya, E.; del Pilar Monge, M.; Chiacchiera, S.M.; Farnochi, M.C.; Ramirez, M.L. Influence of water activity and temperature on growth and fumonisin production by Fusarium proliferatum strains on irradiated wheat grains. Int. J. Food Microbiol. 2018, 266, 158–166. [Google Scholar] [CrossRef]
- Kirinčič, S.; Škrjanc, B.; Kos, N.; Kozolc, B.; Pirnat, N.; Tavčar-Kalcher, G. Mycotoxins in cereals and cereal products in Slovenia—Official control of foods in the years 2008–2012. Food Control. 2015, 50, 157–165. [Google Scholar] [CrossRef]
- Kouba, M. Quality of organic animal products. Livest. Prod. Sci. 2003, 80, 33–40. [Google Scholar] [CrossRef]
- Jouany, J.P. Methods for preventing, decontaminating and minimizing the toxicity of mycotoxins in feeds. Anim. Feed. Sci. Technol. 2007, 137, 342–362. [Google Scholar] [CrossRef]
- Althagafi, A.M.; Alshegifi, H.M.; Qussyier, T.S.; Tobaiqy, M.; Abdalbasit, M. Mycotoxin-contaminated food and feed in Saudi Arabia: Review of occurrence and toxicity. Food Raw Mater. 2021, 9, 174–183. [Google Scholar] [CrossRef]
- Al-Jaal, B.; Salama, S.; Al-Qasmi, N.; Jaganjac, M. Mycotoxin contamination of food and feed in the Gulf Cooperation Council countries and its detection. Toxicon 2019, 171, 43–50. [Google Scholar] [CrossRef]
- Khaledi, K.; Ardestani, M. The Impact of Sanctions on Economic Growth of Iran’s Agricultural Sector. J. Agric. Econ. Dev. 2022, 29, 251–284. [Google Scholar] [CrossRef]
- Messripour, M.; Gheisari, M.M. Occurrence of Aflatoxin B in Some Feedstuffs in Isfahan. J. Res. Agric. Sci. 2010, 6, 49–55. [Google Scholar]
- Torok, V.A.; Luyckx, K.; Lapidge, S. Human food waste to animal feed: Opportunities and challenges. Anim. Prod. Sci. 2021, 62, 1129–1139. [Google Scholar] [CrossRef]
- FAO & WHO Hazards Associated with Animal Feed. Available online: https://www.fao.org/3/ca6825en/CA6825EN.pdf (accessed on 7 March 2023).
- Rhouma, M.; Lachapelle, V.; Comeau, G.; Quessy, S.; Zanabria, R.; Provost, F.; Italiano, C.; Holley, R.; Smillie, J.; Brockhoff, E.; et al. Identification and selection of animal health and food safety-related risk factors to be included in the Canadian Food Inspection Agency’s risk assessment model for livestock feed mills. Food Control. 2021, 121, 107642. [Google Scholar] [CrossRef]
- Lane, J.; Hoban, S. To Investigate the Practicalities and Regulatory Requirements of Utilising Food Waste as a Feed Source for Pigs. Aust. Pork 2017, 45, 134623. [Google Scholar]
- Ogunade, I.; Martinez-Tuppia, C.; Queiroz, O.; Jiang, Y.; Drouin, P.; Wu, F.; Vyas, D.; Adesogan, A. Silage review: Mycotoxins in silage: Occurrence, effects, prevention, and mitigation. J. Dairy Sci. 2018, 101, 4034–4059. [Google Scholar] [CrossRef] [PubMed]
- Driehuis, F.; Spanjer, M.C.; Scholten, J.M.; te Giffel, M.C. Occurrence of Mycotoxins in Feedstuffs of Dairy Cows and Estimation of Total Dietary Intakes. J. Dairy Sci. 2008, 91, 4261–4271. [Google Scholar] [CrossRef] [PubMed]
- Drishya, C.; Yoha, K.; Perumal, A.B.; Moses, J.A.; Anandharamakrishnan, C.; Balasubramaniam, V.M. Impact of nonthermal food processing techniques on mycotoxins and their producing fungi. Int. J. Food Sci. Technol. 2021, 57, 2140–2148. [Google Scholar] [CrossRef]
- Jafarzadeh, S.; Abdolmaleki, K.; Javanmardi, F.; Hadidi, M.; Khaneghah, A.M. Recent advances in plant-based compounds for mitigation of mycotoxin contamination in food products: Current status, challenges and perspectives. Int. J. Food Sci. Technol. 2022, 57, 2159–2170. [Google Scholar] [CrossRef]
