Scorpion Peptides and Ion Channels: An Insightful Review of Mechanisms and Drug Development
Abstract
:1. Introduction
2. Structure of Ion Channels
3. Neurotoxins
3.1. Na+ Channel Toxins
3.1.1. α-Toxins
3.1.2. β-Toxins
3.2. K+ Channel Toxins
3.3. Ca2+ Channel Toxins
3.4. Cl− Channel Toxins
3.5. TRP Channel Toxins
4. Peptides and Other Applications in Ion Channels
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Herzig, V. Arthropod assassins: Crawling biochemists with diverse toxin pharmacopeias. Toxicon 2019, 158, 33–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marchi, F.C.; Mendes-Silva, E.; Rodrigues-Ribeiro, L.; Bolais-Ramos, L.G.; Verano-Braga, T. Toxinology in the proteomics era: A review on arachnid venom proteomics. J. Venom. Anim. Toxins Incl. Trop. Dis. 2022, 28, 20210034. [Google Scholar] [CrossRef] [PubMed]
- Abroug, F.; Ouanes-Besbes, L.; Tilouche, N.; Elatrous, S. Scorpion envenomation: State of the art. Intensiv. Care Med. 2020, 46, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Chippaux, J.-P.; Goyffon, M. Epidemiology of scorpionism: A global appraisal. Acta Trop. 2008, 107, 71–79. [Google Scholar] [CrossRef]
- Almaaty, A.; Aldeyarbi, S. Filogenia Molecular Baseada em COI de Alguns Escorpiões Buthidae do Egito. J. Biotech 2022, 13, 18–25. Available online: https://www.researchgate.net/profile/Ali-Abu-Almaaty/publication/357932380_COI-based_molecular_phylogeny_of_some_Buthidae_scorpions_from_Egypt/links/61e80d9d9a753545e2e0e81a/COI-based-molecular-phylogeny-of-some-Buthidae-scorpions-from-Egypt.pdf (accessed on 27 June 2022).
- Saikia, C.; Ben-Nissan, G.; Reuveny, E.; Karbat, I. Production of recombinant venom peptides as tools for ion channel research. Methods Enzymol. 2021, 654, 169–201. [Google Scholar] [CrossRef]
- Wisedchaisri, G.; El-Din, T.M.G. Druggability of Voltage-Gated Sodium Channels—Exploring Old and New Drug Receptor Sites. Front. Pharmacol. 2022, 13, 1–17. [Google Scholar] [CrossRef]
- Srairi-Abid, N.; Othman, H.; Aissaoui, D.; BenAissa, R. Anti-tumoral effect of scorpion peptides: Emerging new cellular targets and signaling pathways. Cell Calcium 2019, 80, 160–174. [Google Scholar] [CrossRef]
- De Lera Ruiz, M.; Kraus, R.L. Voltage-Gated Sodium Channels: Structure, Function, Pharmacology, and Clinical Indications. J. Med. Chem. 2015, 58, 7093–7118. [Google Scholar] [CrossRef]
- Kozlov, S. Animal Toxins for Channelopathy Treatment. Neuropharmacology 2018, 132, 83–97. Available online: https://pubmed.ncbi.nlm.nih.gov/29080794/ (accessed on 27 June 2022). [CrossRef]
- So, W.L.; Leung, T.C.; Nong, W.; Bendena, W.G.; Ngai, S.M.; Hui, J.H. Transcriptomic and proteomic analyses of venom glands from scorpions Liocheles australasiae, Mesobuthus martensii, and Scorpio maurus palmatus. Peptides 2021, 146, 170643. [Google Scholar] [CrossRef] [PubMed]
- Santibáñez-López, C. 2022 Undefined. Phylogenomics of Scorpions Reveal Contemporaneous Diversification of Scorpion Mammalian Predators and Mammal-Active Sodium Channel Toxins. sharmalabuw.org [Internet]. Available online: http://www.sharmalabuw.org/uploads/1/3/6/1/13619635/santib%C3%A1%C3%B1ez-l%C3%B3pez_et_al._2022.pdf (accessed on 20 August 2022).
- Isbister, G.K.; Bawaskar, H.S. Scorpion Envenomation. Mass. Med. Soc. 2014, 371, 457–463. Available online: https://www.nejm.org/doi/full/10.1056/NEJMra1401108 (accessed on 16 August 2022). [CrossRef] [PubMed]
- Liu, Y.; Wang, K. Exploiting the Diversity of Ion Channels: Modulation of Ion Channels for Therapeutic Indications. Handb. Exp. Pharmacol. 2019, 260, 187–205. Available online: https://pubmed.ncbi.nlm.nih.gov/31820177/ (accessed on 16 August 2022).
- Demirbilek, H.; Galcheva, S.; Vuralli, D.; Al-Khawaga, S.; Hussain, K. Ion Transporters, Channelopathies, and Glucose Disorders. Int. J. Mol. Sci. 2019, 20, 2590. Available online: https://www.mdpi.com/1422-0067/20/10/2590/htm (accessed on 26 June 2022). [CrossRef] [Green Version]
- Qu, Y.S.; Lazzerini, P.E.; Capecchi, P.L.; Laghi-Pasini, F.; El Sherif, N.; Boutjdir, M. Autoimmune Calcium Channelopathies and Cardiac Electrical Abnormalities. Front. Cardiovasc. Med. 2019, 6, 54. [Google Scholar] [CrossRef] [PubMed]
- Gao, K.; Lin, Z.; Wen, S.; Jiang, Y. Potassium channels and epilepsy. Acta Neurol. Scand. 2022, 146, 699–707. [Google Scholar] [CrossRef] [PubMed]
- Kadir, L.A.; Stacey, M.; Barrett-Jolley, R. Emerging Roles of the Membrane Potential: Action Beyond the Action Potential. Front. Physiol. 2018, 9, 1661. [Google Scholar] [CrossRef] [Green Version]
- Schreiber, J.A.; Seebohm, G. Cardiac K+ Channels and Channelopathies. Handb. Exp. Pharmacol. 2021, 267, 113–138. Available online: https://link.springer.com/chapter/10.1007/164_2021_513 (accessed on 27 June 2022).
- Wykes, R.; Lignani, G. Gene therapy and editing: Novel potential treatments for neuronal channelopathies. Neuropharmacology 2018, 132, 108–117. [Google Scholar] [CrossRef]
- Hmed, B.; Serria, H.; Mounir, Z.K. Scorpion Peptides: Potential Use for New Drug Development. hindawi.com [Internet]. Available online: https://www.hindawi.com/journals/jt/2013/958797/ (accessed on 4 June 2022).
