The Bright and Dark Sides of Herbal Infusions: Assessment of Antioxidant Capacity and Determination of Tropane Alkaloids
Abstract
:1. Introduction
2. Results and Discussion
2.1. Development and Validation of an Analytical Method for the Determination of TAs
2.1.1. Optimization of Extraction Procedure Conditions
2.1.2. Validation of Analytical Method
Linearity and Sensitivity
Trueness and Precision
Specificity
Matrix Effect
2.2. Tropane Alkaloids in Commercial Samples of Herbal Infusions
2.3. Antioxidant Capacity
3. Conclusions
4. Materials and Methods
4.1. Samples and Sampling Procedure
4.2. Determination of Tropane Alkaloids
4.2.1. Chemicals and Reagents
4.2.2. Preparation of Standard Solutions
4.2.3. Extraction Procedure
4.2.4. UHPLC–ToF-MS Parameters
4.2.5. Identification of Tropane Alkaloids
4.2.6. Validation of the UHPLC-ToF-MS Method
Spiking Experiments
Matrix Effect
4.3. Determination of Antioxidant Capacity
4.3.1. Preparation of Herbal Infusions
4.3.2. DPPH Radical Scavenging Assay
4.3.3. β-Carotene Bleaching Assay
4.3.4. Total Phenolic Content (TPC)
4.3.5. Total Flavonoid Content (TFC)
4.3.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Talib, W.H.; AL-Ataby, I.A.; Ismail Mahmod, A.; Jawarneh, S.; al Kury, L.T.; AL-Yasari, I.H. The Impact of Herbal Infusion Consumption on Oxidative Stress and Cancer: The Good, the Bad, the Misunderstood. Molecules 2020, 25, 4207. [Google Scholar] [CrossRef] [PubMed]
- Kogiannou, D.A.A.; Kalogeropoulos, N.; Kefalas, P.; Polissiou, M.G.; Kaliora, A.C. Herbal Infusions; Their Phenolic Profile, Antioxidant and Anti-Inflammatory Effects in HT29 and PC3 Cells. Food Chem. Toxicol. 2013, 61, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Farzaneh, V.; Carvalho, I.S. A Review of the Health Benefit Potentials of Herbal Plant Infusions and Their Mechanism of Actions. Ind. Crop. Prod. 2015, 65, 247–258. [Google Scholar] [CrossRef]
- Chandrasekara, A.; Shahidi, F. Herbal Beverages: Bioactive Compounds and Their Role in Disease Risk Reduction—A Review. J. Tradit. Complement. Med. 2018, 8, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Poswal, F.S.; Russell, G.; Mackonochie, M.; MacLennan, E.; Adukwu, E.C.; Rolfe, V. Herbal Teas and Their Health Benefits: A Scoping Review. Plant Foods Hum. Nutr. 2019, 74, 266–276. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Mukhtar, H. Tea Polyphenols in Promotion of Human Health. Nutrients 2019, 11, 39. [Google Scholar] [CrossRef] [Green Version]
- Dou, Q.P. Tea in Health and Disease. Nutrients 2019, 11, 929. [Google Scholar] [CrossRef] [Green Version]
- Keller, A.; Wallace, T.C. Tea Intake and Cardiovascular Disease: An Umbrella Review. Ann. Med. 2021, 53, 929–944. [Google Scholar] [CrossRef]