- Kumar, P.; Mahato, D.K.; Gupta, A.; Pandhi, S.; Mishra, S.; Barua, S.; Tyagi, V.; Kumar, A.; Kumar, M.; Kamle, M. Use of essential oils and phytochemicals against the mycotoxins producing fungi for shelf-life enhancement and food preservation. Int. J. Food Sci. Technol. 2022, 57, 2171–2184. [Google Scholar] [CrossRef]
- Liu, L.; Xie, M.; Wei, D. Biological Detoxification of Mycotoxins: Current Status and Future Advances. Int. J. Mol. Sci. 2022, 23, 1064. [Google Scholar] [CrossRef]
- Sayed-ElAhl, R.M.H.; Hassan, A.A.; Mansour, M.K.; Abdelmoteleb, A.M.M.; El-Hamaky, A.M.A. Controlling Immunomodulation Effects of Deoxynivalenol Mycotoxins by NanoZinc Oxide and Probiotic in Broiler Chickens. J. World’s Poult. Res. 2022, 12, 133–141. [Google Scholar] [CrossRef]
- Azizi, T.; Daneshyar, M.; Allymehr, M.; Tukmechi, A.; Behroozyar, H.K.; Jalali, A.S. Effect of a probiotic (Lactobacillus sp.), yeast (Saccharomyces cerevisiae) and mycotoxin detoxifier alone or in combination on performance, immune response and serum biochemical parameters in broilers fed deoxynivalenol-contaminated diets. Anim. Prod. Sci. 2021, 61, 1553–1563. [Google Scholar] [CrossRef]
- Poloni, V.; Magnoli, A.; Fochesato, A.; Poloni, L.; Cristofolini, A.; Merkis, C.; Riquelme, C.S.; Maldonado, F.S.; Montenegro, M.; Cavaglieri, L. Probiotic gut-borne Saccharomyces cerevisiae reduces liver toxicity caused by aflatoxins in weanling piglets. World Mycotoxin J. 2021, 14, 379–388. [Google Scholar] [CrossRef]
- Śliżewska, K.; Piotrowska, M. Reduction of Ochratoxin A in Chicken Feed Using Probiotic. Ann. Agric. Environ. Med. 2014, 21, 676–680. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, X.; Chang, J.; Wang, P.; Liu, C.; Yuan, L.; Yin, Q.; Zhu, Q.; Lu, F. Effect of the Combined Compound Probiotics with Glycyrrhinic Acid on Alleviating Cytotoxicity of IPEC-J2 Cells Induced by Multi-Mycotoxins. Toxins 2022, 14, 670. [Google Scholar] [CrossRef]
- Campagnollo, F.B.; Khaneghah, A.M.; Borges, L.L.; Bonato, M.A.; Fakhri, Y.; Barbalho, C.B.; Barbalho, R.L.; Corassin, C.H.; Oliveira, C.A. In vitro and in vivo capacity of yeast-based products to bind to aflatoxins B1 and M1 in media and foodstuffs: A systematic review and meta-analysis. Food Res. Int. 2020, 137, 109505. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Wang, Y.; Nennich, T.; Li, Y.; Liu, J. Transfer of dietary aflatoxin B1 to milk aflatoxin M1 and effect of inclusion of adsorbent in the diet of dairy cows. J. Dairy Sci. 2015, 98, 2545–2554. [Google Scholar] [CrossRef] [Green Version]
Country | No. of Trials | ES (95% CI) | p | I2 (%) | PQ |
---|---|---|---|---|---|
Pakistan | 116 | 0.41 (0.35, 0.46) | <0.001 | 92.30 | <0.001 |
Iran | 52 | 0.66 (0.56, 0.76) | <0.001 | 96.05 | <0.001 |
Turkey | 48 | 0.41 (0.31, 0.52) | <0.001 | 97.77 | <0.001 |
Egypt | 31 | 0.29 (0.18, 0.40) | <0.001 | 97.60 | <0.001 |
Tunisia | 21 | 0.31 (0.16, 0.47) | <0.001 | 97.36 | <0.001 |
Qatar | 18 | 0.46 (0.28, 0.64) | <0.001 | 78.24 | <0.001 |
Saudi Arabia | 11 | 0.15 (0.09, 0.23) | <0.001 | 93.53 | <0.001 |
Middle East | 16 | 0.39 (0.24, 0.56) | <0.001 | 95.9 | – |
Jordan | 3 | 0.63 (0.25, 0.94) | <0.001 | – | – |
Sudan | 3 | 0.45 (0.32, 0.59) | <0.001 | – | – |
Algeria | 2 | 0.87 (0.74, 0.96) | <0.001 | – | – |