- Peigneur, S.; Tytgat, J. Toxins in Drug Discovery and Pharmacology. Toxins 2018, 10, 126. Available online: https://www.mdpi.com/2072-6651/10/3/126/htm (accessed on 16 August 2022). [CrossRef] [Green Version]
- Israel, M.R.; Tay, B.; Deuis, J.R.; Vetter, I. Sodium Channels and Venom Peptide Pharmacology. Adv. Pharmacol. 2017, 79, 67–116. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, T.; Hao, Z.; Zhang, J.; Zhao, Y. Methionine 58 is a key residue in the modulation of BmK scorpion toxin AGP-SYPU2 activity through in silico and in vivo studies. J. Biomol. Struct. Dyn. 2020, 40, 2955–2962. [Google Scholar] [CrossRef]
- Bosmans, F.; Tytgat, J. Voltage-gated sodium channel modulation by scorpion α-toxins. Toxicon 2007, 49, 142–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petricevich, V.L. Balance between Pro- and Anti-Inflammatory Cytokines in Mice Treated with Centruroides noxius Scorpion Venom. Mediat. Inflamm. 2006, 2006, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Xia, Y. Improving the secretory expression of active recombinant AaIT in Pichia pastoris by changing the expression strain and plasmid. World J. Microbiol. Biotechnol. 2018, 34, 104. [Google Scholar] [CrossRef] [PubMed]
- Martin-Eauclaire, M.-F.; Bougis, P.E.; de Lima, M.E. Ts1 from the Brazilian scorpion Tityus serrulatus: A half-century of studies on a multifunctional beta like-toxin. Toxicon 2018, 152, 106–120. [Google Scholar] [CrossRef]
- Shenkarev, Z.O.; Shulepko, M.A.; Peigneur, S.; Myshkin, M.Y.; Berkut, A.A.; Vassilevski, A.A.; Tytgat, J.; Lyukmanova, E.N.; Kirpichnikov, M.P. Recombinant Production and Structure–Function Study of the Ts1 Toxin from the Brazilian Scorpion Tityus serrulatus. Dokl. Biochem. Biophys. 2019, 484, 9–12. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, I.S.; Ferreira, I.G.; Alexandre-Silva, G.M.; Cerni, F.A.; Cremonez, C.M.; Arantes, E.C.; Zottich, U.; Pucca, M.B. Scorpion toxins targeting Kv1.3 channels: Insights into immunosuppression. J. Venom. Anim. Toxins Incl. Trop. Dis. 2019, 25, 148118. Available online: http://www.scielo.br/j/jvatitd/a/zcKx6r9rhxWSHnVkFbQRnLb/abstract/?lang=en (accessed on 28 June 2022). [CrossRef] [Green Version]
- Varga, Z.; Tajti, G.; Panyi, G. The Kv1.3 K + channel in the immune system and its “precision pharmacology” using peptide toxins. Biol. Futur. 2021, 72, 75–83. Available online: https://pubmed.ncbi.nlm.nih.gov/34554500/ (accessed on 4 June 2022). [CrossRef]
- Qin, C.; Yang, X.; Zuo, Z.; Yang, L.; Yang, F.; Cao, Z.; Chen, Z.; Wu, Y. BmK86-P1, a New Degradation Peptide with Desirable Thermostability and Kv1.2 Channel-Specific Activity from Traditional Chinese Scorpion Medicinal Material. Toxins 2021, 13, 610. [Google Scholar] [CrossRef]
- Moldenhauer, H.; Díaz-Franulic, I.; Poblete, H.; Naranjo, D. Trans-toxin ion-sensitivity of charybdotoxin-blocked potassium-channels reveals unbinding transitional states. eLife 2019, 8, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Beltrán-Vidal, J.; Carcamo-Noriega, E.; Pastor, N.; Zamudio-Zuñiga, F.; Guerrero-Vargas, J.; Castaño, S.; Possani, L.; Restano-Cassulini, R. Colombian Scorpion Centruroides margaritatus: Purification and Characterization of a Gamma Potassium Toxin with Full-Block Activity on the hERG1 Channel. Toxins 2021, 13, 407. [Google Scholar] [CrossRef] [PubMed]
- Gurrola, G.B.; Capes, E.M.; Zamudio, F.Z.; Possani, L.D.; Valdivia, H.H.; Imperatoxin, A. A Cell-Penetrating Peptide from Scorpion Venom, as a Probe of Ca2+-Release Channels/Ryanodine Receptors. Pharmaceuticals 2010, 3, 1093–1107. Available online: https://www.mdpi.com/1424-8247/3/4/1093/htm (accessed on 27 June 2022). [CrossRef] [PubMed] [Green Version]
- Fajloun, Z.; Kharrat, R.; Chen, L.; Lecomte, C.; di Luccio, E.; Bichet, D.; El Ayeb, M.; Rochat, H.; Allen, P.D.; Pessah, I.N.; et al. Chemical synthesis and characterization of maurocalcine, a scorpion toxin that activates Ca2+ release channel/ryanodine receptors. FEBS Lett. 2000, 469, 179–185. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, E.F.; Capes, E.M.; Diego-García, E.; Zamudio, F.Z.; Fuentes, O.; Possani, L.D.; Valdivia, H.H. Characterization of hadrucalcin, a peptide from Hadrurus gertschi scorpion venom with pharmacological activity on ryanodine receptors. Br. J. Pharmacol. 2009, 157, 392–403. [Google Scholar] [CrossRef] [Green Version]
- Shahbazzadeh, D.; Srairi-Abid, N.; Feng, W.; Ram, N.; Borchani, L.; Ronjat, M.; Akbari, A.; Pessah, I.N.; De Waard, M.; El Ayeb, M. Hemicalcin, a new toxin from the Iranian scorpion Hemiscorpius lepturus which is active on ryanodine-sensitive Ca2+ channels. Biochem. J. 2007, 404, 89–96. [Google Scholar] [CrossRef] [Green Version]
- López-González, I.; Olamendi-Portugal, T.; De La Vega-Beltrán, J.L.; Van der Walt, J.; Dyason, K.; Possani, L.D.; Felix, R.; Darszon, A. Scorpion toxins that block T-type Ca2+ channels in spermatogenic cells inhibit the sperm acrosome reaction. Biochem. Biophys. Res. Commun. 2003, 300, 408–414. [Google Scholar] [CrossRef]
