Zearalenone Does Not Show Genotoxic Effects in the Drosophila melanogaster Wing Spot Test, but It Induces Oxidative Imbalance, Development, and Fecundity Alterations
Abstract
:1. Introduction
2. Results
2.1. Survival Assays
2.2. Genotoxicity Test
2.3. ZEN Identification and Quantification by HPLC in the Flare and Oregon R(R)-Flare Strains
2.4. Emergence
2.5. Fecundity
2.6. Transcriptional Expression in Basal State
2.7. Transcriptional Expression Associated with ZEN Exposure
2.8. Reactive Oxygen Species Quantification
3. Discussion
4. Materials and Methods
4.1. T Chemicals and Regents
4.2. Drosophila Strains
4.3. Survival Assays (LC50)
4.4. Drosophila Wing Spot Test
4.5. High Performance Liquid Cromatography (HPLC) Analysis
4.6. Emergence
4.7. Fecundity
4.8. Total RNA Isolation and cDNA Synthesis
4.9. Real Time Semi-Quantitative PCR
4.10. Reactive Oxygen Species Quantification
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ropejko, K.; Twarużek, M. Zearalenone and Its Metabolites—General Overview, Occurrence, and Toxicity. Toxins 2021, 13, 35. [Google Scholar] [CrossRef]
- Mahato, D.K.; Devi, S.; Pandhi, S.; Sharma, B.; Maurya, K.K.; Mishra, S.; Dhawan, K.; Selvakumar, R.; Kamle, M.; Mishra, A.K.; et al. Occurrence, Impact on Agriculture, Human Health, and Management Strategies of Zearalenone in Food and Feed: A Review. Toxins 2021, 13, 92. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA). Scientific Opinion on the risks for public health related to the presence of zearalenone in food. EFSA J. 2011, 9, 2197. [Google Scholar] [CrossRef]
- SAGARPA. Listado de Productos Farmacéuticos Con Registro de Grupo I. 2017. Available online: https://www.gob.mx/cms/uploads/attachment/file/200352/LISTA_DE_PRODUCTOS_ACTUALIZADOS_GPO_I_2017.pdf (accessed on 1 December 2020).
- Buranatragool, K.; Poapolathep, S.; Isariyodom, S.; Imsilp, K.; Klangkaew, N.; Poapolathep, A. Dispositions and tissue residue of zearalenone and its metabolites α-zearalenol and β-zearalenol in broilers. Toxicol. Rep. 2015, 2, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Llorens, P.; Herrera, M.; Juan-García, A.; Payá, J.J.; Moltó, J.C.; Ariño, A.; Juan, C. Biomarkers of Exposure to Zearalenone in In Vivo and In Vitro Studies. Toxins 2022, 14, 291. [Google Scholar] [CrossRef] [PubMed]
- Nagl, V.; Grenier, B.; Pinton, P.; Ruczizka, U.; Dippel, M.; Bünger, M.; Oswald, I.P.; Soler, L. Exposure to Zearalenone Leads to Metabolic Disruption and Changes in Circulating Adipokines Concentrations in Pigs. Toxins 2021, 13, 790. [Google Scholar] [CrossRef]
- Yan, W.-K.; Liu, Y.-N.; Song, S.-S.; Kang, J.-W.; Zhang, Y.; Lu, L.; Wei, S.-W.; Xu, Q.-X.; Zhang, W.-Q.; Liu, X.-Z.; et al. Zearalenone affects the growth of endometriosis via estrogen signaling and inflammatory pathways. Ecotoxicol. Environ. Saf. 2022, 241, 113826. [Google Scholar] [CrossRef] [PubMed]
- Guengerich, F.P. Roles of Cytochrome P450 Enzymes in Pharmacology and Toxicology: Past, Present, and Future. Adv. Pharmacol. 2022, 95, 1–47. [Google Scholar] [PubMed]
- Drzymala, S.S.; Herrmann, A.J.; Maul, R.; Pfeifer, D.; Garbe, L.-A.; Koch, M. In Vitro Phase I Metabolism of cis-Zearalenone. Chem. Res. Toxicol. 2014, 27, 1972–1978. [Google Scholar] [CrossRef]