Morocco | 1 | 0.31 (0.21, 0.43) | <0.001 | – | – |
Yemen | 1 | 0.72 (0.60, 0.82) | <0.001 | – | – |
Overall estimate | 323 | 0.42 (0.38, 0.46) | <0.001 | 96.71 | <0.001 |
Mycotoxin Type | No. of Trials | ES (95% CI) | p | I2 (%) | PQ |
---|---|---|---|---|---|
Aflatoxins | 172 | 0.47 (0.40, 0.53) | <0.001 | 97.35 | <0.001 |
Ochratoxin A | 49 | 0.31 (0.23, 0.39) | <0.001 | 91.34 | <0.001 |
Zearalenone | 36 | 0.33 (0.23, 0.43) | <0.001 | 93.98 | <0.001 |
Fumonisins | 31 | 0.47 (0.35, 0.60) | <0.001 | 96.79 | <0.001 |
Deoxynivalenol | 23 | 0.42 (0.32, 0.53) | <0.001 | 92.42 | <0.001 |
T-2 toxin | 12 | 0.18 (0.06, 0.34) | <0.001 | 96.97 | <0.001 |
Overall estimate | 323 | 0.42 (0.38, 0.46) | <0.001 | 96.71 | <0.001 |
Ingredients | No. of Trials | ES (95% CI) | p | I2 (%) | PQ |
---|---|---|---|---|---|
Finished feed | 117 | 0.46 (0.39, 0.54 | <0.001 | 97.94 | <0.001 |
Cereals | 115 | 0.33 (0.28, 0.37) | <0.001 | 93.33 | <0.001 |
Oilseed meal/cake | 47 | 0.49 (0.40, 0.58) | <0.001 | 91.68 | <0.001 |
Silage | 10 | 0.57 (0.33, 0.80) | <0.001 | 96.01 | <0.001 |
Wheat bran | 9 | 0.41 (0.14, 0.72) | <0.001 | 95.46 | <0.001 |
Hay | 7 | 0.50 (0.26, 0.74) | <0.001 | 93.87 | <0.001 |
Gluten meal | 4 | 0.31 (0.17, 0.46) | <0.001 | 36.13 | 0.20 |
Animal protein-based meal | 4 | 0.28 (0.05, 0.58) | <0.001 | 78.84 | <0.001 |
Straw | 4 | 0.52 (0.27, 0.76) | <0.001 | 90.71 | <0.001 |
Beet pulp | 3 | 0.53 (0.22, 0.83) | <0.001 | – | – |
Dried bread | 3 | 0.80 (0.61, 0.94) | <0.001 | – | – |
Overall estimate | 323 | 0.42 (0.38, 0.46) | <0.001 | 96.71 | <0.001 |
Mycotoxin Type | No. of trials | ES (95% CI) | p | I2 (%) | PQ |
---|---|---|---|---|---|
Aflatoxins | 114 | 23.38 (−47.98, 94.74) | 0.521 | 100 | <0.001 |
Ochratoxin A | 43 | 12.01 (10.93, 13.08) | <0.001 | 99.1 | <0.001 |
Zearalenone | 11 | 17.56 (15.07, 20.05) | <0.001 | 99.8 | <0.001 |
Fumonisins | 6 | 1240.1 (841.9, 1638.3) | <0.001 | 100 | <0.001 |
Deoxynivalenol | 5 | 806.1 (1.03, 2615.8) | 0.038 | 100 | <0.001 |
T-2 toxin | 7 | 43.60 (−28.63, 115.8) | 0.237 | 100 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jalilzadeh-Amin, G.; Dalir-Naghadeh, B.; Ahmadnejad-Asl-Gavgani, M.; Fallah, A.A.; Mousavi Khaneghah, A. Prevalence and Concentration of Mycotoxins in Animal Feed in the Middle East and North Africa (MENA): A Systematic Review and Meta-Analysis. Toxins 2023, 15, 214. https://doi.org/10.3390/toxins15030214
Jalilzadeh-Amin G, Dalir-Naghadeh B, Ahmadnejad-Asl-Gavgani M, Fallah AA, Mousavi Khaneghah A. Prevalence and Concentration of Mycotoxins in Animal Feed in the Middle East and North Africa (MENA): A Systematic Review and Meta-Analysis. Toxins. 2023; 15(3):214. https://doi.org/10.3390/toxins15030214
Chicago/Turabian StyleJalilzadeh-Amin, Ghader, Bahram Dalir-Naghadeh, Masoud Ahmadnejad-Asl-Gavgani, Aziz A. Fallah, and Amin Mousavi Khaneghah. 2023. "Prevalence and Concentration of Mycotoxins in Animal Feed in the Middle East and North Africa (MENA): A Systematic Review and Meta-Analysis" Toxins 15, no. 3: 214. https://doi.org/10.3390/toxins15030214
APA StyleJalilzadeh-Amin, G., Dalir-Naghadeh, B., Ahmadnejad-Asl-Gavgani, M., Fallah, A. A., & Mousavi Khaneghah, A. (2023). Prevalence and Concentration of Mycotoxins in Animal Feed in the Middle East and North Africa (MENA): A Systematic Review and Meta-Analysis. Toxins, 15(3), 214. https://doi.org/10.3390/toxins15030214