- Finimundy, T.C.; Pereira, C.; Dias, M.I.; Caleja, C.; Calhelha, R.C.; Sokovic, M.; Stojković, D.; Carvalho, A.M.; Rosa, E.; Barros, L.; et al. Infusions of Herbal Blends as Promising Sources of Phenolic Compounds and Bioactive Properties. Molecules 2020, 25, 2151. [Google Scholar] [CrossRef]
- Studzińska-Sroka, E.; Galanty, A.; Gościniak, A.; Wieczorek, M.; Kłaput, M.; Dudek-Makuch, M.; Cielecka-Piontek, J. Herbal Infusions as a Valuable Functional Food. Nutrients 2021, 13, 4051. [Google Scholar] [CrossRef]
- de Oliveira, L.M.; Das, S.; da Silva, E.B.; Gao, P.; Gress, J.; Liu, Y.; Ma, L.Q. Metal Concentrations in Traditional and Herbal Teas and Their Potential Risks to Human Health. Sci. Total Environ. 2018, 633, 649–657. [Google Scholar] [CrossRef] [PubMed]
- Caldeirão, L.; Sousa, J.; Nunes, L.C.G.; Godoy, H.T.; Fernandes, J.O.; Cunha, S.C. Herbs and Herbal Infusions: Determination of Natural Contaminants (Mycotoxins and Trace Elements) and Evaluation of Their Exposure. Food Res. Int. 2021, 144, 110322. [Google Scholar] [CrossRef]
- Ng, S.W.; Ching, C.K.; Chan, A.Y.W.; Mak, T.W.L. Simultaneous Detection of 22 Toxic Plant Alkaloids (Aconitum Alkaloids, Solanaceous Tropane Alkaloids, Sophora Alkaloids, Strychnos Alkaloids and Colchicine) in Human Urine and Herbal Samples Using Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. B. Anal. Technol. Biomed. Life Sci. 2013, 942–943, 63–69. [Google Scholar] [CrossRef]
- Beneta, A.; Mutavdžić Pavlović, D.; Periša, I.; Petrović, M. Multiresidue GC-MS/MS Pesticide Analysis for Evaluation of Tea and Herbal Infusion Safety. Int. J. Environ. Anal. Chem. 2018, 98, 987–1004. [Google Scholar] [CrossRef]
- Knutsen, H.K.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Grasl-Kraupp, B.; Hogstrand, C.; et al. Risks to Human and Animal Health Related to the Presence of Moniliformin in Food and Feed. EFSA J. 2018, 16, e05242. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EU) 2020/2040 of 11 December 2020 Amending Regulation (EC) No 1881/2006 as Regard Maximum Levels of Pyrrolizidine Alkaloids in Certain Foodstuffs. Off. J. Eur. Union 2020, 420, 1–5. [CrossRef]
- González-Gómez, L.; Morante-Zarcero, S.; Pérez-Quintanilla, D.; Sierra, I. Occurrence and Chemistry of Tropane Alkaloids in Foods, with a Focus on Sample Analysis Methods: A Review on Recent Trends and Technological Advances. Foods 2022, 11, 407. [Google Scholar] [CrossRef]
- Dusemund, B.; Schaefer, B.; Lampen, A. Plant Alkaloids. In Encyclopedia of Food Chemistry; Elsevier: Amsterdam, The Netherlands, 2018; pp. 344–347. ISBN 9780128140451. [Google Scholar]
- Martinello, M.; Borin, A.; Stella, R.; Bovo, D.; Biancotto, G.; Gallina, A.; Mutinelli, F. Development and Validation of a QuEChERS Method Coupled to Liquid Chromatography and High Resolution Mass Spectrometry to Determine Pyrrolizidine and Tropane Alkaloids in Honey. Food Chem. 2017, 234, 295–302. [Google Scholar] [CrossRef]
