The Effect of Experimental Protocol on the Toxicity of Saxitoxin in Mice
Abstract
:1. Introduction
2. Results
2.1. Saxitoxin Feeding Study
2.2. The Effect of Dosing Protocols on the Toxicity of Saxitoxin
2.2.1. The Effect of Mouse Bodyweight on the Toxicity of STX.2HCl by i.p.
2.2.2. The Effect of Dose Volume on the Toxicity of STX.2HCl by i.p.
2.2.3. The Effect of Mouse Gender on the Toxicity of STX.2HCl by i.p. and Orally
2.2.4. The Effect of Feeding Protocol on the Oral Toxicity of STX.2HCl
2.2.5. The Effect of Dosing Method on the Oral Toxicity of Saxitoxin
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Purity Assessment of Saxitoxin
5.2. Animals
5.3. Saxitoxin Feeding Study
5.3.1. Preparation of Mouse Treatment Diets
5.3.2. Experimental Protocol
5.4. Acute Toxicity of Saxitoxin Using Different Experimental Protocols
5.4.1. The Effect of Mouse Bodyweight on the Toxicity of Saxitoxin by i.p.
5.4.2. The Effect of Dose Volume on the Toxicity of Saxitoxin by i.p.
5.4.3. The Effect of Gender on the Toxicity of Saxitoxin by i.p. and Orally
5.4.4. The Effect of Dosing Method on the Oral Toxicity of Saxitoxin
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anderson, D.M.; Alpermann, T.J.; Cembella, A.D.; Collos, Y.; Masseret, E.; Montresor, M. The globally distributed genus Alexandrium: Multifaceted roles in marine ecosystems and impacts on human health. Harmful Algae 2012, 14, 10–35. [Google Scholar] [CrossRef] [PubMed]
- Oshima, Y.; Blackburn, S.I.; Hallegraeff, G.M. Comparative study on paralytic shellfish toxin profiles of the dinoflagellate Gymnodinium catenatum from three different countries. Mar. Biol. 1993, 116, 471–476. [Google Scholar] [CrossRef]
- Usup, G.; Kulis, D.M.; Anderson, D.M. Growth and toxin production of the toxic dinoflagellate Pyrodinium bahamense var. compressum in laboratory cultures. Nat. Toxins 1994, 2, 254–262. [Google Scholar] [CrossRef] [PubMed]
- García, C.; Lagos, M.; Truan, D.; Lattes, K.; Véjar, O.; Chamorro, B.; Iglesias, V.; Andrinolo, D.; Lagos, N. Human intoxication with paralytic shellfish toxins: Clinical parameters and toxin analysis in plasma and urine. Biol. Res. 2005, 38, 197–205. [Google Scholar] [CrossRef]
- Mons, M.N.; Van Egmond, H.P.; Speijers, G.J.A. Paralytic Shellfish Poisoning: A Review; RIVM Report 388802 005; RIVM: Bilthoven, The Netherlands, 1988. [Google Scholar]
- Regulation (EC) No 853/2004 of the European Parliament and of the Council of 29 April 2004; Laying Down Specific Hygiene Rules for Food of Animal Origin. Off. J. Eur. Union. 2004, 47, p. L 139. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2004:139:0055:0205:en:PDF (accessed on 23 June 2017).
- CODEX STAN 292-2008; Standard for Live and Raw Bivalve Molluscs. Codex Alimentarius International Food Standards. 2008. Available online: http://bach.cirsfid.unibo.it/node/portalfao/akn/fao/doc/standard/2008/CODEXSTAN292-2008/eng@2013/main.pdf (accessed on 23 June 2017).
- Wiese, M.; D’Agostino, P.M.; Mihali, T.K.; Moffitt, M.C.; Neilan, B.A. Neurotoxic alkaloids: Saxitoxin and its analogs. Mar. Drugs 2010, 8, 2185–2211. [Google Scholar] [CrossRef]
- Botana, L.M.; Hess, P.; Munday, R.; Nathalie, A.; DeGrasse, S.L.; Feeley, M.; Suzuki, T.; van den Berg, M.; Fattori, V.; Gamarro, E.G.; et al. Derivation of toxicity equivalency factors for marine biotoxins associated with bivalve molluscs. Trends Food Sci. Technol. 2017, 59, 15–24. [Google Scholar] [CrossRef]
- EFSA. Scientific opinion of the panel on contaminants in the food chain on a request from the european commission on marine biotoxins in shellfish—Saxitoxin group. EFSA J. 2009, 1019, 1–76. [Google Scholar] [CrossRef]
- FAO/WHO. Technical Paper on Toxicity Equivalency Factors for Marine Biotoxins Associated with Bivalve Molluscs; FAO/WHO: Rome, Italy, 2016; p. 108.