- Fleck, S.C.; Hildebrand, A.A.; Müller, E.; Pfeiffer, E.; Metzler, M. Genotoxicity and inactivation of catechol metabolites of the mycotoxin zearalenone. Mycotoxin Res. 2012, 28, 267–273. [Google Scholar] [CrossRef]
- Vlata, Z.; Porichis, F.; Tzanakakis, G.; Tsatsakis, A.; Krambovitis, E. A study of zearalenone cytotoxicity on human peripheral blood mononuclear cells. Toxicol. Lett. 2006, 165, 274–281. [Google Scholar] [CrossRef]
- Ayed-Boussema, I.; Ouanes, Z.; Bacha, H.; Abid, S. Toxicities induced in cultured cells exposed to zearalenone: Apoptosis or mutagenesis? J. Biochem. Mol. Toxicol. 2007, 21, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Ayed, Y.; Ayed-Boussema, I.; Ouanes, Z.; Bacha, H. In vitro and in vivo induction of chromosome aberrations by alpha- and beta-zearalenols: Comparison with zearalenone. Mutat. Res. Toxicol. Environ. Mutagen. 2011, 726, 42–46. [Google Scholar] [CrossRef]
- Savard, C.; Gawhary, S.; Boyer, A.; Chorfi, Y. Assessment of Zearalenone-Induced Cell Survival and of Global Gene Regulation in Mouse TM4 Sertoli Cells. Toxins 2022, 14, 98. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Fu, W.; Zhao, X.; Chang, X.; Liu, H.; Zhou, L.; Li, J.; Cheng, R.; Wu, X.; Li, X.; et al. Zearalenone disturbs the reproductive-immune axis in pigs: The role of gut microbial metabolites. Microbiome 2022, 10, 234. [Google Scholar] [CrossRef] [PubMed]
- Salem, I.B.; Boussabbeh, M.; Neffati, F.; Najjar, M.F.; Abid-Essefi, S.; Bacha, H. Zearalenone-induced changes in biochemical parameters, oxidative stress and apoptosis in cardiac tissue: Protective Role of Crocin. Hum. Exp. Toxicol. 2015, 35, 623–634. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, F.; Zhang, W.; Zhou, S.; Wen, D.; Mu, R. Chronic exposure to zearalenone induces intestinal inflammation and oxidative injury in adult Drosophila melanogaster midgut. Ecotoxicol. Environ. Saf. 2023, 251, 114555. [Google Scholar] [CrossRef]
- De Loof, A.; Baggerman, G.; Breuer, M.; Claeys, I.; Cerstiaens, A.; Clynen, E.; Janssen, T.; Schoofs, L.; Broeck, J.V. Gonadotropins in insects: An overview. Arch. Insect Biochem. Physiol. 2001, 47, 129–138. [Google Scholar] [CrossRef]
- Graf, U.; van Schaik, N. Improved high bioactivation cross for the wing somatic mutation and recombination test in Drosophila melanogaster. Mutat. Res. Mutagen. Relat. Subj. 1992, 271, 59–67. [Google Scholar] [CrossRef]
- Graf, U.; Würgler, F.E.; Katz, A.J.; Frei, H.; Juon, H.; Hall, C.B.; Kale, P.G. Somatic mutation and recombination test inDrosophila melanogaster. Environ. Mutagen. 1984, 6, 153–188. [Google Scholar] [CrossRef]
- Santos-Cruz, L.F.; Ramírez-Cruz, B.G.; García-Salomé, M.; Olvera-Romero, Z.Y.; Hernández-Luis, F.; Hernández-Portilla, L.B.; Durán-Díaz, Á.; García, I.E.D.; Castañeda-Partida, L.; Piedra-Ibarra, E.; et al. Genotoxicity assessment of four novel quinazoline-derived trypanocidal agents in the Drosophila wing somatic mutation and recombination test. Mutagenesis 2020, 35, 299–310. [Google Scholar] [CrossRef] [PubMed]