- Kohnen-Johannsen, K.; Kayser, O. Tropane Alkaloids: Chemistry, Pharmacology, Biosynthesis and Production. Molecules 2019, 24, 796. [Google Scholar] [CrossRef] [Green Version]
- Chan, T.Y.K. Worldwide Occurrence and Investigations of Contamination of Herbal Medicines by Tropane Alkaloids. Toxins 2017, 9, 284. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, M.M.; Barreto, D.N.; Petruci, J.F.D.S.; Richter, E.M. Simultaneous Determination of Scopolamine and Butylscopolamine in Pharmaceutical and Beverage Samples by Capillary Zone Electrophoresis. Microchem. J. 2022, 172, 106985. [Google Scholar] [CrossRef]
- EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain). Scientific Opinion on Tropane Alkaloids in Food and Feed. EFSA J. 2013, 11, 3386. [Google Scholar] [CrossRef]
- Adamse, P.; van Egmond, H.P.; Noordam, M.Y.; Mulder, P.P.J.; de Nijs, M. Tropane Alkaloids in Food: Poisoning Incidents. Qual. Assur. Saf. Crop. Foods 2014, 6, 15–24. [Google Scholar] [CrossRef]
- Arcella, D.; Altieri, A. Human Acute Exposure Assessment to Tropane Alkaloids. EFSA J. 2018, 16, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Jank, B.; Rath, J. Emerging Tropane Alkaloid Contaminations under Climate Change. Trends Plant. Sci. 2021, 26, 1101–1103. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EU) 2021/1408 of 27 August 2021 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels of Tropane Alkaloids in Certain Foodstuffs. Off. J. Eur. Union 2021, 3014, 1–4. [Google Scholar]
- RASFF Window Notification 2020.4733—Tropane Alkaloids in Peppermint from Turkey. Available online: https://webgate.ec.europa.eu/rasff-window/screen/notification/448032 (accessed on 2 December 2022).
- González-Gómez, L.; Gañán, J.; Morante-Zarcero, S.; Pérez-Quintanilla, D.; Sierra, I. Atropine and Scopolamine Occurrence in Spices and Fennel Infusions. Food Control 2022, 146, 109555. [Google Scholar] [CrossRef]
- León, N.; Miralles, P.; Yusà, V.; Coscollà, C. A Green Analytical Method for the Simultaneous Determination of 30 Tropane and Pyrrolizidine Alkaloids and Their N-Oxides in Teas and Herbs for Infusions by LC-Q-Orbitrap HRMS. J. Chromatogr. A 2022, 1666, 462835. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, C.; Cubero-Leon, E.; Stroka, J. Determination of Tropane Alkaloids in Cereals, Tea and Herbal Infusions: Exploiting Proficiency Testing Data as a Basis to Derive Interlaboratory Performance Characteristics of an Improved LC-MS/MS Method. Food Chem. 2020, 331, 127260. [Google Scholar] [CrossRef] [PubMed]
- Dzuman, Z.; Jonatova, P.; Stranska-Zachariasova, M.; Prusova, N.; Brabenec, O.; Novakova, A.; Fenclova, M.; Hajslova, J. Development of a New LC-MS Method for Accurate and Sensitive Determination of 33 Pyrrolizidine and 21 Tropane Alkaloids in Plant-Based Food Matrices. Anal. Bioanal. Chem. 2020, 412, 7155–7167. [Google Scholar] [CrossRef]