- Ojeda, P.G.; Wang, C.K.; Craik, D.J. Chlorotoxin: Structure, activity, and potential uses in cancer therapy. Biopolymers 2016, 106, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Aissaoui-Zid, D.; Saada, M.-C.; Moslah, W.; Potier-Cartereau, M.; Lemettre, A.; Othman, H.; Gaysinski, M.; Abdelkafi-Koubaa, Z.; Souid, S.; Marrakchi, N.; et al. AaTs-1: A Tetrapeptide from Androctonus australis Scorpion Venom, Inhibiting U87 Glioblastoma Cells Proliferation by p53 and FPRL-1 Up-Regulations. Molecules 2021, 26, 7610. Available online: https://www.mdpi.com/1406366 (accessed on 27 June 2022). [CrossRef]
- King, J.V.L.; Emrick, J.J.; Kelly, M.J.S.; Herzig, V.; King, G.F.; Medzihradszky, K.F.; Julius, D. A Cell-Penetrating Scorpion Toxin Enables Mode-Specific Modulation of TRPA1 and Pain. Cell 2019, 178, 1362–1374.e16. [Google Scholar] [CrossRef]
- Hakim, M.A.; Jiang, W.; Luo, L.; Li, B.; Yang, S.; Song, Y.; Lai, R. Scorpion Toxin, BmP01, Induces Pain by Targeting TRPV1 Channel. Toxins 2015, 7, 3671–3687. Available online: https://www.mdpi.com/2072-6651/7/9/3671/htm (accessed on 5 June 2022). [CrossRef] [Green Version]
- Stock, L.; Souza, C.; Treptow, W. Structural Basis for Activation of Voltage-Gated Cation Channels. Biochemistry 2013, 52, 1501–1513. [Google Scholar] [CrossRef]
- Carbone, E.; Mori, Y. Ion channelopathies to bridge molecular lesions, channel function, and clinical therapies. Pflugers Arch. 2020, 472, 733–738. [Google Scholar] [CrossRef]
- Pless, S.A.; Ahern, C.A. Introduction: Applying Chemical Biology to Ion Channels. Adv. Exp. Med. Biol. 2015, 869, 1–4. Available online: https://pubmed.ncbi.nlm.nih.gov/26381937/ (accessed on 2 June 2022). [PubMed]
- Zhao, Y.; Chen, Z.; Cao, Z.; Li, W.; Wu, Y. Diverse Structural Features of Potassium Channels Characterized by Scorpion Toxins as Molecular Probes. Molecules 2019, 24, 2045. [Google Scholar] [CrossRef] [Green Version]
- Morales-Lázaro, S.L.; Hernández-García, E.; Serrano-Flores, B.; Rosenbaum, T. Organic toxins as tools to understand ion channel mechanisms and structure. Curr. Top. Med. Chem. 2015, 15, 581–603. [Google Scholar] [CrossRef]
- Van Theemsche, K.M.; Van de Sande, D.V.; Snyders, D.J.; Labro, A.J. Hydrophobic Drug/Toxin Binding Sites in Voltage-Dependent K+ and Na+ Channels. Front. Pharmacol. 2020, 11. Available online: https://www.frontiersin.org/articles/10.3389/fphar.2020.00735/full (accessed on 29 June 2022). [CrossRef] [PubMed]
- Vargas, E.; Yarov-Yarovoy, V.; Khalili-Araghi, F.; Catterall, W.A.; Klein, M.L.; Tarek, M.; Lindahl, E.; Schulten, K.; Perozo, E.; Bezanilla, F.; et al. An emerging consensus on voltage-dependent gating from computational modeling and molecular dynamics simulations. J. Gen. Physiol. 2012, 140, 587–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catterall, W.A.; Swanson, T.M. Structural Basis for Pharmacology of Voltage-Gated Sodium and Calcium Channels. Mol. Pharmacol. 2015, 88, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Malik, C.; Ghosh, S. A mutation in the S6 segment of the KvAP channel changes the secondary structure and alters ion channel activity in a lipid bilayer membrane. Amino Acids 2022, 54, 1461–1475. [Google Scholar] [CrossRef] [PubMed]
- Bezanilla, F. How membrane proteins sense voltage. Nat. Rev. Mol. Cell Biol. 2008, 9, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Blunck, R.; Batulan, Z. Mechanism of Electromechanical Coupling in Voltage-Gated Potassium Channels. Front. Pharmacol. 2012, 3, 166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catterall, W.A. Forty Years of Sodium Channels: Structure, Function, Pharmacology, and Epilepsy. Neurochem. Res. 2017, 42, 2495–2504. [Google Scholar] [CrossRef]
- Kuang, Q.; Purhonen, P.; Hebert, H. Structure of potassium channels. Cell. Mol. Life Sci. 2015, 72, 3677–3693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choe, S. Potassium channel structures. Nat. Rev. Neurosci. 2002, 3, 2. Available online: https://www.nature.com/articles/nrn727 (accessed on 16 August 2022). [CrossRef] [PubMed]
- West, J.W.; Patton, D.; Scheuer, T.; Wang, Y.; Goldin, A.L.; Catterall, W. A cluster of hydrophobic amino acid residues required for fast Na(+)-channel inactivation. Proc. Natl. Acad. Sci. USA 1992, 89, 10910–10914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoshi, T.; Zagotta, W.N.; Aldrich, R.W. Biophysical and Molecular Mechanisms of Shaker Potassium Channel Inactivation. Science 1990, 250, 533–538. [Google Scholar] [CrossRef] [Green Version]
- Neumaier, F.; Dibué-Adjei, M.; Hescheler, J.; Schneider, T. Voltage-gated calcium channels: Determinants of channel function and modulation by inorganic cations. Prog. Neurobiol. 2015, 129, 1–36. [Google Scholar] [CrossRef]