- Shafqat, N.; Marschall, H.-U.; Filling, C.; Nordling, E.; Wu, X.-Q.; Björk, L.; Thyberg, J.; Mårtensson, E.; Salim, S.; Jörnvall, H.; et al. Expanded substrate screenings of human and Drosophila type 10 17β-hydroxysteroid dehydrogenases (HSDs) reveal multiple specificities in bile acid and steroid hormone metabolism: Characterization of multifunctional 3α/7α/7β/17β/20β/21-HSD. Biochem. J. 2003, 376, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Bravin, F.; Duca, R.C.; Balaguer, P.; Delaforge, M. In Vitro Cytochrome P450 Formation of a Mono-Hydroxylated Metabolite of Zearalenone Exhibiting Estrogenic Activities: Possible Occurrence of This Metabolite in Vivo. Int. J. Mol. Sci. 2009, 10, 1824–1837. [Google Scholar] [CrossRef] [PubMed]
- Sigrist-Flores, S.C.; Castañeda-Partida, L.; Campos-Aguilar, M.; Santos-Cruz, L.F.; Miranda-Gutierrez, A.; Gallardo-Ortíz, I.A.; Villalobos-Molina, R.; Dueñas-García, I.E.; Heres-Pulido, M.E.; Piedra-Ibarra, E.; et al. Variation in resistance to oxidative stress in Oregon-(R)R-flare and Canton-S strains of Drosophila melanogaster. Toxicol. Res. 2021, 10, 817–823. [Google Scholar] [CrossRef]
- Abbès, S.; Ouanes, Z.; Salah-Abbès, J.B.; Abdel-Wahhab, M.A.; Oueslati, R.; Bacha, H. Preventive role of aluminosilicate clay against induction of micronuclei and chromosome aberrations in bone-marrow cells of Balb/c mice treated with Zearalenone. Mutat. Res. Toxicol. Environ. Mutagen. 2007, 631, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhao, L.; Huang, S.; Liu, Q.; Ao, X.; Lei, Y.; Ji, C.; Ma, Q. Zearalenone toxicosis on reproduction as estrogen receptor selective modulator and alleviation of zearalenone biodegradative agent in pregnant sows. J. Anim. Sci. Biotechnol. 2022, 13, 36. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wu, W.; Song, Y.; Hou, L.; Li, T.; Guan, T.; Zhang, T.; Wang, Y. Homogeneous assay for zearalenone analogues and their docking studies with apo-/holo-estrogen receptors. Anal. Methods 2019, 11, 192–199. [Google Scholar] [CrossRef]
- Tennessen, J.M.; Baker, K.D.; Lam, G.; Evans, J.; Thummel, C.S. The Drosophila Estrogen-Related Receptor Directs a Metabolic Switch that Supports Developmental Growth. Cell Metab. 2011, 13, 139–148. [Google Scholar] [CrossRef]
- Misra, S.; Pandey, A.K.; Gupta, S.; Kumar, A.; Khanna, P.; Shankar, J.; Ram, K.R. Estrogen related receptor is required for the testicular development and for the normal sperm axoneme/mitochondrial derivatives in Drosophila males. Sci. Rep. 2017, 7, 40372. [Google Scholar] [CrossRef]
- Karaman, E.F.; Ozden, S. Alterations in global DNA methylation and metabolism-related genes caused by zearalenone in MCF7 and MCF10F cells. Mycotoxin Res. 2019, 35, 309–320. [Google Scholar] [CrossRef]
- Yang, Z.; Xue, K.S.; Sun, X.; Williams, P.L.; Wang, J.-S.; Tang, L. Toxicogenomic responses to zearalenone in Caenorhabditis elegans reveal possible molecular mechanisms of reproductive toxicity. Food Chem. Toxicol. 2018, 122, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.-J.; Zheng, W.-L.; Feng, N.-N.; Wang, T.; Zou, H.; Gu, J.-H.; Yuan, Y.; Liu, X.-Z.; Liu, Z.-P.; Bian, J.-C. The Effects of Autophagy and PI3K/AKT/m-TOR Signaling Pathway on the Cell-Cycle Arrest of Rats Primary Sertoli Cells Induced by Zearalenone. Toxins 2018, 10, 398. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-L.; Zhou, X.-Q.; Jiang, W.-D.; Wu, P.; Liu, Y.; Jiang, J.; Wang, S.-W.; Kuang, S.-Y.; Tang, L.; Feng, L. Effects of Dietary Zearalenone on Oxidative Stress, Cell Apoptosis, and Tight Junction in the Intestine of Juvenile Grass Carp (Ctenopharyngodon idella). Toxins 2019, 11, 333. [Google Scholar] [CrossRef] [PubMed]