- Interdepartmental Group on Health Risks from Chemicals. Uncertainty Factors: Their Use in Human Health Risk Assessment by UK Government; MRC Institute for Environment and Health: Leicester, UK, 2003; p. 69. [Google Scholar]
- Rolton, A.; Rhodes, L.; Hutson, K.S.; Biessy, L.; Bui, T.; MacKenzie, L.; Symonds, J.E.; Smith, K.F. Effects of harmful algal blooms on fish and shellfish species: A case study of New Zealand in a changing environment. Toxins 2022, 14, 341. [Google Scholar] [CrossRef]
- Delcourt, N.; Arnich, N.; Sinno-Tellier, S.; Franchitto, N. Mild paralytic shellfish poisoning (PSP) after ingestion of mussels contaminated below the European regulatory limit. Clin. Toxicol. 2021, 59, 76–77. [Google Scholar] [CrossRef]
- Finch, S.C.; Webb, N.G.; Boundy, M.J.; Harwood, D.T.; Munday, J.S.; Sprosen, J.M.; Cave, V.M.; Broadhurst, R.B.; Nicolas, J. Sub-acute feeding study of saxitoxin to mice confirms the effectiveness of current regulatory limits for paralytic shellfish toxins. Toxins 2021, 13, 627. [Google Scholar] [CrossRef] [PubMed]
- Kao, C.Y. Paralytic shellfish poisoning. In Algal Toxins in Seafood and Drinking Water; Falconer, I.R., Ed.; Academic Press: London, UK, 1993; pp. 75–86. [Google Scholar]
- Gochfeld, M. Sex differences in human and animal toxicology: Toxicokinetics. Toxicol. Pathol. 2017, 45, 172–189. [Google Scholar] [CrossRef] [PubMed]
- Pallotta, A.J.; Kelly, M.G.; Rall, D.P.; Ward, J.W. Toxicology of acetoxycycloheximide as a function of sex and body weight. J. Pharmacol. Exp. Ther. 1962, 136, 400. [Google Scholar]
- Lamanna, C.; Hart, E.R. Relationship of lethal toxic dose to body weight of the mouse. Toxicol. Appl. Pharmacol. 1968, 13, 307–315. [Google Scholar] [CrossRef]
- Done, A.K. Developmental pharmacology. Clin. Pharmacol. Ther. 1964, 5, 432–479. [Google Scholar] [CrossRef]
- Suzuki, H. Influence of body weight of mice on the susceptibility to okadaic acid, a diarrhetic shellfish poisoning toxin. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2014, 31, 719–722. [Google Scholar] [CrossRef]
- Aune, T.; Sørby, R.; Yasumoto, T.; Ramstad, H.; Landsverk, T. Comparison of oral and intraperitoneal toxicity of yessotoxin towards mice. Toxicon 2002, 40, 77–82. [Google Scholar] [CrossRef]
- Aune, T.; Aasen, J.A.B.; Miles, C.O.; Larsen, S. Effect of mouse strain and gender on LD50 of yessotoxin. Toxicon 2008, 52, 535–540. [Google Scholar] [CrossRef]
- Tubaro, A.; Sosa, S.; Carbonatto, M.; Altinier, G.; Vita, F.; Melato, M.; Satake, M.; Yasumoto, T. Oral and intraperitoneal acute toxicity studies of yessotoxin and homoyessotoxins in mice. Toxicon 2003, 41, 783–792. [Google Scholar] [CrossRef]
- Ogino, H.; Kumagai, M.; Yasumoto, T. Toxicologic evaluation of yessotoxin. Nat. Toxins 1997, 5, 255–259. [Google Scholar] [CrossRef]
- AOAC. Official Method 959.08. Paralytic shellfish poisoning—Biological method. In Official Methods of Analysis of AOAC International, 18th ed.; Horwitz, W., Latimer, G.W., Eds.; AOAC International: Gaithersburg, MD, USA, 2005; pp. 79–82. [Google Scholar]