- Catterall, W.A. Voltage-gated sodium channels at 60: Structure, function and pathophysiology. J. Physiol. 2012, 590, 2577–2589. [Google Scholar] [CrossRef]
- Capera, J.; Serrano-Novillo, C.; Navarro-Perez, M.; Cassinelli, S.; Felipe, A. The Potassium Channel Odyssey: Mechanisms of Traffic and Membrane Arrangement. Int. J. Mol. Sci. 2019, 20, 734. [Google Scholar] [CrossRef] [Green Version]
- Lal, D.; May, P.; Pérez-Palma, E.; Samocha, K.; Kosmicki, J.A.; Robinson, E.B.; Møller, R.; Krause, R.; Nürnberg, P.; Weckhuysen, S.; et al. Gene family information facilitates variant interpretation and identification of disease-associated genes in neurodevelopmental disorders. Genome Med. 2020, 12, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Savio-Galimberti, E.; Argenziano, M.; Antzelevitch, C. Cardiac Arrhythmias Related to Sodium Channel Dysfunction. Handb. Exp. Pharmacol. 2017, 246, 331–354. [Google Scholar] [CrossRef]
- Noreng, S.; Li, T.; Payandeh, J. Structural Pharmacology of Voltage-Gated Sodium Channels. J. Mol. Biol. 2021, 433, 166967. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, T.; Kaneko, Y.; Dharmawan, T.; Kurabayashi, M. Role of the voltage sensor module in Nav domain IV on fast inactivation in sodium channelopathies: The implication of closed-state inactivation. Channels 2019, 13, 331–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Díaz-García, A.; Varela, D. Voltage-Gated K+/Na+ Channels and Scorpion Venom Toxins in Cancer. Front. Pharmacol. 2020. [Google Scholar] [CrossRef]
- Kuzmenkov, A.I.; Grishin, E.V.; Vassilevski, A.A. Diversity of Potassium Channel Ligands: Focus on Scorpion Toxins. Biochemistry 2015, 80, 1764–1799. [Google Scholar] [CrossRef]
- Hibino, H.; Inanobe, A.; Furutani, K.; Murakami, S.; Findlay, I.; Kurachi, Y.; Yamamura, H.; Suzuki, Y.; Yamamura, H.; Asai, K.; et al. Inwardly Rectifying Potassium Channels: Their Structure, Function, and Physiological Roles. Physiol. Rev. 2010, 90, 291–366. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, S.A.N.; Bayliss, D.A.; Kim, D.; Lesage, F.; Plant, L.D.; Rajan, S. International Union of Pharmacology. LV. Nomenclature and Molecular Relationships of Two-P Potassium Channels. Pharmacol. Rev. 2005, 57, 527–540. [Google Scholar] [CrossRef] [Green Version]
- Wei, A.D.; Gutman, G.A.; Aldrich, R.; Chandy, K.G.; Grissmer, S.; Wulff, H. International Union of Pharmacology. LII. Nomenclature and Molecular Relationships of Calcium-Activated Potassium Channels. Pharmacol. Rev. 2005, 57, 463–472. [Google Scholar] [CrossRef] [Green Version]
- Salkoff, L.; Butler, A.; Ferreira, G.; Santi, C.; Wei, A. High-conductance potassium channels of the SLO family. Nat. Rev. Neurosci. 2006, 7, 921–931. [Google Scholar] [CrossRef]
- Ortiz, E.; Gurrola, G.B.; Schwartz, E.F.; Possani, L.D. Scorpion venom components as potential candidates for drug development. Toxicon 2015, 93, 125–135. [Google Scholar] [CrossRef]
- Kushner, J.; Ferrer, X.; Marx, S. Roles and Regulation of Voltage-gated Calcium Channels in Arrhythmias. J. Innov. Card. Rhythm Manag. 2019, 10, 3874–3880. [Google Scholar] [CrossRef]
- Antal, L.; Cancers, M.M.-C. 2019 Undefined. T-Type Calcium Channels in Cancer. Available online: https://www.mdpi.com/400524 (accessed on 18 August 2022).
- Nanou, E.; Catterall, W.A. Calcium Channels, Synaptic Plasticity, and Neuropsychiatric Disease. Neuron. 2018, 98, 466–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zamponi, G. Targeting voltage-gated calcium channels in neurological and psychiatric diseases. Nat. Rev. Drug Discov. 2015, 15, 19–34. [Google Scholar] [CrossRef] [PubMed]
- Catterall, W.A. Structure and Regulation of Voltage-Gated Ca2+ Channels. Annu. Rev. Cell Dev. Biol. 2000, 16, 521–555. [Google Scholar] [CrossRef]
- He, R.; Zhang, J.; Yu, Y.; Jizi, L.; Wang, W.; Li, M. New Insights Into Interactions of Presynaptic Calcium Channel Subtypes and SNARE Proteins in Neurotransmitter Release. Front. Mol. Neurosci. 2018, 11, 213. [Google Scholar] [CrossRef] [Green Version]
- Schneider, T.; Neumaier, F.; Hescheler, J.; Alpdogan, S. Cav2.3 R-type calcium channels: From its discovery to pathogenic de novo CACNA1E variants: A historical perspective. Pflugers Arch. 2020, 472, 811–816. [Google Scholar] [CrossRef]
- Jentsch, T.J.; Pusch, M. CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease. Physiol. Rev. 2018, 98, 1493–1590. [Google Scholar] [CrossRef] [PubMed]
- Gururaja Rao, S.; Patel, N.J.; Singh, H. Intracellular Chloride Channels: Novel Biomarkers in Diseases. Front. Physiol. Front. Media SA 2020, 11, 96. [Google Scholar] [CrossRef] [Green Version]
- Polipeptídeos de Toxina de Escorpião Como Agentes Terapêuticos: Uma Visão Geral: Ingenta Connect [Internet]. Available online: https://www.ingentaconnect.com/content/ben/ppl/2016/00000023/00000009/art00013 (accessed on 27 June 2022).