- Cirlini, M.; Cappucci, V.; Galaverna, G.; Dall’Asta, C.; Bruni, R. A Sensitive UHPLC-ESI-MS/MS Method for the Determination of Tropane Alkaloids in Herbal Teas and Extracts. Food Control 2019, 105, 285–291. [Google Scholar] [CrossRef]
- Romera-Torres, A.; Romero-González, R.; Martínez Vidal, J.L.; Garrido Frenich, A. Simultaneous Analysis of Tropane Alkaloids in Teas and Herbal Teas by Liquid Chromatography Coupled to High-Resolution Mass Spectrometry (Orbitrap). J. Sep. Sci. 2018, 41, 1938–1946. [Google Scholar] [CrossRef] [PubMed]
- González-Gómez, L.; Pereira, J.A.M.; Morante-Zarcero, S.; Câmara, J.S.; Sierra, I. Green Extraction Approach Based on ΜSPEed® Followed by HPLC-MS/MS for the Determination of Atropine and Scopolamine in Tea and Herbal Tea Infusions. Food Chem. 2022, 394, 133512. [Google Scholar] [CrossRef] [PubMed]
- López-Lorente, Á.I.; Pena-Pereira, F.; Pedersen-Bjergaard, S.; Zuin, V.G.; Ozkan, S.A.; Psillakis, E. The Ten Principles of Green Sample Preparation. TrAC Trends Anal. Chem. 2022, 148, 116530. [Google Scholar] [CrossRef]
- Perestrelo, R.; Silva, P.; Porto-Figueira, P.; Pereira, J.A.M.; Silva, C.; Medina, S.; Câmara, J.S. QuEChERS—Fundamentals, Relevant Improvements, Applications and Future Trends. Anal. Chim. Acta 2019, 1070, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Baslé, Q.; Mujahid, C.; Bessaire, T. Application of a Streamlined LC-MS/MS Methodology for the Determination of Atropine and Scopolamine in Cereals from Asian and African Countries. Food Addit. Contam. Part A 2020, 37, 1744–1754. [Google Scholar] [CrossRef]
- González-Gómez, L.; Morante-Zarcero, S.; Pereira, J.A.M.; Câmara, J.S.; Sierra, I. Improved Analytical Approach for Determination of Tropane Alkaloids in Leafy Vegetables Based on Μ-QuEChERS Combined with HPLC-MS/MS. Toxins 2022, 14, 650. [Google Scholar] [CrossRef]
- Commission of the European Communities. Commission Decision of 12 August 2022 Implementing Council Directive 96/23/EC Concerning the Performance of Analytical Methods and the Interpretation of Results. Off. J. Eur. Communities 2002, 221, 8–36. [Google Scholar]
- European Commission. Commission Recommendation (EU) 2015/976 of June 2015 on the Monitoring of the Presence of Tropane Alkaloids in Food. Off. J. Eur. Union 2015, 157, 97–98. [Google Scholar]
- European Commission. Commission Regulation (EC) No 401/2006 of 23 February 2006 Laying down the Methods of Sampling and Analysis for the Official Control of the Levels of Mycotoxins in Foodstuffs. Off. J. Eur. Union 2006, 70, 12–34. [Google Scholar]
- Mulder, P.P.J.; de Nijs, M.; Castellari, M.; Hortos, M.; MacDonald, S.; Crews, C.; Hajslova, J.; Stranska, M. Occurrence of Tropane Alkaloids in Food. EFSA Support. Publ. 2016, 13, 1140E. [Google Scholar] [CrossRef]
- Zhao, C.-N.; Tang, G.-Y.; Cao, S.-Y.; Xu, X.-Y.; Gan, R.-Y.; Liu, Q.; Mao, Q.-Q.; Shang, A.; Li, H.-B. Phenolic Profiles and Antioxidant Activities of 30 Tea Infusions from Green, Black, Oolong, White, Yellow and Dark Teas. Antioxidants 2019, 8, 215. [Google Scholar] [CrossRef] [Green Version]