- Dhama, K.; Latheef, S.K.; Dadar, M.; Samad, H.A.; Munjal, A.; Khandia, R.; Karthik, K.; Tiwari, R.; Yatoo, M.I.; Bhatt, P.; et al. Biomarkers in Stress Related Diseases/Disorders: Diagnostic, Prognostic, and Therapeutic Values. Front. Mol. Biosci. 2019, 6, 91. [Google Scholar] [CrossRef]
- Arya, R.; Mallik, M.; Lakhotia, S.C. Heat shock genes—Integrating cell survival and death. J. Biosci. 2007, 32, 595–610. [Google Scholar] [CrossRef]
- Grether, M.E.; Abrams, J.M.; Agapite, J.; White, K.; Steller, H. The head involution defective gene of Drosophila melanogaster functions in programmed cell death. Genes Dev. 1995, 9, 1694–1708. [Google Scholar] [CrossRef]
- White, K.; Tahaoglu, E.; Steller, H. Cell Killing by the Drosophila Gene reaper. Science 1996, 271, 805–807. [Google Scholar] [CrossRef]
- Vázquez-Gómez, G.; Sánchez-Santos, A.; Vázquez-Medrano, J.; Quintanar-Zúñiga, R.; Monsalvo-Reyes, A.; Piedra-Ibarra, E.; Dueñas-García, I.; Castañeda-Partida, L.; Graf, U.; Heres-Pulido, M. Sulforaphane modulates the expression of Cyp6a2 and Cyp6g1 in larvae of the ST and HB crosses of the Drosophila wing spot test and is genotoxic in the ST cross. Food Chem. Toxicol. 2010, 48, 3333–3339. [Google Scholar] [CrossRef]
- Arya, R.; Lakhotia, S.C. Hsp60D is essential for caspase-mediated induced apoptosis in Drosophila melanogaster. Cell Stress Chaperon. 2008, 13, 509–526. [Google Scholar] [CrossRef]
- Sun, L.; Schemerhorn, B.; Jannasch, A.; Walters, K.R.; Adamec, J.; Muir, W.M.; Pittendrigh, B.R. Differential transcription of cytochrome P450s and glutathione S transferases in DDT-susceptible and -resistant Drosophila melanogaster strains in response to DDT and oxidative stress. Pestic. Biochem. Physiol. 2011, 100, 7–15. [Google Scholar] [CrossRef]
- Yin, V.P.; Thummel, C.S. A balance between the diap1 death inhibitor and reaper and hid death inducers controls steroid-triggered cell death in Drosophila. Proc. Natl. Acad. Sci. USA 2004, 101, 8022–8027. [Google Scholar] [CrossRef] [PubMed]
- Steller, H. Regulation of apoptosis in Drosophila. Cell Death Differ. 2008, 15, 1132–1138. [Google Scholar] [CrossRef]
- Lindsley, D.L.; Zimm, G.G. The Genome of Drosophila Melanogaster; Elsevier: Amsterdam, The Netherlands, 2012; ISBN 9780323139847. [Google Scholar]
- Dueñas, I.E.; Heres, M.E.; Castañeda, P.L.; Graf, U. Easy Raising of Drosophila Melanogaster on a Medium Consisting of Mashed Potato Flakes and a Preservative Solution. Drosoph. Inf. Serv. 2002, 84, 166. [Google Scholar]
- Castañeda, P.L.; Muñoz, G.L.E.; Durán, D.A.; Heres, P.M.E.; Dueñas, G.I.E. LD 50 in Drosophila Melanogaster Fed on Lead Nitrate and Lead Acetate. Dros. Inf. Serv. 2001, 84, 44–48. [Google Scholar]
- Frölich, A.; Würgler, F.E. New tester strains with improved bioactivation capacity for the Drosophila wing-spot test. Mutat. Res. Mutagen. Relat. Subj. 1989, 216, 179–187. [Google Scholar] [CrossRef]
- Graf, U.; Frei, H.; Kägi, A.; Katz, A.J.; Würgler, F.E. Thirty compounds tested in the Drosophila wing spot test. Mutat. Res. Toxicol. 1989, 222, 359–373. [Google Scholar] [CrossRef]
- Frei, H.; Würgler, F. Statistical methods to decide whether mutagenicity test data from Drosophila assays indicate a positive, negative, or inconclusive result. Mutat. Res. Mutagen. Relat. Subj. 1988, 203, 297–308. [Google Scholar] [CrossRef]