- Park, E.; Campbell, E.B.; MacKinnon, R. Structure of a CLC chloride ion channel by cryo-electron microscopy. Nature 2016, 541, 500–505. [Google Scholar] [CrossRef] [Green Version]
- Feng, L.; Campbell, E.B.; Hsiung, Y.; MacKinnon, R. Structure of a Eukaryotic CLC Transporter Defines an Intermediate State in the Transport Cycle. Science 2010, 330, 635–641. [Google Scholar] [CrossRef] [Green Version]
- Weinert, S.; Jabs, S.; Supanchart, C.; Schweizer, M.; Gimber, N.; Richter, M.; Rademann, J.; Stauber, T.; Kornak, U.; Jentsch, T.J. Lysosomal pathology and osteopetrosis upon loss of H+-driven lysosomal Cl- accumulation. Science 1979, 2010, 328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Slegtenhorst, M.A.; Tbassl, M.; Borsanil, G.; Wapenaar, M.C.; Ferrero, G.B.; de Concillls, L.; Rugarli, E.I.; Grillo, A.; Franco, B.; Zoghbl, H.; et al. A gene from the Xp22.3 region shares homology with voltage-gated chloride channels. Hum Mol Genet. 1994, 3. [Google Scholar] [CrossRef] [PubMed]
- Poët, M.; Kornak, U.; Schweizer, M.; Zdebik, A.A.; Scheel, O.; Hoelter, S.; Wurst, W.; Schmitt, A.; Fuhrmann, J.C.; Planells-Cases, R.; et al. Lysosomal storage disease upon disruption of the neuronal chloride transport protein ClC-6. Proc. Natl. Acad. Sci. USA 2006, 103, 13854–13859. [Google Scholar] [CrossRef] [Green Version]
- Wartosch, L.; Fuhrmann, J.C.; Schweizer, M.; Stauber, T.; Jentsch, T.J. Lysosomal degradation of endocytosed proteins depends on the chloride transport protein ClC-7. FASEB J. 2009, 23, 4056–4068. [Google Scholar] [CrossRef] [Green Version]
- Bose, S.; He, H.; Stauber, T. Neurodegeneration Upon Dysfunction of Endosomal/Lysosomal CLC Chloride Transporters. Front. Cell Dev. Biol. 2021, 9, 1–16. [Google Scholar] [CrossRef]
- Huang, J.-J.; Lin, J.B.; Chen, X.; Zhu, W. Identification of chloride intracellular channels as prognostic factors correlated with immune infiltration in hepatocellular carcinoma using bioinformatics analysis. Medicine 2021, 100, e27739. [Google Scholar] [CrossRef] [PubMed]
- Littler, D.R.; Harrop, S.J.; Goodchild, S.C.; Phang, J.M.; Mynott, A.V.; Jiang, L.; Valenzuela, S.M.; Mazzanti, M.; Brown, L.J.; Breit, S.N.; et al. The enigma of the CLIC proteins: Ion channels, redox proteins, enzymes, scaffolding proteins? FEBS Lett. 2010, 584, 2093–2101. [Google Scholar] [CrossRef] [Green Version]
- Kefauver, J.M.; Ward, A.B.; Patapoutian, A. Discoveries in structure and physiology of mechanically activated ion channels. Nature 2020, 587, 567–576. [Google Scholar] [CrossRef]
- Startek, J.B.; Boonen, B.; Talavera, K.; Meseguer, V. TRP Channels as Sensors of Chemically-Induced Changes in Cell Membrane Mechanical Properties. Int. J. Mol. Sci. 2019, 20, 371. [Google Scholar] [CrossRef] [Green Version]
- Nilius, B.; Owsianik, G. The transient receptor potential family of ion channels. Genome Biol. 2011, 12, 218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Physiology, Nociception—StatPearls—NCBI Bookshelf [Internet]. Available online: https://www.ncbi.nlm.nih.gov/books/NBK551562/ (accessed on 24 June 2022).
- Suo, Y.; Wang, Z.; Zubcevic, L.; Hsu, A.L.; He, Q.; Borgnia, M.J.; Ji, R.-R.; Lee, S.-Y. Structural Insights into Electrophile Irritant Sensing by the Human TRPA1 Channel. Neuron 2019, 105, 882–894.e5. [Google Scholar] [CrossRef] [PubMed]
- PDF Neurotoxinas escorpiônicas) que revisam sobre os canais iônicos: Uma bibliografia [Internet]. Available online: https://www.researchgate.net/publication/331043699_Neurotoxinas_escorpionicas_que_atuam_sobre_canais_ionicos_uma_revisao_bibliografica (accessed on 28 June 2022).
- Beraldo Neto, E.; de Freitas, L.A.; Pimenta, D.C.; Lebrun, I.; Nencioni, A.L.A. Tb1, a Neurotoxin from Tityus bahiensis Scorpion Venom, Induces Epileptic Seizures by Increasing Glutamate Release. Toxins 2020, 12, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cestèle, S.; Catterall, W.A. Molecular mechanisms of neurotoxin action on voltage-gated sodium channels. Biochimie 2000, 82, 883–892. [Google Scholar] [CrossRef] [PubMed]
- Kalia, J.; Milescu, M.; Salvatierra, J.; Wagner, J.; Klint, J.K.; King, G.F.; Olivera, B.M.; Bosmans, F. From Foe to Friend: Using Animal Toxins to Investigate Ion Channel Function. J. Mol. Biol. 2015, 427, 158–175. [Google Scholar] [CrossRef] [Green Version]
- de la Vega, R.C.R.; Possani, L.D. Novel paradigms on scorpion toxins that affects the activating mechanism of sodium channels. Toxicon. 2007, 49, 171–180. [Google Scholar] [CrossRef]
- Fabrichny, I.P.; Mondielli, G.; Conrod, S.; Martin-Eauclaire, M.-F.; Bourne, Y.; Marchot, P. Structural Insights into Antibody Sequestering and Neutralizing of Na+ Channel α-Type Modulator from Old World Scorpion Venom. J. Biol. Chem. 2012, 287, 14136–14148. [Google Scholar] [CrossRef] [Green Version]
- Chippaux, J.-P. Emerging options for the management of scorpion stings. Drug Des. Dev. Ther. 2012, 6, 165–173. [Google Scholar] [CrossRef] [Green Version]
- Nencioni, A.L.A.; Neto, E.B.; de Freitas, L.A.; Dorce, V.A.C. Effects of Brazilian scorpion venoms on the central nervous system. Centro de Estudos de Venenos e Animais Peçonhentos (CEVAP/UNESP). J. Venom. Anim. Toxins Incl. Trop. Dis. 2018, 24. Available online: http://www.scielo.br/j/jvatitd/a/j3xFRs78jbh7rQ43NNg4bfK/?lang=en (accessed on 27 June 2022). [CrossRef] [Green Version]
- Beraldo-Neto, E.; Lebrun, I.; Nencioni, A.L.A. Dopaminergic metabolism is affected by intracerebral injection of Tb II-I isolated from Tityus bahiensis scorpion venom. Toxicon X 2022, 15, 100126. [Google Scholar] [CrossRef]
- Cid-Uribe, J.I.; Veytia-Bucheli, J.I.; Romero-Gutierrez, T.; Ortiz, E.; Possani, L.D. Scorpion venomics: A 2019 overview. Expert Rev. Proteom. 2019, 17, 67–83. [Google Scholar] [CrossRef] [PubMed]