- Chou, O.; Ali, A.; Subbiah, V.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. Lc-Esi-Qtof-Ms/Ms Characterisation of Phenolics in Herbal Tea Infusion and Their Antioxidant Potential. Fermentation 2021, 7, 73. [Google Scholar] [CrossRef]
- Rzasa-Duran, E.; Kryczyk-Poprawa, A.; Drabicki, D.; Podkowa, A.; Sułkowska-Ziaja, K.; Szewczyk, A.; Kała, K.; Opoka, W.; Zięba, P.; Fidurski, M.; et al. Yerba Mate as a Source of Elements and Bioactive Compounds with Antioxidant Activity. Antioxidants 2022, 11, 371. [Google Scholar] [CrossRef] [PubMed]
- Boneza, M.M.; Niemeyer, E.D. Cultivar Affects the Phenolic Composition and Antioxidant Properties of Commercially Available Lemon Balm (Melissa officinalis L.) Varieties. Ind. Crop. Prod. 2018, 112, 783–789. [Google Scholar] [CrossRef]
- Robalo, J.; Lopes, M.; Cardoso, O.; Silva, A.S.; Ramos, F. Efficacy of Whey Protein Film Incorporated with Portuguese Green Tea (Camellia sinensis L.) Extract for the Preservation of Latin-Style Fresh Cheese. Foods 2022, 11, 1158. [Google Scholar] [CrossRef] [PubMed]
- Gorjanović, S.; Komes, D.; Pastor, F.T.; Belşçak-Cvitanović, A.; Pezo, L.; Heçimović, I.; Sužnjević, D. Antioxidant Capacity of Teas and Herbal Infusions: Polarographic Assessment. J. Agric. Food Chem. 2012, 60, 9573–9580. [Google Scholar] [CrossRef] [PubMed]
- ben Bakrim, W.; Aghraz, A.; Hriouch, F.; Larhsini, M.; Markouk, M.; Bekkouche, K.; Costa, R.; Arrigo, S.; Cicero, N.; Dugo, G. Phytochemical Study and Antioxidant Activity of the Most Used Medicinal and Aromatic Plants in Morocco. J. Essent. Oil Res. 2022, 34, 131–142. [Google Scholar] [CrossRef]
- Matuszewski, B.K.; Constanzer, M.L.; Chavez-Eng, C.M. Strategies for the Assessment of Matrix Effect in Quantitative Bioanalytical Methods Based on HPLC−MS/MS. Anal. Chem. 2003, 75, 3019–3030. [Google Scholar] [CrossRef]
- Marín-Sáez, J.; Romero-González, R.; Garrido Frenich, A. Multi-Analysis Determination of Tropane Alkaloids in Cereals and Solanaceaes Seeds by Liquid Chromatography Coupled to Single Stage Exactive-Orbitrap. J. Chromatogr. A 2017, 1518, 46–58. [Google Scholar] [CrossRef]
- Moure, A.; Franco, D.; Sineiro, J.; Domínguez, H.; Núez, M.J.; Lema, J.M. Antioxidant Activity of Extracts from Gevuina Avellana and Rosa Rubiginosa Defatted Seeds. Food Res. Int. 2001, 34, 103–109. [Google Scholar] [CrossRef]
- Andrade, M.A.; Ribeiro-Santos, R.; Costa Bonito, M.C.; Saraiva, M.; Sanches-Silva, A. Characterization of Rosemary and Thyme Extracts for Incorporation into a Whey Protein Based Film. LWT 2018, 92, 497–508. [Google Scholar] [CrossRef]
- Miller, H.E. A Simplified Method for the Evaluation of Antioxidants. J. Am. Oil Chem. Soc. 1971, 48, 91. [Google Scholar] [CrossRef]