- Visconti, A.; Pascale, M. Determination of zearalenone in corn by means of immunoaffinity clean-up and high-performance liquid chromatography with fluorescence detection. J. Chromatogr. A 1998, 815, 133–140. [Google Scholar] [CrossRef]
- Singh, M.P.; Reddy, M.K.; Mathur, N.; Saxena, D.; Chowdhuri, D.K. Induction of hsp70, hsp60, hsp83 and hsp26 and oxidative stress markers in benzene, toluene and xylene exposed Drosophila melanogaster: Role of ROS generation. Toxicol. Appl. Pharmacol. 2009, 235, 226–243. [Google Scholar] [CrossRef]
- Pandey, A.; Chandra, S.; Chauhan, L.K.S.; Narayan, G.; Chowdhuri, D.K. Cellular internalization and stress response of ingested amorphous silica nanoparticles in the midgut of Drosophila melanogaster. Biochim. Et. Biophys. Acta (BBA) Gen. Subj. 2013, 1830, 2256–2266. [Google Scholar] [CrossRef]
- Eruslanov, E.; Kusmartsev, S. Identification of ROS Using Oxidized DCFDA and Flow-Cytometry BT—Advanced Protocols in Oxidative Stress II; Armstrong, D., Ed.; Humana Press: Totowa, NJ, USA, 2010; pp. 57–72. ISBN 978-1-60761-411-1. [Google Scholar]
Compound Cross b Type | Conc. (M, mM) | Number of Flies | Spots per Fly (Number of Spots) Statistical Diagnosis a | Mean mwh Clone Size Class | Clone Formation Per 105 Cells Per Cell Division c | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Small Single Spots (1–2 cells) m = 2 | Large Single Spots (>2 cells) m = 5 | Twin Spots m = 5 | Total Spots m = 2 | mwh Clones | Observed | Control Corrected | ||||||||||||
Negative, dissolvent and positive controls | ||||||||||||||||||
ST | ||||||||||||||||||
WATER | 0 | 61 | 0.74 | (045) | 0.07 | (004) | 0.07 | (004) | 0.87 | (053) | 52 | 1.52 | 1.75 | |||||
PBS | 0 | 59 | 0.95 | (056) | − | 0.15 | (009) | − | 0.07 | (004) | − | 1.17 | (069) | − | 68 | 1.71 | 2.35 | 0.60 |
URE | 20 | 38 | 3.13 | (119) | + | 0.24 | (009) | + | 0.05 | (002) | − | 3.42 | (130) | + | 129 | 1.42 | 6.95 | 5.20 |
HB | ||||||||||||||||||
WATER | 0 | 47 | 0.77 | (036) | 0.09 | (004) | 0.02 | (001) | 0.87 | (041) | 39 | 1.33 | 1.70 | |||||
PBS | 0 | 55 | 0.65 | (036) | − | 0.13 | (007) | − | 0.00 | (000) | − | 0.78 | (043) | − | 42 | 1.55 | 1.55 | −0.15 |
URE | 20 | 39 | 6.31 | (246) | + | 0.62 | (024) | + | 0.26 | (010) | + | 7.18 | (280) | + | 277 | 1.59 | 14.55 | 12.85 |
Treatments ZEN | ||||||||||||||||||
ST | ||||||||||||||||||
PBS | 0 | 59 | 0.95 | (056) | 0.15 | (009) | 0.07 | (004) | 1.17 | (069) | 68 | 1.71 | 2.35 | |||||
ZEN 1 | 100 | 55 | 1.15 | (063) | − | 0.05 | (003) | − | 0.09 | (005) | − | 1.29 | (071) | − | 71 | 1.44 | 2.65 | 0.30 |
ZEN 2 | 200 | 58 | 0.95 | (053) | − | 0.14 | (008) | − | 0.03 | (002) | − | 1.09 | (063) | − | 63 | 1.81 | 2.20 | −0.15 |
ZEN 3 | 400 | 55 | 0.73 | (040) | − | 0.20 | (011) | − | 0.00 | (000) | − | 0.93 | (051) | − | 49 | 1.76 | 1.80 | −0.55 |
HB | ||||||||||||||||||
PBS | 0 | 55 | 0.65 | (036) | 0.13 | (007) | 0.00 | (000) | 0.78 | (043) | 42 | 1.55 | 1.55 | |||||
ZEN 1 | 100 | 55 | 0.75 | (041) | − | 0.09 | (005) | − | 0.00 | (000) | − | 0.84 | (046) | − | 39 | 1.67 | 1.45 | −0.10 |
ZEN 2 | 200 | 56 | 0.73 | (041) | − | 0.11 | (006) | − | 0.02 | (001) | − | 0.86 | (048) | − | 48 | 1.85 | 1.75 | 0.20 |