- Boundy, M.J.; Harwood, D.T.; Tommasi, E.; Burger, E.; van Ginkel, R.; Waugh, C.; Selwood, A.I.; Finch, S. Acute toxicity of decarbamoyl gonyautoxin 1&4 to mice by various routes of administration. Toxicon 2021, 204, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Munday, R.; Murray, S.; Rhodes, L.; Larsson, M.; Harwood, D. Ciguatoxins and maitotoxins in extracts of sixteen Gambierdiscus isolates and one Fukuyoa isolate from the South Pacific and their toxicity to mice by intraperitoneal and oral administration. Mar. Drugs 2017, 15, 208. [Google Scholar] [CrossRef]
- Munday, R.; Thomas, K.; Gibbs, R.; Murphy, C.; Quilliam, M.A. Acute toxicities of saxitoxin, neosaxitoxin, decarbamoyl saxitoxin and gonyautoxins 1&4 and 2&3 to mice by various routes of administration. Toxicon 2013, 76, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Munday, R. Toxicology of Seafood Toxins: A Critical Review. In Seafood and Freshwater Toxins: Pharmacology, Physiology, and Detection, 3rd ed.; Botana, L.M., Ed.; CRC Press: Boca Raton, FL, USA, 2014; pp. 197–290. [Google Scholar]
- Welling, P.G. Effects of food on drug absorption. Pharmacol. Ther. 1989, 43, 425–441. [Google Scholar] [CrossRef] [PubMed]
- Kast, A.; Nishikawa, J. The effect of fasting on oral acute toxicity of drugs in rats and mice. Lab. Anim. 1981, 15, 359–364. [Google Scholar] [CrossRef]
- Carey, G.B.; Merrill, L.C. Meal-feeding rodents and toxicology research. Chem. Res. Toxicol. 2012, 25, 1545–1550. [Google Scholar] [CrossRef]
- Craig, M.A.; Elliott, J.F. Mice fed radiolabeled protein by gavage show sporadic passage of large quantities of intact material into the blood, an artifact not associated with voluntary feeding. J. Am. Assoc. Lab. Anim. Sci. 1999, 38, 18–23. [Google Scholar]
- Boente-Juncal, A.; Vale, C.; Cifuentes, M.; Otero, P.; Camiña, M.; Rodriguez-Vieytes, M.; Botana, L.M. Chronic in vivo effects of repeated exposure to low oral doses of tetrodotoxin: Preliminary evidence of nephrotoxicity and cardiotoxicity. Toxins 2019, 11, 96. [Google Scholar] [CrossRef]
- Rourke, W.A.; Murphy, C.J.; Pitcher, G.; van de Riet, J.M.; Burns, B.G.; Thomas, K.M.; Quilliam, M.A. Rapid postcolumn methodology for determination of paralytic shellfish toxins in shellfish tissue. J. AOAC Int. 2019, 91, 589–597. [Google Scholar] [CrossRef]
- Turner, A.D.; Dhanji-Rapkova, M.; Fong, S.Y.T.; Hungerford, J.; McNabb, P.S.; Boundy, M.J.; Harwood, D.T. Ultrahigh-performance hydrophilic interaction liquid chromatography with tandem mass spectrometry method for the determination of paralytic shellfish toxins and tetrodotoxin in mussels, oysters, clams, cockles, and scallops: Collaborative study. J. AOAC Int. 2020, 103, 533–562. [Google Scholar] [CrossRef]
- Turnbull, A.R.; Harwood, D.T.; Boundy, M.J.; Holland, P.T.; Hallegraeff, G.; Malhi, N.; Quilliam, M.A. Paralytic shellfish toxins—Call for uniform reporting units. Toxicon 2020, 178, 59–60. [Google Scholar] [CrossRef] [PubMed]
- OECD. Test No. 425: Acute Oral Toxicity: Up-and-Down Procedure, OECD Guidelines for the Testing of Chemicals, Section 4; OECD Publishing: Paris, France, 2022. [Google Scholar] [CrossRef]
- USEPA. User Documentation for the AOT425StatPgm Program. Prepared for the US Environmental Protection Agency by Westat, May 2001; Updated by USEPA September 2002. Available online: http://www.oecd.org/dataoecd/19/57/1839830.pdf (accessed on 23 June 2017).