- Erkan, N.; Ayranci, G.; Ayranci, E. Antioxidant Activities of Rosemary (Rosmarinus officinalis L.) Extract, Blackseed (Nigella sativa L.) Essential Oil, Carnosic Acid, Rosmarinic Acid and Sesamol. Food Chem. 2008, 110, 76–82. [Google Scholar] [CrossRef]
- Barbosa, C.H.; Andrade, M.A.; Séndon, R.; Silva, A.S.; Ramos, F.; Vilarinho, F.; Khwaldia, K.; Barbosa-Pereira, L. Industrial Fruits By-Products and Their Antioxidant Profile: Can They Be Exploited for Industrial Food Applications? Foods 2021, 10, 272. [Google Scholar] [CrossRef] [PubMed]
- Yoo, K.M.; Lee, C.H.; Lee, H.; Moon, B.K.; Lee, C.Y. Relative Antioxidant and Cytoprotective Activities of Common Herbs. Food Chem. 2008, 106, 929–936. [Google Scholar] [CrossRef]
Plant Toxins | Food Matrix | Extraction Procedure | Chromatographic System | LOQ (μg/kg) | Ref. |
---|---|---|---|---|---|
Atropine, scopolamine | Spices | SPE | HPLC-QqQ MS/MS | 1.9–9.4 | [29] |
TAs (atropine and scopolamine) and PAs (28 *) | Teas and herbs for infusions | QuEChERS | UHPLC-Q-Orbitrap MS/MS | 5 | [30] |
Atropine, scopolamine | Cereals, tea, and herbal infusions | SLE | HPLC-MS/MS | 1.2 | [31] |
TAs (21 *) and PAs (33 *) | Mixed herbal tea, sorghum, and oregano | SLE+ d-SPE | UHPLC-QTRAP MS/MS | 1–5 | [32] |
TAs (anisodamine, atropine, homatropine, scopolamine) | Herbal teas and infusions | SLE | UHPLC-QqQ-MS/MS | 0.5 | [33] |
TAs (13 compounds, including anisodamine, atropine, homatropine, and scopolamine) | Teas and herbal teas | SPE | UHPLC-Orbitrap MS/MS | 5–15 | [34] |
Toxin | Internal Standard | Linear Range | Calibration Curve Parameters | LOD | LOQ | SSE | ||
---|---|---|---|---|---|---|---|---|
(µg/kg) | r2 | Slope | Interception | (µg/kg) | (µg/kg) | (%) | ||
Atropine | Atropine-d5 | 5.0–50 | 0.9958 | 0.0104 | 0.0217 | 2.5 | 5 | 89.2 |
Scopolamine | Scopolamine 13C,d3 | 5.0–50 | 0.9976 | 0.0152 | 0.0176 | 2.5 | 5 | 105 |
Anisodamine | Scopolamine 13C,d3 | 15.0–50 | 0.9867 | 0.0139 | −0.1108 | 10 | 15 | 62.6 |
Homatropine | Atropine-d5 | 5.0–50 | 0.9930 | 0.0041 | 0.0188 | 2.5 | 5 | 64.6 |
Toxin | Ion | Retention Time (min) | Spiked Level (µg/kg) | Rec (%) | RSDr (%) | RSDR (%) |
---|---|---|---|---|---|---|
Atropine | [M + H]+ | 3.64 | 5 | 99.07 | 10.99 | 11.28 |
10 | 94.44 | 5.10 | 7.92 | |||
20 | 99.52 | 7.30 | ||||
30 | 102.30 | 2.75 | 11.07 | |||
40 | 100.19 | 8.07 | ||||
50 | 98.85 | 0.92 | ||||
Scopolamine | [M + H]+ | 3.33 | 5 | 82.04 | 9.27 | 9.37 |
10 | 104.21 | 10.88 | 8.77 | |||
20 | 103.58 | 3.95 | ||||
30 | 102.47 | 2.95 | 3.12 | |||
40 | 96.88 | 2.11 | ||||
50 | 100.36 | 1.45 | ||||
Anisodamine | [M + H]+ | 3.26 | 15 | 102.06 | 4.57 | 11.38 |
20 | 104.93 | 5.25 | ||||
30 | 90.75 | 3.96 | 5.21 | |||
40 | 103.10 | 3.89 | ||||
50 | 97.77 | 3.10 | ||||
Homatropine | [M + H]+ | 3.31 | 5 | 95.83 | 8.93 | 13.10 |
10 | 103.65 | 5.95 | 11.45 | |||
20 | 104.17 | 9.59 | ||||