- Kopeyan, C.; Martinez, G.; Lissitzky, S.; Miranda, F.; Rochat, H. Disulfide Bonds of Toxin II of the Scorpion Androctonus australis Hector. JBIC J. Biol. Inorg. Chem. 1974, 47, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Darbon, H.; Zlotkin, E.; Kopeyan, C.; Rietschoten, J.; Rochat, H. Covalent structure of the insect toxin of the North African scorpion Androctonus australis Hector. Int. J. Pept. Protein Res. 2009, 20, 320–330. [Google Scholar] [CrossRef]
- Gurevitz, M. Mapping of scorpion toxin receptor sites at voltage-gated sodium channels. Toxicon 2012, 60, 502–511. [Google Scholar] [CrossRef]
- Martin-Eauclaire, M.-F.; Adi-Bessalem, S.; Hammoudi-Triki, D.; Laraba-Djebari, F.; Bougis, P.E. Serotherapy against Voltage-Gated Sodium Channel-Targeting α-Toxins from Androctonus Scorpion Venom. Toxins 2019, 11, 63. [Google Scholar] [CrossRef] [Green Version]
- Bowman, A.; Fitzgerald, C.; Pummill, J.F.; Rhoads, D.D.; Yamashita, T. Reduced toxicity of centruroides vittatus (Say, 1821) may result from lowered sodium β toxin gene expression and toxin protein production. Toxins 2021, 13, 828. [Google Scholar] [CrossRef]
- Romero-Imbachi, M.R.; Cupitra, N.; Ángel, K.; González, B.; Estrada, O.; Calderón, J.C.; Guerrero-Vargas, J.; Beltrán, J.; Narvaez-Sanchez, R. Centruroides margaritatus scorpion complete venom exerts cardiovascular effects through alpha-1 adrenergic receptors. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2021, 240, 108939. [Google Scholar] [CrossRef]
- González-Santillán, E.; Possani, L.D. North American scorpion species of public health importance with a reappraisal of historical epidemiology. Acta Trop. 2018, 187, 264–274. [Google Scholar] [CrossRef] [PubMed]
- Rowe, A.H.; Xiao, Y.; Scales, J.; Linse, K.D.; Rowe, M.P.; Cummins, T.R.; Zakon, H.H. Isolation and Characterization of CvIV4: A Pain Inducing α- Scorpion Toxin. PLoS ONE 2011, 6, e23520. [Google Scholar] [CrossRef]
- Campos, F.V.; Chanda, B.; Beirão, P.S.L.; Bezanilla, F. β-Scorpion Toxin Modifies Gating Transitions in All Four Voltage Sensors of the Sodium Channel. J. Gen. Physiol. 2007, 130, 257. [Google Scholar] [CrossRef] [Green Version]
- Dufton, M.J.; Rochat, H. Classification of scorpion toxins according to amino acid composition and sequence. J. Mol. Evol. 1984, 20, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Cologna, C.T.; Marcussi, S.; Giglio, J.R.; Soares, A.; Arantes, E.C. Tityus serrulatus scorpion venom and toxins: An overview. Protein Pept. Lett. 2009, 16, 920–932. [Google Scholar] [CrossRef] [PubMed]
- Leipold, E.; Borges, A.; Heinemann, S.H. Scorpion β-toxin interference with NaV channel voltage sensor gives rise to excitatory and depressant modes. J. Gen. Physiol. 2012, 139, 305–319. [Google Scholar] [CrossRef] [Green Version]
- Martin-Eauclaire, M.F.; Céard, B.; Ribeiro, A.M.; Diniz, C.R.; Rochat, H.; Bougis, P.E. Molecular cloning and nucleotide sequence analysis of a cDNA encoding the main β-neurotoxin from the venom of the South American scorpion Tityus serrulatus. FEBS Lett. 1992, 302, 220–222. [Google Scholar] [CrossRef] [Green Version]
- Vasconcelos, F.; Lanchote, V.L.; Bendhack, L.M.; Giglio, J.R.; Sampaio, S.V.; Arantes, E.C. Effects of voltage-gated Na+ channel toxins from Tityus serrulatus venom on rat arterial blood pressure and plasma catecholamines. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2005, 141, 85–92. [Google Scholar] [CrossRef]
- Chandy, K.G.; Wulff, H.; Beeton, C.; Pennington, M.; Gutman, G.A.; Cahalan, M.D. K+ channels as targets for specific immunomodulation. Trends Pharmacol. Sci. 2004, 25, 280–289. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Chung, S.-H. Computational Studies of Venom Peptides Targeting Potassium Channels. Toxins 2015, 7, 5194–5211. [Google Scholar] [CrossRef] [Green Version]
- Gunay, B.C.; Yurtsever, M.; Durdagi, S. Elucidation of interaction mechanism of hERG1 potassium channel with scorpion toxins BeKm-1 and BmTx3b. J. Mol. Graph. Model. 2019, 96, 107504. [Google Scholar] [CrossRef]
- Valdivia, H.H.; Kirby, M.S.; Lederer, W.J.; Coronado, R. Scorpion toxins targeted against the sarcoplasmic reticulum Ca(2+)-release channel of skeletal and cardiac muscle. Proc. Natl. Acad. Sci. USA 1992, 89, 12185–12189. [Google Scholar] [CrossRef] [Green Version]
- Cooper, D.; Dimri, M. Biochemistry, Calcium Channels; StatPearls—United States Publisher: Treasure Island, FL, USA, 2022. [Google Scholar]
- Ahmadi, S.; Knerr, J.M.; Argemi, L.; Bordon, K.C.F.; Pucca, M.B.; Cerni, F.A. Scorpion Venom: Detriments and Benefits. Biomedicines 2020, 8, 118. Available online: https://www.mdpi.com/2227-9059/8/5/118/pdf?version=1590651923 (accessed on 28 June 2022). [CrossRef] [PubMed]
- De Oliveira-Mendes, B.B.R.; Horta, C.C.R.; do Carmo, A.O.; Biscoto, G.L.; Sales-Medina, D.F.; Leal, H.G.; Brandão-Dias, P.F.P.; Miranda, S.E.M.; Aguiar, C.J.; Cardoso, V.N.; et al. CPP-Ts: A new intracellular calcium channel modulator and a promising tool for drug delivery in cancer cells. Sci. Rep. 2018, 8, 14739. Available online: https://www.nature.com/articles/s41598-018-33133-3 (accessed on 18 August 2022). [CrossRef] [Green Version]
- Seo, I.R.; Kang, D.E.; Song, D.W.; Kim, D.H. Both basic and acidic amino acid residues of IpTx(a) are involved in triggering substate of RyR1. J. Biomed. Biotechnol. 2011, 2011, 386384. Available online: https://pubmed.ncbi.nlm.nih.gov/22007141/ (accessed on 27 June 2022). [CrossRef] [PubMed] [Green Version]
- Moslah, W.; Aissaoui-Zid, D.; Aboudou, S.; Abdelkafi-Koubaa, Z.; Potier-Cartereau, M.; Lemettre, A.; Elbini-Dhouib, I.; Marrakchi, N.; Gigmes, D.; Vandier, C.; et al. Strengthening Anti-Glioblastoma Effect by Multi-Branched Dendrimers Design of a Scorpion Venom Tetrapeptide. Molecules 2022, 27, 806. [Google Scholar] [CrossRef] [PubMed]
- Striessnig, J. NO-C Molecular, 2015 Undefined. Pharmacology of L-Type Calcium Channels: Novel Drugs for Old Targets? ingentaconnect.com [Internet]. 2015. Available online: https://www.ingentaconnect.com/content/ben/cmp/2015/00000008/00000002/art00003 (accessed on 6 June 2022).