ZEN 3 | 400 | 56 | 0.86 | (048) | − | 0.09 | (005) | − | 0.00 | (000) | − | 0.95 | (053) | − | 50 | 1.62 | 1.80 | 0.25 |
ST Cross | HB Cross | |||||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | |
Controls | ||||||
WATER | 51.25 | 4.80 | 48.12 | 5.33 | ||
PBS | 59.75 | 8.89 | <0.025 | 39.75 | 5.34 | <0.005 |
URE (20 mM) | 121.87 | 12.84 | 0.000 | 252.00 | 36.88 | 0.000 |
Treatments ZEN (mM) | ||||||
PBS | 59.75 | 8.89 | 39.75 | 5.34 | ||
ZEN 100 | 63.62 | 5.60 | <0.025 | 42.25 | 6.34 | <0.025 |
ZEN 200 | 55.37 | 8.78 | <0.025 | 42.25 | 7.63 | <0.025 |
ZEN 400 | 46.00 | 6.93 | <0.005 | 49.00 | 7.42 | <0.005 |
Gene | Oligonucleotide Sequence (Forward and Reverse) | Annealing Temperature (°C) | Amplicon Length (bp) |
---|---|---|---|
Cyp6g1 | GAGCCTGAAGCCGTTCTAC ATCCGAAGGGTTGATATGCC | 60 | 176 |
Cyp6a2 | CGGAAAGAAGTGGAAGGAC CACATCGGTGGTGAACCTG | 60 | 194 |
hsp60 | GAGACCGTCAAGGACAACC CCTCGCTGATGAGATTGCC | 60 | 121 |
hsp70 | CGAGATTGACGCACTGTTTG GCCGACGAGACGATGTC | 60 | 168 |
grim | GGGAAGTCAACAGGGATCG CCTTGGAGGTGGCATCGG | 60 | 197 |
hid | GAGTGGGTCAGGATGTACC GAGTTCGGATTCGGATGGC | 60 | 166 |
reaper | CTACATACCCGATCAGGCG CGATGGCTTGCGATATTTGC | 60 | 177 |
mp53 | GCACTTCAGCCAGCAATCC CCACCGATGTTGTGATTCTC | 60 | 110 |
actin | GTCCCTGGAGAAGTCGTAC GCACAGTGTTGGCGTACAG | 60 | 194 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos-Cruz, L.F.; Ponciano-Gómez, A.; Torres-Gregorio, J.T.; Ramírez-Cruz, B.G.; Vázquez-Gómez, G.; Hernández-Portilla, L.B.; Flores-Ortiz, C.M.; Dueñas-García, I.E.; Heres-Pulido, M.E.; Castañeda-Partida, L.; et al. Zearalenone Does Not Show Genotoxic Effects in the Drosophila melanogaster Wing Spot Test, but It Induces Oxidative Imbalance, Development, and Fecundity Alterations. Toxins 2023, 15, 358. https://doi.org/10.3390/toxins15060358
Santos-Cruz LF, Ponciano-Gómez A, Torres-Gregorio JT, Ramírez-Cruz BG, Vázquez-Gómez G, Hernández-Portilla LB, Flores-Ortiz CM, Dueñas-García IE, Heres-Pulido ME, Castañeda-Partida L, et al. Zearalenone Does Not Show Genotoxic Effects in the Drosophila melanogaster Wing Spot Test, but It Induces Oxidative Imbalance, Development, and Fecundity Alterations. Toxins. 2023; 15(6):358. https://doi.org/10.3390/toxins15060358
Chicago/Turabian StyleSantos-Cruz, Luis Felipe, Alberto Ponciano-Gómez, Juan Tomás Torres-Gregorio, Bertha Guadalupe Ramírez-Cruz, Gerardo Vázquez-Gómez, Luis Barbo Hernández-Portilla, Cesar Mateo Flores-Ortiz, Irma Elena Dueñas-García, María Eugenia Heres-Pulido, Laura Castañeda-Partida, and et al. 2023. "Zearalenone Does Not Show Genotoxic Effects in the Drosophila melanogaster Wing Spot Test, but It Induces Oxidative Imbalance, Development, and Fecundity Alterations" Toxins 15, no. 6: 358. https://doi.org/10.3390/toxins15060358
APA StyleSantos-Cruz, L. F., Ponciano-Gómez, A., Torres-Gregorio, J. T., Ramírez-Cruz, B. G., Vázquez-Gómez, G., Hernández-Portilla, L. B., Flores-Ortiz, C. M., Dueñas-García, I. E., Heres-Pulido, M. E., Castañeda-Partida, L., Durán-Díaz, Á., Campos-Aguilar, M., Sigrist-Flores, S. C., & Piedra-Ibarra, E. (2023). Zearalenone Does Not Show Genotoxic Effects in the Drosophila melanogaster Wing Spot Test, but It Induces Oxidative Imbalance, Development, and Fecundity Alterations. Toxins, 15(6), 358. https://doi.org/10.3390/toxins15060358