30 | 97.48 | 2.51 | 11.25 | |||
40 | 100.70 | 5.66 | ||||
50 | 103.90 | 2.96 |
Herbal Infusions | DPPH (µg TE/mL) | β-Carotene (AAC) | TPC (µg GAE/mL) | TFC (µg EE/mL) |
---|---|---|---|---|
Anise | 109.58 ± 1.12 f | 156.46 ± 30.06 e | 43.76 ± 0.10 l | 47.66 ± 2.99 i |
Chamomile | 117.23 ± 6.35 f | 203.44 ± 77.46 e | 114.32 ± 0.10 j | 62.47 ± 1.60 i |
Fennel | 119.84 ± 1.12 f | 275.51 ± 54.12 d | 78.16 ± 0.20 k | 54.71 ± 2.19 i |
Ginger | 137.59 ± 0.56 e | 74.40 ± 69.15 f | 113.41 ± 0.30 j | 99.00 ± 1.40 h |
Greek lemon verbena | 670.50 ± 2.07 b | 275.51 ± 54.12 d | 317.65 ± 1.18 h | 455.03 ± 2.59 e |
Indian senna | 94.09 ± 3.67 g | 291.08 ± 64.18 d | 178.34 ± 0.17 j | 144.28 ± 0.80 h |
Lemon balm A | 264.13 ± 1.00 d | 322.38 ± 108.45 d | 497.62 ± 0.39 c | 705.68 ± 4.79 d |
Lemon balm B | 847.89 ± 5.18 a | 393.28 ± 7.82 c | 682.14 ± 0.79 a | 938.57 ± 10.57 b |
Yerba mate | 642.63 ± 5.18 b | 522.11 ± 4.81 b | 569.38 ± 0.39 b | 1031.10 ± 7.78 a |
Milk thistle | 27.73 ± 0.67 h | 184.66 ± 73.03 e | 32.54 ± 0.10 l | 9.15 ± 0.40 j |
Narrow-leaved purple coneflower | 249.01 ± 1.00 d | 305.16 ± 106.23 d | 276.72 ± 0.59 i | 424.42 ± 3.59 f |
Peppermint A | 252.08 ± 0.67 d | 427.23 ± 132.79 c | 392.44 ± 0.71 d | 446.42 ± 2.79 e |
Peppermint B | 248.54 ± 1.67 d | 408.45 ± 106.23 c | 323.14 ± 3.56 g | 798.78 ± 11.97 c |
Peppermint C | 397.05 ± 0.00 c | 562.93 ± 32.47 a | 356.15 ± 1.04 f | 550.38 ± 4.59 d |
Stinging nettle | 174.15 ± 9.35 h | 247.26 ± 121.72 d | 121.61 ± 0.17 j | 132.43 ± 2.39 h |
Green tea | 256.57 ± 7.68 d | 183.10 ± 66.40 e | 365.10 ± 0.71 e | 158.67 ± 8.38 g |
Thyme | 149.03 ± 1.12 e | 188.78 ± 64.94 e | 75.48 ± 0.00 k | 86.03 ± 2.19 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mateus, A.R.S.; Crisafulli, C.; Vilhena, M.; Barros, S.C.; Pena, A.; Sanches Silva, A. The Bright and Dark Sides of Herbal Infusions: Assessment of Antioxidant Capacity and Determination of Tropane Alkaloids. Toxins 2023, 15, 245. https://doi.org/10.3390/toxins15040245
Mateus ARS, Crisafulli C, Vilhena M, Barros SC, Pena A, Sanches Silva A. The Bright and Dark Sides of Herbal Infusions: Assessment of Antioxidant Capacity and Determination of Tropane Alkaloids. Toxins. 2023; 15(4):245. https://doi.org/10.3390/toxins15040245
Chicago/Turabian StyleMateus, Ana Rita Soares, Carmen Crisafulli, Matilde Vilhena, Sílvia Cruz Barros, Angelina Pena, and Ana Sanches Silva. 2023. "The Bright and Dark Sides of Herbal Infusions: Assessment of Antioxidant Capacity and Determination of Tropane Alkaloids" Toxins 15, no. 4: 245. https://doi.org/10.3390/toxins15040245
APA StyleMateus, A. R. S., Crisafulli, C., Vilhena, M., Barros, S. C., Pena, A., & Sanches Silva, A. (2023). The Bright and Dark Sides of Herbal Infusions: Assessment of Antioxidant Capacity and Determination of Tropane Alkaloids. Toxins, 15(4), 245. https://doi.org/10.3390/toxins15040245