- Sharma, G.; Braga, C.B.; Chen, K.-E.; Jia, X.; Ramanujam, V.; Collins, B.M.; Rittner, R.; Mobli, M. Structural basis for the binding of the cancer targeting scorpion toxin, ClTx, to the vascular endothelia growth factor receptor neuropilin-1. Curr. Res. Struct. Biol. 2021, 3, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Amalia Dueñas-Cuellar, R.; José Correia Santana, C.; Carolina Martins Magalhães, A.; Rodrigues Pires, O.; Fontes, W.; Castro, M.S. Scorpion toxins and ion channels: Potential applications in cancer therapy. Available online: https://www.mdpi.com/716776 (accessed on 5 June 2022).
- Dardevet, L.; Dipti, R.; Abd, T.; Aziz, E.; Bazin, I.; Sabatier, J.-M.; Fadl, M.; Brambilla, E.; De Waard, M. Clorotoxina: Um peptídeo de escorpião natural útil para diagnosticar glioma e combater a invasão de tumores. Toxins 2015, 7, 1079–1101. Available online: https://www.mdpi.com/94848 (accessed on 27 June 2022). [CrossRef] [PubMed]
- Gavva, N.R.; Bannon, A.W.; Hovland, D.N.; Lehto, S.G.; Klionsky, L.; Surapaneni, S.; Immke, D.C.; Henley, C.; Arik, L.; Bak, A.; et al. Repeated Administration of Vanilloid Receptor TRPV1 Antagonists Attenuates Hyperthermia Elicited by TRPV1 Blockade. Experiment 2007, 323, 128–137. [Google Scholar] [CrossRef] [Green Version]
- Jami, S.; Erickson, A.; Brierley, S. Toxins IV-, 2017 Undefined. Pain-Causing Venom Peptides: Insights into Sensory Neuron Pharmacology. Available online: https://www.mdpi.com/249068 (accessed on 5 June 2022).
- Geron, M.; Hazan, A.; Priel, A. Animal Toxins Providing Insights into TRPV1 Activation Mechanism. Toxins 2017, 9, 326. Available online: https://www.mdpi.com/2072-6651/9/10/326/htm (accessed on 5 June 2022). [CrossRef] [Green Version]
- Hwang, S.-M.; Jo, Y.-Y.; Cohen, C.F.; Kim, Y.-H.; Berta, T.; Park, C.-K. Venom Peptide Toxins Targeting the Outer Pore Region of Transient Receptor Potential Vanilloid 1 in Pain: Implications for Analgesic Drug Development. Int. J. Mol. Sci. 2022, 23, 5772. [Google Scholar] [CrossRef]
- Xu, Y.; Sun, J.; Liu, H.; Sun, J.; Yu, Y.; Su, Y.; Cui, Y.; Zhao, M.; Zhang, J. Scorpion Toxins Targeting Voltage-gated Sodium Channels Associated with Pain. Curr. Pharm. Biotechnol. 2018, 19, 848–855. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, S.; Zhu, Y.; Zhang, Z. MS-M, 2020 undefined. Scorpion Toxins from Buthus martensii Karsch (BmK) as Potential Therapeutic Agents for Neurological Disorders: State of the Art and Beyond. Available online: https://books.google.com.br/books?hl=pt-BR&lr=&id=4mwtEAAAQBAJ&oi=fnd&pg=PA133&dq=Scorpion+Toxins+from+Buthus+martensii+Karsch+(BmK)+as+Potential+Therapeutic+Agents+for+Neurological+Disorders:+State+of+the+Art+and+Beyond&ots=zyM9Qn9bM7&sig=ZAQ-c9Wr3wMcoV_hJbazsaNGgBw (accessed on 16 August 2022).
- Dehghan, Z.; Ayat, H.; Ahadi, A.M. Pharmaceutical AA-IJ of, 2020 undefined. Expression, purification and docking studies on IMe-AGAP, the first antitumor-analgesic like peptide from Iranian Scorpion. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7757975/ (accessed on 16 August 2022).