BW (g) | 14, 15 g | 16, 17 g | 18, 19 g | 20, 21 g | 22, 23 g | 24, 25 g |
---|---|---|---|---|---|---|
LD50 nmol/kg | 2903 (2673, 3007) | 3196 (2878, 4176) | 2372 (2051, 2857) | 2673 (2312, 2857) | 2372 (2051, 2857) | 3007 (2513, 3441) |
LD50 µg/kg | 1080 (994, 1119) | 1189 (1071, 1553) | 882 (763, 1063) | 994 (860, 1063) | 882 (763, 1062) | 1119 (935, 1280) |
Dose Volume | LD50 (nmol/kg) | LD50 (µg/kg) |
---|---|---|
1.0 mL | 27.8 (23.9, 96.4) | 10.3 (0.89, 35.9) |
0.5 mL | 30.1 (27.8, 31.2) | 11.2 (10.3, 11.6) |
0.2 mL | 31.2 (26.1, 35.9) | 11.6 (0.97, 13.3) |
i.p. Injection | Oral | |||
---|---|---|---|---|
Male | Female | Male | Female | |
LD50 (nmol/kg) | 24.8 (21.6, 29.6) | 24.0 (22.1, 24.8) | 2900 (2673, 3007) | 2850 (2475, 3410) |
LD50 (µg/kg) | 9.2 (8.0, 11.0) | 8.9 (8.2, 9.2) | 1079 (994, 1119) | 1060 (921, 1269) |
Feeding Regime | LD50 (nmol/kg) | LD50 (µg/kg) |
---|---|---|
Non-fasted | 2850 (2475, 3410) | 1060 (921, 1269) |
Fasted + STX.2HCl | 1504 (1312, 1777) | 559 (488, 661) |
Fasted + 0.5 g food + STX.2HCl | 2505 (2339, 2506) | 932 (870, 932) |
Fasted + 1.0 g food + STX.2HCl | 3618 (3341, 3675) | 1346 (1243, 1367) |
Fasted + STX.2HCl + unlimited food | 3842 (3354, 5112) | 1429 (1248, 1902) |
Dosing Method | LD50 (nmol/kg) | LD50 (µg/kg) |
---|---|---|
Fasted + 0.5 g food + gavage | 1671 (1479, 1945) | 622 (580, 723) |
Fasted + 0.5 g food + laced cream cheese | 2505 (2339, 2506) | 932 (870, 932) |
Fasted + 0.5 g food + laced mouse food | 2455 (2339, 2506) | 913 (870, 932) |
Sample | Measured Concentration | Theoretical Concentration | Recovery (%) |
---|---|---|---|
Low | 3.67 | 3.73 | 98 |
Med | 4.57 | 4.97 | 92 |
High | 6.65 | 6.21 | 107 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Finch, S.C.; Boundy, M.J.; Webb, N.G.; Harwood, D.T. The Effect of Experimental Protocol on the Toxicity of Saxitoxin in Mice. Toxins 2023, 15, 290. https://doi.org/10.3390/toxins15040290
Finch SC, Boundy MJ, Webb NG, Harwood DT. The Effect of Experimental Protocol on the Toxicity of Saxitoxin in Mice. Toxins. 2023; 15(4):290. https://doi.org/10.3390/toxins15040290
Chicago/Turabian StyleFinch, Sarah C., Michael J. Boundy, Nicola G. Webb, and D. Tim Harwood. 2023. "The Effect of Experimental Protocol on the Toxicity of Saxitoxin in Mice" Toxins 15, no. 4: 290. https://doi.org/10.3390/toxins15040290
APA StyleFinch, S. C., Boundy, M. J., Webb, N. G., & Harwood, D. T. (2023). The Effect of Experimental Protocol on the Toxicity of Saxitoxin in Mice. Toxins, 15(4), 290. https://doi.org/10.3390/toxins15040290