- Okada, M.; Ortiz, E. Therapeutic potential of viral vectors that express venom peptides for neurological diseases. Med. Hypotheses 2022, 161, 110809. [Google Scholar] [CrossRef]
- Deng, S.-Q.; Chen, J.-T.; Li, W.-W.; Chen, M.; Peng, H.-J. Application of the Scorpion Neurotoxin AaIT against Insect Pests. Int. J. Mol. Sci. 2019, 20, 3467. [Google Scholar] [CrossRef] [Green Version]
- Zlotkin, E. Scorpion Venoms. Comprehensive Molecular Insect Science; Elsevier: Amsterdam, The Netherlands, 2005; pp. 173–220. [Google Scholar]
- Saez, N.J.; Herzig, V. Versatile spider venom peptides and their medical and agricultural applications. Toxicon 2018, 158, 109–126. [Google Scholar] [CrossRef]
- Salgado, V.L. Selective actions of insecticides on desensitizing and non-desensitizing nicotinic acetylcholine receptors in cockroach (Periplaneta americana) neurons. Pest Manag. Sci. 2021, 77, 3663–3672. [Google Scholar] [CrossRef]
- Jin, L.; Fang, M.; Chen, M.; Zhou, C.; Ombati, R.; Hakim, A.; Mo, G.; Lai, R.; Yan, X.; Wang, Y.; et al. An insecticidal toxin from Nephila clavata spider venom. Amino Acids 2017, 49, 1237–1245. [Google Scholar] [CrossRef] [PubMed]
- Titaux-Delgado, G.; Carrillo, E.; Mendoza, A.; Mayorga-Flores, M.; Escobedo-González, F.C.; Cano-Sánchez, P.; López-Vera, E.; Corzo, G.; Del Rio-Portilla, F. Successful refolding and NMR structure of rMagi3: A disulfide-rich insecticidal spider toxin. Protein Sci. 2017, 27, 692–701. [Google Scholar] [CrossRef] [PubMed]
- Fakih, T.M. Computational Study of Scorpion Venom (Lychas Mucronatus) Activity as Antimicrobial Peptides (AMPs) to the SARS-CoV-2 Main Protease for the Future Coronavirus Disease (COVID-19) Inhibitors. Molekul 2021, 16, 125–136. Available online: https://ojs.jmolekul.com/ojs/index.php/jm/article/view/715 (accessed on 29 June 2022). [CrossRef]
Animal | Peptide | Effect | Mechanism of Action | Binding Site | References | |
---|---|---|---|---|---|---|
Sodium channel | Leiurus quinquestriatus hebraeus | Lqh2 | Blocks neuronal transmission | Blocks inactivation of activated channels | Site 3 | [23] |
LqhaIT | Delays inactivation | Prevents external voltage sensor movement | Site 3 | [24] | ||
Lqh3 | Blocks neuronal transmission | Inhibits the inactivation of activated channels | Site 3 | [25] | ||
Centruroïdes noxius | Cn2 | Cell cycle arrest | Reduction of peak amplitude | Site 3—Nav 1.6 | [26] | |
Buthus martensii karsch | BmK AGAP | Cell cycle arrest in the G1 phase | Inhibits Nav 1.5 mRNA expression | Site 3 Nav 1.5 | [27] | |
Tityus serrulatus | Ts1 | Lowers action potential threshold | Holds voltage sensor in the outermost position | Site 4—Nav 1.3 to Nav 1.6 | [28,29] | |
Potassium channel | Vaejovis mexicanus smithi | Vm24 (α-KTx 23.1) | Prevents neurological symptoms | Blocks hKv1.3/KCNA3 potassium channels of human T lymphocytes | hKv1.3 | [30,31] |
Buthus martensii Karsch | BmK86-P1 | - | - | Kv1.2 | [32] | |
Leiurus quinquestriatus | charybdotoxin (CTX) | - | Bimolecular inhibition process | Outside of the pore | [33] | |
Centruroides margaritatus | CMERG1 | Repolarization of the cardiac muscle action potential | Blocks Kv11.1 channel | Human ether-à-go-go-Related gene (hERG1) | [34] | |
Calcium channel | Pandinus imperator | Imperatoxin A (IpTxa) | Induction of opening or its inhibition | Ryanodine receptor types 1, 2, and 3 | [35] | |
Maurus palmatus | Maurocalcine (MCa) | Release of Ca2+ in sarcoplasmic reticulum | Stabilizes ryanodine 1 receptor opening—long-lasting subconductance state | Ryanodine receptor type 1 (RyR1) | [36] | |
Hadrurus gertschi | Hadrucalcin (HdCa) | Release of Ca2+ in sarcoplasmic reticulum | Stabilizes ryanodine 1 receptor opening—long-lasting subconductance state | Ryanodine receptor type 1 (RyR1) | [37] | |
Hemiscorpius lepturus | Hemicalcin (HCa) | Release of Ca2+ in sarcoplasmic reticulum | Stabilizes ryanodine 1 receptor opening—long-lasting subconductance state | Ryanodine receptor type 1 (RyR1) | [38] | |
Parabuthus granulatus | Kurtoxin | Prevents fertilization in the egg | Impedes the acrosome reaction | Inhibits the voltage-dependent T-type | [39] | |
Chloride channel | Leiurus quinquestriatus | chlorotoxin (ClTx) | Inhibits proliferation of glioma cells | Inhibits the influx of chlorine | - | [40] |
Androctonus australis | AaTs-1 | Increase in P53 expression | Via MAPK—alters cytosolic calcium concentration | - | [41] | |
Transient receptor potential vanilloid 1 channel (TRPV1) | Urodacus manicatus | WaTx | Pain and hypersensitivity | Prolongs channel opening—neuronal depolarization | Across the plasma membrane | [42] |
Mesobuthus martensii | BmP01 | Induces pain | Prolongs channel opening—neuronal depolarization | Across the plasma membrane | [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendes, L.C.; Viana, G.M.M.; Nencioni, A.L.A.; Pimenta, D.C.; Beraldo-Neto, E. Scorpion Peptides and Ion Channels: An Insightful Review of Mechanisms and Drug Development. Toxins 2023, 15, 238. https://doi.org/10.3390/toxins15040238
Mendes LC, Viana GMM, Nencioni ALA, Pimenta DC, Beraldo-Neto E. Scorpion Peptides and Ion Channels: An Insightful Review of Mechanisms and Drug Development. Toxins. 2023; 15(4):238. https://doi.org/10.3390/toxins15040238
Chicago/Turabian StyleMendes, Lais Campelo, Gabriela Magnólia Melo Viana, Ana Leonor Abrahão Nencioni, Daniel Carvalho Pimenta, and Emidio Beraldo-Neto. 2023. "Scorpion Peptides and Ion Channels: An Insightful Review of Mechanisms and Drug Development" Toxins 15, no. 4: 238. https://doi.org/10.3390/toxins15040238
APA StyleMendes, L. C., Viana, G. M. M., Nencioni, A. L. A., Pimenta, D. C., & Beraldo-Neto, E. (2023). Scorpion Peptides and Ion Channels: An Insightful Review of Mechanisms and Drug Development. Toxins, 15(4), 238. https://doi.org/10.3390/toxins15040238